1
|
Thomas L, Chaithra, Batra Y, Mathur M, Kulavalli S, SV CS, Dutt N, Bhardwaj P, Varma M, Saravu K, Banerjee M, Rao M. Pharmacogenomic heterogeneity of N-acetyltransferase 2: a comprehensive analysis of real world data in Indian tuberculosis patients and from literature and database review. Ann Med 2025; 57:2478316. [PMID: 40138446 PMCID: PMC11948353 DOI: 10.1080/07853890.2025.2478316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/06/2025] [Accepted: 01/31/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Isoniazid is primarily metabolized by the arylamine N-acetyltransferase 2 (NAT2) enzyme. Single nucleotide polymorphisms (SNPs) in the NAT2 gene could classify an individual into three distinct phenotypes: rapid, intermediate and slow acetylators. NAT2 SNPs and the slow acetylator phenotype have been implicated as risk factors for the development of antitubercular drug-induced liver injury (AT-DILI) in several tuberculosis (TB) populations. PATIENTS AND METHODS We conducted a prospective observational study to characterize and compare the NAT2 SNPs, genotypes and phenotypes among patients with TB and AT-DILI from the Southern and Western regions of India. The NAT2 pharmacogenomic profile of patients from these regions was compared with the reports from several geographically diverse TB populations and participants of different genetic ancestries extracted from literature reviews and the 'All of Us' Research Program database, respectively. RESULTS The TB patients of Southern and Western regions of India and several other geographically closer regions exhibited near similar NAT2 MAF characteristics. However significant heterogeneity in NAT2 SNPs was observed within and between countries among AT-DILI populations and the participants of different genetic ancestry from the 'All of Us' Research Program database. The MAF of the NAT2 SNPs rs1041983, rs1801280, rs1799929, rs1799930 and rs1208 of the TB patients from Southern and Western Indian Sites were in near range to that of the South Asian genetic ancestry of 'All of Us' Research Program database. About one-third of the total TB patients from the Southern and Western regions of India were NAT2 slow acetylators, among whom a relatively higher proportion experienced AT-DILI. CONCLUSION Further studies exploring the risk of NAT2 SNPs in different AT-DILI patients with larger sample sizes and a population-specific approach are required to establish a policy for NAT2 genotyping as a pre-emptive biomarker for AT-DILI monitoring for personalized isoniazid therapy in clinics.
Collapse
Affiliation(s)
- Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Chaithra
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Yashi Batra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Mitali Mathur
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Shrivathsa Kulavalli
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | | | - Naveen Dutt
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Pankaj Bhardwaj
- Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Muralidhar Varma
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
2
|
Abdelgawad N, Wasserman S, Gausi K, Davis A, Stek C, Wiesner L, Meintjes G, Wilkinson RJ, Denti P. Population Pharmacokinetics of Rifampicin in Plasma and Cerebrospinal Fluid in Adults With Tuberculosis Meningitis. J Infect Dis 2025:jiaf178. [PMID: 40295169 DOI: 10.1093/infdis/jiaf178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Several ongoing clinical trials are evaluating high-dose rifampicin (up to 35 mg/kg) for tuberculous meningitis (TBM). However, rifampicin pharmacokinetics at higher doses is not fully characterized, particularly in cerebrospinal fluid (CSF), the site of TBM disease. METHODS In a randomized controlled trial, adults with HIV-associated TBM were assigned to experimental arms of high-dose rifampicin (oral, 35 mg/kg; intravenous, 20 mg/kg) plus linezolid, with or without aspirin, or a control arm that received the standard of care with 10 mg/kg of oral rifampicin. Rifampicin concentrations, including the unbound fraction, were measured on plasma samples, and CSF was collected on days 3 and 28 of study enrollment. Data were analyzed by nonlinear mixed effects modeling. RESULTS In total, 400 plasma and 44 CSF rifampicin concentrations from 48 participants were used for model development. The median (range) age and weight were 39 years (25-78) and 60 kg (30-107). Rifampicin pharmacokinetics was best described by a 2-compartment disposition model with first-order transit oral absorption and elimination via saturable hepatic extraction. Typical clearance values for the standard dose for days 3 and 28 were 33.1 and 41.4 L/h, respectively; high-dose values were 46.1 and 70.2 L/h. The CSF-plasma ratio was approximately 6% and the equilibration half-life was 3.2 hours. Simulated standard-dose rifampicin did not reach CSF concentrations above the critical concentration for Mycobacterium tuberculosis. CONCLUSIONS CSF penetration with standard-dose rifampicin is low. Our findings support continued evaluation of high-dose rifampicin for TBM treatment.
