1
|
Liu M, Peng W, Ji X. Repurposing of CDK Inhibitors as Host Targeting Antivirals: A Mini- Review. Mini Rev Med Chem 2025; 25:178-189. [PMID: 39185650 DOI: 10.2174/0113895575311618240820103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024]
Abstract
Most of the antiviral drugs in the market are designed to target viral proteins directly. They are generally considered safe for human use. However, they also suffer from several inherent limitations, in particular, narrow-spectrum antiviral profiles and liability to drug resistance. The other strategy for antiviral drug development is targeting host factors, which are highly involved at different stages in the viral life cycle. In contrast to direct-acting antiviral agents, host-targeting antiviral ones normally exhibit broad-spectrum antiviral properties along with a much higher genetic barrier to drug resistance. Cyclin-dependent kinases (CDKs) represent one such host factor. In this review, we summarized a number of CDK inhibitors (CDKIs) of varied chemical scaffolds with demonstrated antiviral activity. Challenges and issues associated with the repurposing of CDKIs as antiviral agents were also discussed.
Collapse
Affiliation(s)
- Miao Liu
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Wei Peng
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Xingyue Ji
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu, 215021, China
| |
Collapse
|
2
|
Ge L, Luo Y, Li X, Hu Y, Sun L, Bu F, Shan D, Liu J. Global, regional, and national prevalence of HIV-1 drug resistance in treatment-naive and treatment-experienced children and adolescents: a systematic review and meta-analysis. EClinicalMedicine 2024; 77:102859. [PMID: 39430612 PMCID: PMC11490817 DOI: 10.1016/j.eclinm.2024.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Background Despite significant reductions in mother-to-child HIV-1 transmission risks due to the advancements and scale-up of antiretroviral therapy (ART), the global burden of HIV-1 drug resistance (HIVDR) in treatment-naive and treatment-experienced children and adolescents remains poorly understood. In this study, we conducted a systematic review and meta-analysis to estimate the prevalence of HIVDR in these populations globally, regionally, and at the country level. Methods We systematically searched PubMed, Embase, and Web of Science for studies reporting HIVDR in treatment-naive and treatment-experienced children and adolescents from inception to June 28, 2024. Eligible studies reported at least ten successfully genotyped cases. We excluded studies where drug resistance was not reported separately for children and adults or for treatment-naive and treatment-experienced populations. The methodological quality of eligible studies was assessed, and random-effect models were used for meta-analysis to determine the pooled overall and regimen-specific prevalence of one or more HIVDR mutations in these populations globally, regionally, or at the country level. This study is registered with PROSPERO under the number CRD42023424483. Findings Of 2282 records identified, 136 studies (28,539 HIV-1-infected children from 52 countries) were included for analysis. The overall prevalence of HIVDR is 26.31% (95% CI, 20.76-32.25) among treatment-naive children and 74.16% (95% CI, 67.74-80.13) among treatment-experienced children (p < 0.0001). HIVDR varied widely across subregion with the highest prevalence in Southern Africa (37.80% [95% CI, 26.24-50.08]) and lowest in South America (11.79% [95% CI, 4.91-20.84]) for treatment-naive children while highest in Asia (80.85% [95% CI, 63.76-93.55]) and lowest in Europe (54.39% [95% CI, 28.61-79.03]) for treatment-experienced children. The proportion of viral failure (VF) presented positive correlation with DR prevalence for treatment-experienced children, which increased from 61.23% (95% CI, 47.98-73.72) in proportion of VF <50%-81.17% (95% CI, 71.57-89.28) in proportion of 100%. Meta-regression analysis for both groups showed that only age (naive: p = 0.0005; treated: p < 0.0001) was the sources of heterogeneity. Non-nucleoside reverse transcriptase inhibitor (NNRTI) resistances were the most seen mutations among the treatment-naive group, with the HIVDR prevalence more than 10% in Southern Africa, Western and Central Africa, Eastern Africa, Asia, and North America. Both nucleoside reverse transcriptase inhibitor (NRTI) and NNRTI resistances were commonly seen among the treatment-experienced group, varying from 36.33% (95% CI, 11.96-64.93) in North America to 77.54% (95% CI, 62.70-89.58) in South America for NRTI and from 39.98% (95% CI, 13.47-69.97) in Europe to 68.86 (95% CI, 43.91-89.17) in Asia for NNRTI, respectively. Interpretation This study underscores the significant burden of HIVDR among children and adolescents worldwide, particularly pronounced in sub-Saharan Africa and low-income countries. It emphasizes the critical importance of surveillance in all HIV-1-infected children and advocates for the adoption of dolutegravir (DTG) or other optimal formulations as first-line ART in settings where NNRTI resistance exceeds the WHO's 10% threshold. DTG's high resistance barrier, potent antiviral efficacy, and favorable safety profile makes it a superior choice for managing drug-resistant HIV-1, surpassing traditional antiretroviral therapies. Funding This work was supported by the Science and Technology Innovation Committee of Shenzhen Municipality (No. JCYJ20220531102202005) and the Natural Science Foundation of Guangdong Province (No. 2024A1515012118).
