1
|
Henrique Moniz AM, Xavier Junior FH, Melo Martins Silva G, Reis de Melo ACG, Silva MMCL, Paiva WS, Rocha HAO, da Costa LAMA, Melo Filho AAD, Oliveira RDP. Lippia origanoides essential oil increases longevity and ameliorates β-amyloid peptide-induced toxicity in Caenorhabditis elegans. Nat Prod Res 2025; 39:695-703. [PMID: 38041623 DOI: 10.1080/14786419.2023.2287183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
Lippia origanoides essential oil (LOEO) is extensively utilised as food preservative due to its antioxidant and antibacterial activities. In this study, the antioxidant and anti-ageing effects of LOEO was investigated in vivo using the nematode Caenorhabditis elegans. The gas chromatography-mass spectrometry analysis indicated that the main components of LOEO are carvacrol and thymol. LOEO treatment improved physiological parameters such as pharyngeal pumping, locomotion and body size indicating that is not toxic to C. elegans. LOEO treatment showed antioxidant effect in C. elegans by reducing endogenous ROS (Reactive Oxygen Species) production and increasing their survival under oxidative stress. Finally, LOEO treatment significantly extended C. elegans lifespan and alleviated the paralysis induced by β-amyloid peptide overexpression in the muscle. This work demonstrates for the first time LOEO antioxidant and anti-ageing properties on an organism level providing a valuable proof of principle to support further studies in the development of nutraceuticals or antioxidant phytotherapy.
Collapse
Affiliation(s)
- Ana Maria Henrique Moniz
- Rede Norte de Biotecnologia (BIONORTE), Universidade Federal de Roraima, Boa Vista, Brazil
- Secretaria Estadual de Educação e Cultura (SEED), Boa Vista, Brazil
- Departamento de Farmácia, Faculdades Cathedral, Boa Vista, Brazil
| | - Francisco Humberto Xavier Junior
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, Brazil
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos (PPGPNSB), Universidade Federal da Paraíba, João Pessoa, Brazil
| | | | - Ana Cristina Gonçalves Reis de Melo
- Núcleo de Pesquisa e Pós-graduação em Ciências e Tecnologia, Laboratório de Química Ambiental e Automação e Instrumentação, Universidade Federal de Roraima, Boa Vista, Brazil
| | | | - Weslley Souza Paiva
- Programa de Pós Graduação em Bioquímica e Biologia Molecular, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós Graduação em Bioquímica e Biologia Molecular, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Luiz Antônio Mendonça Alves da Costa
- Rede Norte de Biotecnologia (BIONORTE), Universidade Federal de Roraima, Boa Vista, Brazil
- Departamento de química, Universidade Federal de Roraima, Boa Vista, Brazil
| | - Antônio Alves de Melo Filho
- Rede Norte de Biotecnologia (BIONORTE), Universidade Federal de Roraima, Boa Vista, Brazil
- Departamento de química, Universidade Federal de Roraima, Boa Vista, Brazil
| | - Riva de Paula Oliveira
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
2
|
Maring M, Balaji C, Komala M, Nandi S, Latha S, Raghavendran HB. Aromatic Plants as Potential Resources to Combat Osteoarthritis. Comb Chem High Throughput Screen 2024; 27:1434-1465. [PMID: 37861046 DOI: 10.2174/0113862073267213231004094629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Osteoarthritis, which affects an estimated 10% of men and 18% of women over the age of 60 and is increasing in genetic prevalence and incidence, is acknowledged as the condition that degrades the quality of life for older adults in the world. There is currently no known treatment for osteoarthritis. The majority of therapeutic methods slow the progression of arthritis or treat its symptoms, making effective treatment to end the degenerative process of arthritis elusive. When non-pharmacological therapy is ineffective, various pharmacological therapies may be used to treat osteoarthritis. Pharmacological therapy, however, can have major adverse effects and be very expensive. As a result, alternative remedies have been researched. The promise for the safe and efficient management of osteoarthritis has been demonstrated by herbal remedies. Experimental research suggests that herbal extracts and compounds can reduce inflammation, inhibit catabolic processes, and promote anabolic processes that are important for treating osteoarthritis. Due to their therapeutic and innate pharmacological qualities, aromatic herbs are frequently employed as herbal remedies. Recent research has shown that aromatic plants have the potency to treat osteoarthritis. Additionally, complex mixtures of essential oils and their bioactive ingredients, which have anti-inflammatory and antioxidant properties and are obtained from aromatic plants, are frequently utilized as complementary therapies for osteoarthritis. To establish new study avenues, the advantageous anti-osteoarthritic effects of aromatic herbal medicines, including plants, essential oils, and their bioactive components, are extensively discussed.