Collapse
Affiliation(s)
| | - Sean Wasserman
- Wellcome Discovery Research Platforms for Infection, Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Institute for Infection and Immunity, City St George's University of London, London, United Kingdom
| | | | - Angharad Davis
- Wellcome Discovery Research Platforms for Infection, Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- The Francis Crick Institute, London, United Kingdom
- Queen Mary and Barts Tuberculosis Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University London, United Kingdom
| | - Cari Stek
- Wellcome Discovery Research Platforms for Infection, Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine
| | - Graeme Meintjes
- Wellcome Discovery Research Platforms for Infection, Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town, Observatory, South Africa
- Blizard Institute, Queen Mary University of London, United Kingdom
| | - Robert J Wilkinson
- Wellcome Discovery Research Platforms for Infection, Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- The Francis Crick Institute, London, United Kingdom
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Observatory, South Africa
- Department of Infectious Diseases, Imperial College London, United Kingdom
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine
| |
Collapse
|
3
|
Goutelle S, Bahuaud O, Genestet C, Millet A, Parant F, Dumitrescu O, Ader F. Exposure to Rifampicin and its Metabolite 25-Deacetylrifampicin Rapidly Decreases During Tuberculosis Therapy. Clin Pharmacokinet 2025; 64:387-396. [PMID: 39871048 PMCID: PMC11954713 DOI: 10.1007/s40262-025-01479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND AND OBJECTIVE Limited information is available on the pharmacokinetics of rifampicin (RIF) along with that of its active metabolite, 25-deacetylrifampicin (25-dRIF). This study aimed to analyse the pharmacokinetic data of RIF and 25-dRIF collected in adult patients treated for tuberculosis. METHODS In adult patients receiving 10 mg/kg of RIF as part of a standard regimen for drug-susceptible pulmonary tuberculosis enrolled in the Opti-4TB study, plasma RIF and 25-dRIF concentrations were measured at various occasions. The RIF and 25-dRIF concentrations were modelled simultaneously by using a population approach. The area under the concentration-time curves of RIF and 25-dRIF were estimated on each occasion of therapeutic drug monitoring. Optimal RIF exposure, defined as an area under the concentration-time curve over 24 hours/minimum inhibitory concentration > 435, was assessed. RESULTS Concentration data (247 and 243 concentrations of RIF and 25-dRIF, respectively) were obtained in 35 patients with tuberculosis (10 women, 25 men). Mycobacterium tuberculosis minimum inhibitory concentration ranged from 0.06 to 0.5 mg/L (median = 0.25 mg/L). The final model was a two-compartment model including RIF metabolism into 25-dRIF and auto-induction. Exposure to 25-dRIF was low, with a mean area under the concentration-time curve over 24 h ratio of 25-dRIF/RIF of 14 ± 6%. The area under the concentration-time curve over 24 h of RIF and 25-dRIF rapidly decreased during therapy, with an auto-induction half-life of 1.6 days. Optimal RIF exposure was achieved in only six (19.3%) out of 31 patients upon first therapeutic drug monitoring. CONCLUSIONS Exposure to both RIF and 25-dRIF rapidly decreased during tuberculosis therapy. The contribution of 25-dRIF to overall drug exposure was low. Attainment of the target area under the concentration-time curve over 24 hours/minimum inhibitory concentration for RIF was poor, supporting an increased RIF dosage as an option to compensate for auto-induction.
Collapse
Affiliation(s)
- Sylvain Goutelle
- Hospices Civils de Lyon, GH Nord, Hôpital de la Croix-Rousse, Service de Pharmacie, 103 Grande rue de la Croix-Rousse, 69004, Lyon, France.
- UMR CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France.