Collapse
Affiliation(s)
- Lingyun Ge
- School of Public Health, Shenzhen University Medical School, Shenzhen, China
| | - Yinsong Luo
- School of Public Health, Shenzhen University Medical School, Shenzhen, China
| | - Xiaorui Li
- School of Public Health, Shenzhen University Medical School, Shenzhen, China
| | - Yiyao Hu
- School of Public Health, Shenzhen University Medical School, Shenzhen, China
| | - Liqin Sun
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Fan Bu
- Department of Neurology & Psychology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, China
| | - Duo Shan
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiaye Liu
- School of Public Health, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
3
|
Steingrimsson JA, Fulton J, Howison M, Novitsky V, Gillani FS, Bertrand T, Civitarese A, Howe K, Ronquillo G, Lafazia B, Parillo Z, Marak T, Chan PA, Bhattarai L, Dunn C, Bandy U, Scott NA, Hogan JW, Kantor R. Beyond HIV outbreaks: protocol, rationale and implementation of a prospective study quantifying the benefit of incorporating viral sequence clustering analysis into routine public health interventions. BMJ Open 2022; 12:e060184. [PMID: 35450916 PMCID: PMC9024226 DOI: 10.1136/bmjopen-2021-060184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/29/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION HIV continues to have great impact on millions of lives. Novel methods are needed to disrupt HIV transmission networks. In the USA, public health departments routinely conduct contact tracing and partner services and interview newly HIV-diagnosed index cases to obtain information on social networks and guide prevention interventions. Sequence clustering methods able to infer HIV networks have been used to investigate and halt outbreaks. Incorporation of such methods into routine, not only outbreak-driven, contact tracing and partner services holds promise for further disruption of HIV transmissions. METHODS AND ANALYSIS Building on a strong academic-public health collaboration in Rhode Island, we designed and have implemented a state-wide prospective study to evaluate an intervention that incorporates real-time HIV molecular clustering information with routine contact tracing and partner services. We present the rationale and study design of our approach to integrate sequence clustering methods into routine public health interventions as well as related important ethical considerations. This prospective study addresses key questions about the benefit of incorporating a clustering analysis triggered intervention into the routine workflow of public health departments, going beyond outbreak-only circumstances. By developing an intervention triggered by, and incorporating information from, viral sequence clustering analysis, and evaluating it with a novel design that avoids randomisation while allowing for methods comparison, we are confident that this study will inform how viral sequence clustering analysis can be routinely integrated into public health to support the ending of the HIV pandemic in the USA and beyond. ETHICS AND DISSEMINATION The study was approved by both the Lifespan and Rhode Island Department of Health Human Subjects Research Institutional Review Boards and study results will be published in peer-reviewed journals.