Collapse
Affiliation(s)
- Maphibanri Maring
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - C Balaji
- Department of Rheumatology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - M Komala
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| | - S Latha
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - H Balaji Raghavendran
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
3
|
Lee J, Wang M, Zhao J, Ali Z, Hawwal MF, Khan IA. Chemical Characterization and Quality Assessment of Copaiba Oil-Resin Using GC/MS and SFC/MS. PLANTS (BASEL, SWITZERLAND) 2023; 12:1619. [PMID: 37111842 PMCID: PMC10144763 DOI: 10.3390/plants12081619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
In recent years, the popularity of copaiba oil-resin has increased worldwide due to its medicinal value and wide applications in industry. Despite its popularity, the oil has not been standardized by industry or regulatory agencies. Product adulteration in order to maximize profits has become a problem. To address these issues, the current study describes the chemical and chemometric characterization of forty copaiba oil-resin samples by GC/MS. The results demonstrated, with the exception of commercial samples, that all sample groups contained six characteristic compounds (β-caryophyllene, α-copaene, trans-α-bergamotene, α-humulene, γ-muurolene, and β-bisabolene) in varying concentrations. Furthermore, compositional patterns were observed in individual groups which corresponded to sample origin. Within the commercial group, two samples did not contain or contained only one of the characteristic compounds. Principal component analysis (PCA) revealed distinct groups which largely corresponded to sample origin. Moreover, commercial samples were detected by PCA as outliers, and formed a group far removed from the other samples. These samples were further subjected to analysis using a SFC/MS method. Product adulteration with soybean oil was clearly detected, with each individual triglyceride in soybean oil being unambiguously identified. By combining these analytical techniques, the overall quality of copaiba oil-resin can be assessed.
Collapse
Affiliation(s)
- Joseph Lee
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, MS 38677, USA
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 4545, Saudi Arabia
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
4
|
Rodrigues VM, Oliveira WN, Pereira DT, Alencar ÉN, Porto DL, Aragão CFS, Moreira SMG, Rocha HAO, Amaral-Machado L, Egito EST. Copaiba Oil-Loaded Polymeric Nanocapsules: Production and In Vitro Biosafety Evaluation on Lung Cells as a Pre-Formulation Step to Produce Phytotherapeutic Medicine. Pharmaceutics 2023; 15:pharmaceutics15010161. [PMID: 36678788 PMCID: PMC9861736 DOI: 10.3390/pharmaceutics15010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Copaiba oil has been largely used due to its therapeutic properties. Nanocapsules were revealed to be a great nanosystem to carry natural oils due to their ability to improve the bioaccessibility and the bioavailability of lipophilic compounds. The aim of this study was to produce and characterize copaiba oil nanocapsules (CopNc) and to evaluate their hemocompatibility, cytotoxicity, and genotoxicity. Copaiba oil was chemically characterized by GC-MS and FTIR. CopNc was produced using the nanoprecipitation method. The physicochemical stability, toxicity, and biocompatibility of the systems, in vitro, were then evaluated. Β-bisabolene, cis-α-bergamotene, caryophyllene, and caryophyllene oxide were identified as the major copaiba oil components. CopNc showed a particle size of 215 ± 10 nm, a polydispersity index of 0.15 ± 0.01, and a zeta potential of -18 ± 1. These parameters remained unchanged over 30 days at 25 ± 2 °C. The encapsulation efficiency of CopNc was 54 ± 2%. CopNc neither induced hemolysis in erythrocytes, nor cytotoxic and genotoxic in lung cells at the range of concentrations from 50 to 200 μg·mL-1. In conclusion, CopNc showed suitable stability and physicochemical properties. Moreover, this formulation presented a remarkable safety profile on lung cells. These results may pave the way to further use CopNc for the development of phytotherapeutic medicine intended for pulmonary delivery of copaiba oil.