- Facultés de Médecine et de Pharmacie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France.
| | - Olivier Bahuaud
- Facultés de Médecine et de Pharmacie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Service des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Groupement Hospitalier Nord, Hôpital de la Croix-Rousse, Lyon, France
| | - Charlotte Genestet
- Institut des Agents Infectieux, Laboratoire des Mycobactéries, Hospices Civils de Lyon, Hôpital de la Croix Rousse, Lyon, France
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007, Lyon, France
| | - Aurélien Millet
- Service de Biochimie et Biologie Moléculaire, UM Pharmacologie-Toxicologie, Hospices Civils de Lyon, Groupement Hospitalier Sud, Lyon, France
| | - François Parant
- Service de Biochimie et Biologie Moléculaire, UM Pharmacologie-Toxicologie, Hospices Civils de Lyon, Groupement Hospitalier Sud, Lyon, France
| | - Oana Dumitrescu
- Facultés de Médecine et de Pharmacie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Institut des Agents Infectieux, Laboratoire des Mycobactéries, Hospices Civils de Lyon, Hôpital de la Croix Rousse, Lyon, France
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007, Lyon, France
| | - Florence Ader
- Facultés de Médecine et de Pharmacie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Service des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Groupement Hospitalier Nord, Hôpital de la Croix-Rousse, Lyon, France
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007, Lyon, France
| |
Collapse
|
4
|
Sekaggya-Wiltshire C, Mbabazi I, Nabisere RM, Alinaitwe L, Otaalo B, Aber F, Nampala J, Owori R, Bayigga J, Mayito J, Banturaki G, Laker EAO, Castelnuovo B, Sekadde MP, Pasipanodya J, Dooley KE, Stavia T, Zawedde-Muyanja S. Clinical predictors of 3-month isoniazid rifapentine (3HP)-related adverse drug reactions (ADR) during tuberculosis preventive therapy (PAnDoRA-3HP study): an observational study protocol. BMJ Open 2024; 14:e088389. [PMID: 39740953 PMCID: PMC11749192 DOI: 10.1136/bmjopen-2024-088389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/22/2024] [Indexed: 01/02/2025] Open
Abstract
INTRODUCTION Tuberculosis (TB) is the leading infectious cause of death globally. Despite WHO recommendations for TB preventive therapy (TPT), challenges persist, including incompletion of treatment and adverse drug reactions (ADRs). There is limited data on the 3-month isoniazid and rifapentine (3HP) pharmacokinetics, pharmacogenomics and their relation with ADRs. Our study aims to describe the pharmacokinetic and pharmacogenomics of 3HP used for TPT, the ADRs and their association with completion rates, and TPT outcomes, providing vital insights for TB control strategies in resource-limited settings. METHODS This is an observational cohort study with a nested case-control study. We enrolled consecutive patients who had been initiated on TPT using the 3HP regimen. These are followed up biweekly and then monthly during the active phase of treatment and 3 monthly for 2 years following completion of TPT. ADR evaluation includes clinical assessment and liver function tests. Cases are selected from those who experience ADRs and controls from those who do not. Serum isoniazid and rifapentine concentrations are measured and pharmacogenomic analysis for NAT2, AADAC and CYP2E1 polymorphisms are done. Participants are followed up for 2 years to determine TPT outcomes. ANALYSIS The safety profile of 3HP will be assessed using descriptive statistics, including proportions of patients experiencing ADRs and grade 3 or above events related to treatment. χ2 tests and regression models will determine predictors of ADRs and their impact on treatment completion. Pharmacokinetic-pharmacodynamic modelling will establish population parameters and factors influencing rifapentine and isoniazid concentrations. ETHICS AND DISSEMINATION Ethical approval of this study inclusive of all the appropriate documents was obtained from the Infectious Diseases Institute Research and Ethics Committee and the Uganda National Council of Science and Technology. The study adheres to legal, ethical and Good Clinical Practice (GCP) guidelines. Deidentified genotype data from 300 patients will be shared after publication. The protocol and phenotype data will be publicly accessible. Abstracts will be submitted to conferences, and a manuscript will be published poststudy.