Collapse
Affiliation(s)
- Jon A Steingrimsson
- Biostatistics, Brown University School of Public Health, Providence, Rhode Island, USA
| | - John Fulton
- Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island, USA
| | - Mark Howison
- Research Improving People's Lives, Providence, Rhode Island, USA
| | - Vlad Novitsky
- Department of Medicine, Brown University, Providence, Rhode Island, USA
| | - Fizza S Gillani
- Department of Medicine, Brown University, Providence, Rhode Island, USA
| | - Thomas Bertrand
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Anna Civitarese
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Katharine Howe
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | | | - Benjamin Lafazia
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Zoanne Parillo
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Theodore Marak
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Philip A Chan
- Department of Medicine, Brown University, Providence, Rhode Island, USA
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Lila Bhattarai
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Casey Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Utpala Bandy
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | | | - Joseph W Hogan
- Biostatistics, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Rami Kantor
- Department of Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Novitsky V, Steingrimsson J, Howison M, Dunn C, Gillani FS, Manne A, Li Y, Spence M, Parillo Z, Fulton J, Marak T, Chan P, Bertrand T, Bandy U, Alexander-Scott N, Hogan J, Kantor R. Longitudinal typing of molecular HIV clusters in a statewide epidemic. AIDS 2021; 35:1711-1722. [PMID: 34033589 PMCID: PMC8373695 DOI: 10.1097/qad.0000000000002953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND HIV molecular epidemiology is increasingly integrated into public health prevention. We conducted cluster typing to enhance characterization of a densely sampled statewide epidemic towards informing public health. METHODS We identified HIV clusters, categorized them into types, and evaluated their dynamics between 2004 and 2019 in Rhode Island. We grouped sequences by diagnosis year, assessed cluster changes between paired phylogenies, t0 and t1, representing adjacent years and categorized clusters as stable (cluster in t0 phylogeny = cluster in t1 phylogeny) or unstable (cluster in t0 ≠ cluster in t1). Unstable clusters were further categorized as emerging (t1 phylogeny only) or growing (larger in t1 phylogeny). We determined proportions of each cluster type, of individuals in each cluster type, and of newly diagnosed individuals in each cluster type, and assessed trends over time. RESULTS A total of 1727 individuals with available HIV-1 subtype B pol sequences were diagnosed in Rhode Island by 2019. Over time, stable clusters and individuals in them dominated the epidemic, increasing over time, with reciprocally decreasing unstable clusters and individuals in them. Conversely, proportions of newly diagnosed individuals in unstable clusters significantly increased. Within unstable clusters, proportions of emerging clusters and of individuals in them declined; whereas proportions of newly diagnosed individuals in growing clusters significantly increased over time. CONCLUSION Distinct molecular cluster types were identified in the Rhode Island epidemic. Cluster dynamics demonstrated increasing stable and decreasing unstable clusters driven by growing, rather than emerging clusters, suggesting consistent in-state transmission networks. Cluster typing could inform public health beyond conventional approaches and direct interventions.
Collapse
Affiliation(s)
| | | | - Mark Howison
- Research Improving People’s Life, Providence, RI, USA
| | | | | | | | | | | | | | | | | | - Philip Chan
- Brown University, Providence, RI, USA
- Rhode Island Department of Health, Providence, RI, USA
| | | | - Utpala Bandy
- Rhode Island Department of Health, Providence, RI, USA
| | | | | | | |
Collapse
|
5
|
Jarchi M, Bokharaei-Salim F, Esghaei M, Kiani SJ, Jahanbakhsh F, Monavari SH, Ataei-Pirkooh A, Marjani A, Keyvani H. The Frequency of HIV-1 Infection in Iranian Children and Determination of the Transmitted Drug Resistance in Treatment-Naïve Children. Curr HIV Res 2021; 17:397-407. [PMID: 31702525 DOI: 10.2174/1570162x17666191106111211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND The advent of resistance-associated mutations in HIV-1 is a barrier to the success of the ARTs. OBJECTIVE In this study, the abundance of HIV-1 infection in Iranian children, and also detection of the TDR in naïve HIV-1 infected pediatric (under 12 years old) were evaluated. MATERIALS From June 2014 to January 2019, a total of 544 consecutive treatment-naïve HIV-1- infected individuals enrolled in this study. After RNA extraction, amplification, and sequencing of the HIV-1 pol gene, the DRM and phylogenetic analysis were successfully performed on the plasma specimens of the ART-naïve HIV-1-infected-children under 12 years old. The DRMs were recognized using the Stanford HIV Drug Resistance Database. RESULTS Out of the 544 evaluated treatment-naïve HIV-1-infected individuals, 15 (2.8%) cases were children under 12 years old. The phylogenetic analyses of the amplified region of pol gene indicated that all of the 15 HIV-1-infected pediatric patients were infected by CRF35_AD, and a total of 13.3% (2/15) of these children were infected with HIV-1 variants with SDRMs (one child harbored two related SDRMs [D67N, V179F], and another child had three related SDRMs [M184V, T215F, and K103N]), according to the last algorithm of the WHO. No PIs-related SDRMs were observed in HIV-1-infected children. CONCLUSION The current study demonstrated that a total of 13.3% of treatment-naïve HIV-1-infected Iranian pediatrics (under 12 years old) were infected with HIV-1 variants with SDRMs. Therefore, it seems that screening to recognize resistance-associated mutations before the initiation of ARTs among Iranian children is essential for favorable medication efficacy and dependable prognosis.