Collapse
Affiliation(s)
- Victor M. Rodrigues
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Wógenes N. Oliveira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Daniel T. Pereira
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Éverton N. Alencar
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Dayanne L. Porto
- Pharmacy Department, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Cícero F. S. Aragão
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Susana M. G. Moreira
- Department of Cellular and Molecular Biology, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Hugo A. O. Rocha
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
- Laboratory of Natural Polymers Biotechnology, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Lucas Amaral-Machado
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
| | - Eryvaldo S. T. Egito
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
- Graduate Program in Pharmaceutical Nanotechnology, Federal University of Rio Grande do Norte (UFRN), Natal 59012-570, Brazil
- Correspondence: or ; Tel.: +55-(84)-994318816
| |
Collapse
|
5
|
Abid S, Maciuk A, Fishmeister R, Leblais V, Legssyer A, Mekhfi H, Ziyyat A, Aziz M, Lekchiri A, Bnouham M. Development of a Thin-Layer Chromatography-Enzymatic Test Combination Method for the Isolation of α-Glucosidase Inhibitors From Thymelaea hirsuta. J Chromatogr Sci 2022; 61:66-73. [PMID: 35679592 DOI: 10.1093/chromsci/bmac040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 01/11/2023]
Abstract
A rapid, easy and simple method for the isolation and purification of α-glucosidase inhibitors of the ethyl acetate extract of Thymelaea hirsuta (EaTh) by a combination of thin layer chromatography (TLC) and enzymatic test has been developed. EaTh was demonstrated previously a potent α-glucosidase inhibitory effect. In this study, we developed a simple TLC-enzymatic test (TLC/EZ) combination to isolate α-glucosidase inhibitors present in EaTh.EaTh was extracted by Soxhlet from Thymelaea hirsuta (T. hirsuta). The EaTh was separated on a silica gel column and then on a TLC plate. After TLC separation, the TLC/EZ combination method was applied. α-glucosidase inhibitors were detected directly in the TLC plate using the glucose oxidase peroxidase method (GOD-POD). A good detection of active compounds was obtained in the TLC favoring the TLC/EZ method. Active compounds were then characterized using high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. The main α-glucosidase inhibitors present in EaTh have a molecular ion [M + H]+ at m/z = 543. This proposed method is suitable for a reliable isolation and purification of α-glucosidase inhibitors present in EaTh. It could be proposed as an interesting alternative of the classical method for the isolation and purification of α-glucosidase inhibitors in plant extracts.
Collapse
Affiliation(s)
- Sanae Abid
- Laboratory of Bio-resources, Biotechnologies, Ethnopharmacology and health, Department of Biology. Faculty of Sciences, University Mohamed Ist, Boulevard Mohamed IV, BP: 717, Oujda 60 000, Morocco
| | - Alexander Maciuk
- Laboratory of Pharmacognosy, Faculty of Pharmacy, University Paris-Saclay, 5 Rue Jean Baptiste Clément, 92290 Châtenay-Malabry, France
| | - Rodolphe Fishmeister
- Laboratory of Signaling and Cardiac Physiopathology, INSERM U-769, Faculty of Pharmacy, University Paris-Saclay, 5 Rue Jean Baptiste Clément, 92290 Châtenay-Malabry, France
| | - Véronique Leblais
- Laboratory of Signaling and Cardiac Physiopathology, INSERM U-769, Faculty of Pharmacy, University Paris-Saclay, 5 Rue Jean Baptiste Clément, 92290 Châtenay-Malabry, France
| | - Abdekhaleq Legssyer
- Laboratory of Bio-resources, Biotechnologies, Ethnopharmacology and health, Department of Biology. Faculty of Sciences, University Mohamed Ist, Boulevard Mohamed IV, BP: 717, Oujda 60 000, Morocco
| | - Hassane Mekhfi
- Laboratory of Bio-resources, Biotechnologies, Ethnopharmacology and health, Department of Biology. Faculty of Sciences, University Mohamed Ist, Boulevard Mohamed IV, BP: 717, Oujda 60 000, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Bio-resources, Biotechnologies, Ethnopharmacology and health, Department of Biology. Faculty of Sciences, University Mohamed Ist, Boulevard Mohamed IV, BP: 717, Oujda 60 000, Morocco
| | - Mohamed Aziz
- Laboratory of Bio-resources, Biotechnologies, Ethnopharmacology and health, Department of Biology. Faculty of Sciences, University Mohamed Ist, Boulevard Mohamed IV, BP: 717, Oujda 60 000, Morocco
| | - Abdenbi Lekchiri
- Laboratory of Bio-resources, Biotechnologies, Ethnopharmacology and health, Department of Biology. Faculty of Sciences, University Mohamed Ist, Boulevard Mohamed IV, BP: 717, Oujda 60 000, Morocco
| | - Mohamed Bnouham
- Laboratory of Bio-resources, Biotechnologies, Ethnopharmacology and health, Department of Biology. Faculty of Sciences, University Mohamed Ist, Boulevard Mohamed IV, BP: 717, Oujda 60 000, Morocco
| |
Collapse
|
6
|