Collapse
Affiliation(s)
| | - Irene Mbabazi
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Central, Uganda
| | - Ruth Mirembe Nabisere
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Central, Uganda
| | - Lucy Alinaitwe
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Central, Uganda
| | - Brian Otaalo
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Central, Uganda
| | - Florence Aber
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Central, Uganda
| | - Juliet Nampala
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Central, Uganda
| | - Rogers Owori
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Central, Uganda
| | - Josephine Bayigga
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Central, Uganda
| | - Jonathan Mayito
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Central, Uganda
| | - Grace Banturaki
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Central, Uganda
| | - Eva Agnes Odongpiny Laker
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Central, Uganda
| | - Barbara Castelnuovo
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Central, Uganda
| | | | | | - Kelly E Dooley
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Turyahabwe Stavia
- National Tuberculosis and Leprosy Program, Republic of Uganda Ministry of Health, Kampala, Uganda
| | - Stella Zawedde-Muyanja
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Central, Uganda
| |
Collapse
|
5
|
Sarkar M, Sarkar J. Therapeutic drug monitoring in tuberculosis. Eur J Clin Pharmacol 2024; 80:1659-1684. [PMID: 39240337 DOI: 10.1007/s00228-024-03749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE Therapeutic drug monitoring (TDM) is a standard clinical procedure that uses the pharmacokinetic and pharmacodynamic parameters of the drug in the body to determine the optimal dose. The pharmacokinetic variability of the drug(s) is a significant contributor to poor treatment outcomes, including the development of acquired drug resistance. TDM aids in dose optimization and improves outcomes while lessening drug toxicity. TDM is used to manage patients with tuberculosis (TB) who exhibit a slow response to therapy, despite good compliance and drug-susceptible organisms. Additional indications include patients at risk of malabsorption or delayed absorption of TB drugs and patients with drug-drug interaction and drug toxicity, which confirm compliance with therapy. TDM usually requires two blood samples: the 2 h and the 6 h post-dose. This narrative review will discuss the pharmacokinetics and pharmacodynamics of TB drugs, determinants of poor response to therapy, indications of TDM, methods of performing TDM, and its interpretations. METHODS This is a narrative review. We searched PubMed, Embase, and the CINAHL from inception to April 2024. We used the following search terms: tuberculosis, therapeutic drug monitoring, anti-TB drugs, pharmacokinetics, pharmacodynamics, limited sample strategies, diabetes and TB, HIV and TB, and multidrug-resistant TB. All types of articles were selected. RESULTS TDM is beneficial in managing TB, especially in patients with slow responses, drug-resistance TB, recurrent TB, and comorbidities such as diabetes mellitus and human immunodeficiency virus infection. CONCLUSION TDM is beneficial for improving outcomes, reducing the risk of acquired drug resistance, and avoiding side effects.
Collapse
Affiliation(s)
- M Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, 171001, Himachal Pradesh, India.
| | - J Sarkar
- MRes Neuroscience, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Thomas L, Raju AP, Mallayasamy S, Rao M. Precision Medicine Strategies to Improve Isoniazid Therapy in Patients with Tuberculosis. Eur J Drug Metab Pharmacokinet 2024; 49:541-557. [PMID: 39153028 PMCID: PMC11365851 DOI: 10.1007/s13318-024-00910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 08/19/2024]
Abstract
Due to interindividual variability in drug metabolism and pharmacokinetics, traditional isoniazid fixed-dose regimens may lead to suboptimal or toxic isoniazid concentrations in the plasma of patients with tuberculosis, contributing to adverse drug reactions, therapeutic failure, or the development of drug resistance. Achieving precision therapy for isoniazid requires a multifaceted approach that could integrate various clinical and genomic factors to tailor the isoniazid dose to individual patient characteristics. This includes leveraging molecular diagnostics to perform the comprehensive profiling of host pharmacogenomics to determine how it affects isoniazid metabolism, such as its metabolism by N-acetyltransferase 2 (NAT2), and studying drug-resistant mutations in the Mycobacterium tuberculosis genome for enabling targeted therapy selection. Several other molecular signatures identified from the host pharmacogenomics as well as other omics-based approaches such as gut microbiome, epigenomic, proteomic, metabolomic, and lipidomic approaches have provided mechanistic explanations for isoniazid pharmacokinetic variability and/or adverse drug reactions and thereby may facilitate precision therapy of isoniazid, though further validations in larger and diverse populations with tuberculosis are required for clinical applications. Therapeutic drug monitoring and population pharmacokinetic approaches allow for the adjustment of isoniazid dosages based on patient-specific pharmacokinetic profiles, optimizing drug exposure while minimizing toxicity and the risk of resistance. Current evidence has shown that with the integration of the host pharmacogenomics-particularly NAT2 and Mycobacterium tuberculosis genomics data along with isoniazid pharmacokinetic concentrations in the blood and patient factors such as anthropometric measurements, comorbidities, and type and timing of food administered-precision therapy approaches in isoniazid therapy can be tailored to the specific characteristics of both the host and the pathogen for improving tuberculosis treatment outcomes.