Collapse
Affiliation(s)
- Maryam Jarchi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalal Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Angila Ataei-Pirkooh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Marjani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Gibson KM, Jair K, Castel AD, Bendall ML, Wilbourn B, Jordan JA, Crandall KA, Pérez-Losada M. A cross-sectional study to characterize local HIV-1 dynamics in Washington, DC using next-generation sequencing. Sci Rep 2020; 10:1989. [PMID: 32029767 PMCID: PMC7004982 DOI: 10.1038/s41598-020-58410-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/31/2019] [Indexed: 11/08/2022] Open
Abstract
Washington, DC continues to experience a generalized HIV-1 epidemic. We characterized the local phylodynamics of HIV-1 in DC using next-generation sequencing (NGS) data. Viral samples from 68 participants from 2016 through 2017 were sequenced and paired with epidemiological data. Phylogenetic and network inferences, drug resistant mutations (DRMs), subtypes and HIV-1 diversity estimations were completed. Haplotypes were reconstructed to infer transmission clusters. Phylodynamic inferences based on the HIV-1 polymerase (pol) and envelope genes (env) were compared. Higher HIV-1 diversity (n.s.) was seen in men who have sex with men, heterosexual, and male participants in DC. 54.0% of the participants contained at least one DRM. The 40-49 year-olds showed the highest prevalence of DRMs (22.9%). Phylogenetic analysis of pol and env sequences grouped 31.9-33.8% of the participants into clusters. HIV-TRACE grouped 2.9-12.8% of participants when using consensus sequences and 9.0-64.2% when using haplotypes. NGS allowed us to characterize the local phylodynamics of HIV-1 in DC more broadly and accurately, given a better representation of its diversity and dynamics. Reconstructed haplotypes provided novel and deeper phylodynamic insights, which led to networks linking a higher number of participants. Our understanding of the HIV-1 epidemic was expanded with the powerful coupling of HIV-1 NGS data with epidemiological data.
Collapse
Grants
- P30 AI117970 NIAID NIH HHS
- U01 AI069503 NIAID NIH HHS
- UM1 AI069503 NIAID NIH HHS
- This study was supported by the DC Cohort Study (U01 AI69503-03S2), a supplement from the Women’s Interagency Study for HIV-1 (410722_GR410708), a DC D-CFAR pilot award, and a 2015 HIV-1 Phylodynamics Supplement award from the District of Columbia for AIDS Research, an NIH funded program (AI117970), which is supported by the following NIH Co-Funding and Participating Institutes and Centers: NIAID, NCI, NICHD, NHLBI, NIDA, NIMH, NIA, FIC, NIGMS, NIDDK and OAR. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Collapse
Affiliation(s)
- Keylie M Gibson
- Computational Biology Institute, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA.
| | - Kamwing Jair
- Department of Epidemiology, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Amanda D Castel
- Department of Epidemiology, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Matthew L Bendall
- Computational Biology Institute, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Brittany Wilbourn
- Department of Epidemiology, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Jeanne A Jordan
- Department of Epidemiology, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Keith A Crandall
- Computational Biology Institute, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
- Department of Biostatistics and Bioinformatics, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
- Department of Biostatistics and Bioinformatics, The Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| |
Collapse
|
7
|
Neubert J, Michalsky N, Laws HJ, Borkhardt A, Jensen B, Lübke N. HIV-1 Subtype Diversity and Prevalence of Primary Drug Resistance in a Single-Center Pediatric Cohort in Germany. Intervirology 2017; 59:301-306. [PMID: 28675900 DOI: 10.1159/000477811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/27/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Data on drug-resistant mutations (DRMs) in HIV-1-infected therapy-naïve children are scarce. The aim of this study was to determine the HIV-1 subtype distribution and the prevalence of DRMs in therapy-naïve HIV-1-infected children who received routine care at the University Hospital Düsseldorf, Düsseldorf, Germany. METHODS Records of all HIV-1-infected children who received routine care between January 2005 and December 2015 were analyzed retrospectively. The collected data included demographics, clinical characteristics, CD4 cell count, viral load, HIV-1 subtype, and resistance genotype at baseline. RESULTS 83 HIV-1-infected children received routine care during the observation period. HIV-1 subtypes were available in 61/83 patients (73.5%) and baseline HIV-1 resistance in 24 (29%). The prevalence of major DRMs was 29% (21% nucleoside reverse-transcriptase inhibitors [NRTIs], 12.5% non-NRTIs, and 4% protease inhibitors). Minor mutations in the protease gene were common (58%). Non-B subtypes were predominant (77%). CONCLUSIONS We report a predominance of non-subtype-B infections and a higher prevalence of DRMs compared to other pediatric cohorts from resource-rich settings. The difference in HIV-1 subtype distribution is due to the fact that a relevant proportion of pediatric patients in Germany are immigrants from high-prevalence settings in sub-Saharan Africa where non-B subtypes predominate.
Collapse
Affiliation(s)
- Jennifer Neubert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|