Joseph J, Akkermans S, Van Impe JFM. Processing Method for the Quantification of Methanol and Ethanol from Bioreactor Samples Using Gas Chromatography-Flame Ionization Detection. ACS OMEGA 2022; 7:24121-24133. [PMID: 35874265 PMCID: PMC9301692 DOI: 10.1021/acsomega.2c00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Methanol, a simple polar solvent, has been widely identified as an attractive carbon source to produce chemicals and fuels in bioprocesses. Specifically, to achieve recombinant protein production from methylotrophic yeasts, such as Pichia pastoris, this organic solvent can be used as a sole carbon source for growth and maintenance as well as an inducer for protein expression. However, if methanol feeding is not controlled well in such a fermentation process, accumulation of the solvent in the growth media will have a detrimental effect on the cells. Hence, monitoring the levels of methanol in these fermentation processes is a crucial step to ensure a healthy culture and maximum protein production. There are various techniques elaborated in the literature for monitoring methanol in cell cultures, but often, they appear to be expensive methods that are less affordable for many laboratories. This is because, in addition to the sophisticated equipment that is required for the analysis, the complexity of the samples retrieved from the bioprocesses necessitates laborious processing steps often involving expensive tools. In this study, a fast, simple, and sensitive method is developed to process biological samples by using the salting-out-assisted liquid-liquid extraction technique to quantify the concentration of methanol and ethanol using gas chromatography. On comparing the combinations of widely available salts and solvents, it was noticed that salting out using potassium carbonate followed by the liquid-liquid extraction of the analyte using ethyl acetate showed the best recovery. Followed by this, a validation test for the developed method was performed, which resulted in good peak resolution, linearity, and limit of detection for the quantitation of methanol and ethanol. By further assessing the tested combination, it was confirmed that its application could be extended to other matrices. Such an approach facilitates the possibility to monitor and control the methanol levels in fermentation and aids in bioprocess optimization.
Collapse
|
7
|
Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia. Int J Mol Sci 2021; 22:8912. [PMID: 34445619 PMCID: PMC8396277 DOI: 10.3390/ijms22168912] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kenji Kondo
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Rumi Ueha
- Department of Otolaryngology, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
- Swallowing Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
8
|
Distribution of inhaled volatile β-caryophyllene and dynamic changes of liver metabolites in mice. Sci Rep 2021; 11:1728. [PMID: 33462287 PMCID: PMC7813867 DOI: 10.1038/s41598-021-81181-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
β-caryophyllene (BCP), an essential oil component of many herbs and spices, has various biological activities as a functional food factor. A distinct feature of BCP is its volatile double-ring sesquiterpene structure. Orally administered BCP is reportedly detected in its intact form in mice serum; however, the distribution of inhaled volatile BCP throughout the body remains unknown. This study aimed to estimate the distribution properties of inhaled volatile BCP and to investigate its effects on metabolism. After mice were exposed to volatile BCP, it was detected in the lung, olfactory bulb, brain, serum, heart, liver, kidney, epididymal fat, and brown adipose tissue. BCP was further detected in the brain, liver, and brown adipose tissue 24 h after exposure. Metabolites related to glutathione metabolism were significantly altered in the liver. These results suggest that inhaled volatile BCP is widely distributed in murine tissues and affects the dynamics of metabolites in the liver.
Collapse
|
9
|
Plant Natural Sources of the Endocannabinoid ( E)-β-Caryophyllene: A Systematic Quantitative Analysis of Published Literature. Int J Mol Sci 2020; 21:ijms21186540. [PMID: 32906779 PMCID: PMC7554841 DOI: 10.3390/ijms21186540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
(E)-β-caryophyllene (BCP) is a natural sesquiterpene hydrocarbon present in hundreds of plant species. BCP possesses several important pharmacological activities, ranging from pain treatment to neurological and metabolic disorders. These are mainly due to its ability to interact with the cannabinoid receptor 2 (CB2) and the complete lack of interaction with the brain CB1. A systematic analysis of plant species with essential oils containing a BCP percentage > 10% provided almost 300 entries with species belonging to 51 families. The essential oils were found to be extracted from 13 plant parts and samples originated from 56 countries worldwide. Statistical analyses included the evaluation of variability in BCP% and yield% as well as the statistical linkage between families, plant parts and countries of origin by cluster analysis. Identified species were also grouped according to their presence in the Belfrit list. The survey evidences the importance of essential oil yield evaluation in support of the chemical analysis. The results provide a comprehensive picture of the species with the highest BCP and yield percentages.