Collapse
Affiliation(s)
- Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Arun Prasath Raju
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Surulivelrajan Mallayasamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Ngo HX, Xu AY, Velásquez GE, Zhang N, Chang VK, Kurbatova EV, Whitworth WC, Sizemore E, Bryant K, Carr W, Weiner M, Dooley KE, Engle M, Dorman SE, Nahid P, Swindells S, Chaisson RE, Nsubuga P, Lourens M, Dawson R, Savic RM. Pharmacokinetic-Pharmacodynamic Evidence From a Phase 3 Trial to Support Flat-Dosing of Rifampicin for Tuberculosis. Clin Infect Dis 2024; 78:1680-1689. [PMID: 38462673 PMCID: PMC11175687 DOI: 10.1093/cid/ciae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND The optimal dosing strategy for rifampicin in treating drug-susceptible tuberculosis (TB) is still highly debated. In the phase 3 clinical trial Study 31/ACTG 5349 (NCT02410772), all participants in the control regimen arm received 600 mg rifampicin daily as a flat dose. Here, we evaluated relationships between rifampicin exposure and efficacy and safety outcomes. METHODS We analyzed rifampicin concentration time profiles using population nonlinear mixed-effects models. We compared simulated rifampicin exposure from flat- and weight-banded dosing. We evaluated the effect of rifampicin exposure on stable culture conversion at 6 months; TB-related unfavorable outcomes at 9, 12, and 18 months using Cox proportional hazard models; and all trial-defined safety outcomes using logistic regression. RESULTS Our model-derived rifampicin exposure ranged from 4.57 mg · h/L to 140.0 mg · h/L with a median of 41.8 mg · h/L. Pharmacokinetic simulations demonstrated that flat-dosed rifampicin provided exposure coverage similar to the weight-banded dose. Exposure-efficacy analysis (n = 680) showed that participants with rifampicin exposure below the median experienced similar hazards of stable culture conversion and TB-related unfavorable outcomes compared with those with exposure above the median. Exposure-safety analysis (n = 722) showed that increased rifampicin exposure was not associated with increased grade 3 or higher adverse events or serious adverse events. CONCLUSIONS Flat-dosing of rifampicin at 600 mg daily may be a reasonable alternative to the incumbent weight-banded dosing strategy for the standard-of-care 6-month regimen. Future research should assess the optimal dosing strategy for rifampicin, at doses higher than the current recommendation.
Collapse
Affiliation(s)
- Huy X Ngo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Ava Y Xu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California, USA
| | - Gustavo E Velásquez
- UCSF Center for Tuberculosis, University of California, San Francisco, San Francisco, California, USA
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Nan Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Vincent K Chang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | | | | | - Erin Sizemore
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kia Bryant
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Wendy Carr
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Marc Weiner
- University of Texas Health Science Center at San Antonio and the South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Kelly E Dooley
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Melissa Engle
- University of Texas Health Science Center at San Antonio and the South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Susan E Dorman
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Payam Nahid
- UCSF Center for Tuberculosis, University of California, San Francisco, San Francisco, California, USA
| | | | | | - Pheona Nsubuga
- Uganda-Case Western Reserve University Research Collaboration, Kampala, Uganda
| | - Madeleine Lourens
- TASK Applied Science CRS, Brooklyn Chest Hospital, Bellville, South Africa
| | - Rodney Dawson
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Tuberculosis, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Yunivita V, Gafar F, Santoso P, Chaidir L, Soeroto AY, Meirina TN, Te Brake L, Menzies D, Aarnoutse RE, Ruslami R. Pharmacokinetics and pharmacodynamics of high-dose isoniazid for the treatment of rifampicin- or multidrug-resistant tuberculosis in Indonesia. J Antimicrob Chemother 2024; 79:977-986. [PMID: 38459759 PMCID: PMC11062943 DOI: 10.1093/jac/dkae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Pharmacokinetic data on high-dose isoniazid for the treatment of rifampicin-/multidrug-resistant tuberculosis (RR/MDR-TB) are limited. We aimed to describe the pharmacokinetics of high-dose isoniazid, estimate exposure target attainment, identify predictors of exposures, and explore exposure-response relationships in RR/MDR-TB patients. METHODS We performed an observational pharmacokinetic study, with exploratory pharmacokinetic/pharmacodynamic analyses, in Indonesian adults aged 18-65 years treated for pulmonary RR/MDR-TB with standardized regimens containing high-dose isoniazid (10-15 mg/kg/day) for 9-11 months. Intensive pharmacokinetic sampling was performed after ≥2 weeks of treatment. Total plasma drug exposure (AUC0-24) and peak concentration (Cmax) were assessed using non-compartmental analyses. AUC0-24/MIC ratio of 85 and Cmax/MIC ratio of 17.5 were used as exposure targets. Multivariable linear and logistic regression analyses were used to identify predictors of drug exposures and responses, respectively. RESULTS We consecutively enrolled 40 patients (median age 37.5 years). The geometric mean isoniazid AUC0-24 and Cmax were 35.4 h·mg/L and 8.5 mg/L, respectively. Lower AUC0-24 and Cmax values were associated (P < 0.05) with non-slow acetylator phenotype, and lower Cmax values were associated with male sex. Of the 26 patients with MIC data, less than 25% achieved the proposed targets for isoniazid AUC0-24/MIC (n = 6/26) and Cmax/MIC (n = 5/26). Lower isoniazid AUC0-24 values were associated with delayed sputum culture conversion (>2 months of treatment) [adjusted OR 0.18 (95% CI 0.04-0.89)]. CONCLUSIONS Isoniazid exposures below targets were observed in most patients, and certain risk groups for low isoniazid exposures may require dose adjustment. The effect of low isoniazid exposures on delayed culture conversion deserves attention.
Collapse
Affiliation(s)
- Vycke Yunivita
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | - Fajri Gafar
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, 5252 Boulevard de Maisonneuve Ouest, Office 3D.21, Montreal, Quebec H4A 3S5, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
| | - Prayudi Santoso
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran and Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Lidya Chaidir
- TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- Division of Microbiology, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Arto Y Soeroto
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran and Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Triana N Meirina
- Pharmacokinetic Laboratory, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Lindsey Te Brake
- Department of Pharmacy, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Dick Menzies
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, 5252 Boulevard de Maisonneuve Ouest, Office 3D.21, Montreal, Quebec H4A 3S5, Canada
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, the Netherlands
| | - Rovina Ruslami