Collapse
|
10
|
Mauro M, De Grandis RA, Campos ML, Bauermeister A, Peccinini RG, Pavan FR, Lopes NP, De Moraes NV. Acid diterpenes from Copaiba oleoresin (Copaifera langsdorffii): Chemical and plasma stability and intestinal permeability using Caco-2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2019; 235:183-189. [PMID: 30763698 DOI: 10.1016/j.jep.2019.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Copaiba oleoresin has been used in folk medicine in the treatment of bronchitis, syphilis, skin diseases and ulcers due to its anti-inflammatory and antiseptic activities, but there is no information about major compounds oral absorption to support the traditional use. AIM OF STUDY Considering the potential of copalic (CA) and kaurenoic acid (KA) - major biological activity (in vitro) diterpenes found in the oleoresin, this study aimed to evaluate the intestinal permeability of CA and KA using Caco-2 cells model as predictive test for oral drug absorption. MATERIALS AND METHODS Chemical stability at pH 1.2 and 7.4 and plasma stability were evaluated to mimic physiological conditions of the gastrointestinal tract. The intestinal permeability of CA and KA was evaluated in Caco-2 cells in the presence and absence of the P-glycoprotein inhibitor verapamil. RESULTS CA and KA were rapidly degraded at pH 1.2 (0.2 M Clark-Lubs buffer). At pH 7.4 (0.1 M phosphate buffer), CA was stable for up to 24 h and KA for up to 6 h. In human plasma, CA and KA can be considered stable for 24 h and 12 h at 37 °C, respectively. Caco-2 cells were considered viable when incubated with CA or KA in the range of 3.9-250 μM for 24 h. CA and KA exhibited moderate apparent permeability (Papp) of 4.67 (±0.08) × 10-6 cm/s and 4.66 (±0.04) × 10-6 cm/s, respectively. Simultaneous incubation with verapamil showed that P-glycoprotein does not play a relevant role on CA and KA oral absorption, with Papp of 4.48 (±0.26) × 10-6 cm/s and 5.37 (±0.72) × 10-6 cm/s observed for CA and KA, respectively. CONCLUSION The oral absorption of both CA and KA is driven by mainly passive permeability, is not limited by p-glycoprotein, but enteric-coated dosage forms should be used to avoid chemical instability in the gastric pH.
Collapse
Affiliation(s)
- M Mauro
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP ZIP 14801-902, Brazil.
| | - R A De Grandis
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP ZIP 14801-902, Brazil.
| | - M L Campos
- Federal University of Mato Grosso, Sinop, MT, Brazil.
| | - A Bauermeister
- University of Sao Paulo (USP), NPPNS, School of Pharmaceutical Sciences of Ribeirao Preto, Ribeirao Preto, SP ZIP 14040-903, Brazil.
| | - R G Peccinini
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP ZIP 14801-902, Brazil.
| | - F R Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP ZIP 14801-902, Brazil.
| | - N P Lopes
- University of Sao Paulo (USP), NPPNS, School of Pharmaceutical Sciences of Ribeirao Preto, Ribeirao Preto, SP ZIP 14040-903, Brazil.
| | - N V De Moraes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP ZIP 14801-902, Brazil.
| |
Collapse
|
11
|
Kowalski R, Gagoś M, Kowalska G, Pankiewicz U, Sujka M, Mazurek A, Nawrocka A. Effects of Ultrasound Technique on the Composition of Different Essential Oils. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:6782495. [PMID: 31183247 PMCID: PMC6512022 DOI: 10.1155/2019/6782495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 04/07/2019] [Indexed: 05/23/2023]
Abstract
The objective of the experiment was to investigate the stability of the composition of selected essential oils in the model systems containing methanol and hexane solutions which were treated with ultrasound. Solutions of the oils, with a concentration of 90 mg/ml, were subjected to the effect of ultrasounds with a frequency of 20 kHz and an output power of 200 W for periods of 2 min and 10 min at 50% and 80% power. The experiment has shown no significant effect on the composition of the essential oils resulting from the applied parameters of the process in the tested model systems. The study indicates that the sonication parameters adopted in the experiment can be applied in the case of analogous systems containing essential oils in their composition.
Collapse
Affiliation(s)
- Radosław Kowalski
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Urszula Pankiewicz
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Monika Sujka
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Artur Mazurek
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland
| | - Agnieszka Nawrocka
- Bohdan Dobrzański Institute of Agrophysics Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
12
|
Oliveira CM, Xavier-Jr FH, Morais ARDV, Lima IL, Silva RA, Nascimento AEG, Araújo NK, Nogueira MCDBL, Silva-Jr. AA, Pedrosa MDFF, Egito EST. Hydrophobin-stabilized nanoemulsion produced by a low-energy emulsification process: A promising carrier for nutraceuticals. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|