- Division of Pharmacology and Therapy, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Ulanova V, Kivrane A, Viksna A, Pahirko L, Freimane L, Sadovska D, Ozere I, Cirule A, Sevostjanovs E, Grinberga S, Bandere D, Ranka R. Effect of NAT2, GSTM1 and CYP2E1 genetic polymorphisms on plasma concentration of isoniazid and its metabolites in patients with tuberculosis, and the assessment of exposure-response relationships. Front Pharmacol 2024; 15:1332752. [PMID: 38584604 PMCID: PMC10995391 DOI: 10.3389/fphar.2024.1332752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Objectives: Isoniazid is a key drug in the chemotherapy of tuberculosis (TB), however, interindividual variability in pharmacokinetic parameters and drug plasma levels may affect drug responses including drug induced hepatotoxicity. The current study investigated the relationships between isoniazid exposure and isoniazid metabolism-related genetic factors in the context of occurrence of drug induced hepatotoxicity and TB treatment outcomes. Methods: Demographic characteristics and clinical information were collected in a prospective TB cohort study in Latvia (N = 34). Time to sputum culture conversion (tSCC) was used as a treatment response marker. Blood plasma concentrations of isoniazid (INH) and its metabolites acetylisoniazid (AcINH) and isonicotinic acid (INA) were determined at three time points (pre-dose (0 h), 2 h and 6 h after drug intake) using liquid chromatography-tandem mass spectrometry. Genetic variations of three key INH-metabolizing enzymes (NAT2, CYP2E1, and GSTM1) were investigated by application PCR- and Next-generation sequencing-based methods. Depending on variables, group comparisons were performed by Student's t-test, one-way ANOVA, Mann-Whitney-Wilcoxon, and Kruskal-Wallis tests. Pearson correlation coefficient was calculated for the pairs of normally distributed variables; model with rank transformations were used for non-normally distributed variables. Time-to-event analysis was performed to analyze the tSCC data. The cumulative probability of tSCC was obtained using Kaplan-Meier estimators. Cox proportional hazards models were fitted to estimate hazard rate ratios of successful tSCC. Results: High TB treatment success rate (94.1%) was achieved despite the variability in INH exposure. Clinical and demographic factors were not associated with either tSCC, hepatotoxicity, or INH pharmacokinetics parameters. Correlations between plasma concentrations of INH and its metabolites were NAT2 phenotype-dependent, while GSTM1 genetic variants did not showed any effects. CYP2E1*6 (T > A) allelic variant was associated with INH pharmacokinetic parameters. Decreased level of AcINH was associated with hepatotoxicity, while decreased values of INA/INH and AcINH/INH were associated with month two sputum culture positivity. Conclusion: Our findings suggest that CYP2E1, but not GSTM1, significantly affects the INH pharmacokinetics along with NAT2. AcINH plasma level could serve as a biomarker for INH-related hepatotoxicity, and the inclusion of INH metabolite screening in TB therapeutic drug monitoring could be beneficial in clinical studies for determination of optimal dosing strategies.
Collapse
Affiliation(s)
- Viktorija Ulanova
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Pharmacogenetics Laboratory, Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
| | - Agnija Kivrane
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Pharmacogenetics Laboratory, Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
| | - Anda Viksna
- Pharmacogenetics Laboratory, Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Upeslejas, Latvia
| | - Leonora Pahirko
- Faculty of Physics, Mathematics, and Optometry, University of Latvia, Riga, Latvia
| | - Lauma Freimane
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Darja Sadovska
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Pharmacogenetics Laboratory, Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
| | - Iveta Ozere
- Pharmacogenetics Laboratory, Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Upeslejas, Latvia
| | - Andra Cirule
- Centre of Tuberculosis and Lung Diseases, Riga East University Hospital, Upeslejas, Latvia
| | | | | | - Dace Bandere
- Pharmacogenetics Laboratory, Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
| | - Renate Ranka
- Laboratory of Molecular Microbiology, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Pharmacogenetics Laboratory, Department of Pharmaceutical Chemistry, Riga Stradins University, Riga, Latvia
| |
Collapse
|
10
|
Abdelgawad N, Chirehwa M, Schutz C, Barr D, Ward A, Janssen S, Burton R, Wilkinson RJ, Shey M, Wiesner L, McIlleron H, Maartens G, Meintjes G, Denti P. Pharmacokinetics of antitubercular drugs in patients hospitalized with HIV-associated tuberculosis: a population modeling analysis. Wellcome Open Res 2024; 7:72. [PMID: 37008250 PMCID: PMC10050909 DOI: 10.12688/wellcomeopenres.17660.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Background Early mortality among hospitalized HIV-associated tuberculosis (TB/HIV) patients is high despite treatment. The pharmacokinetics of rifampicin, isoniazid, and pyrazinamide were investigated in hospitalized TB/HIV patients and a cohort of outpatients with TB (with or without HIV) to determine whether drug exposures differed between groups. Methods Standard first-line TB treatment was given daily as per national guidelines, which consisted of oral 4-drug fixed-dose combination tablets containing 150 mg rifampicin, 75 mg isoniazid, 400 mg pyrazinamide, and 275 mg ethambutol. Plasma samples were drawn on the 3rd day of treatment over eight hours post-dose. Rifampicin, isoniazid, and pyrazinamide in plasma were quantified and NONMEM ® was used to analyze the data. Results Data from 60 hospitalized patients (11 of whom died within 12 weeks of starting treatment) and 48 outpatients were available. Median (range) weight and age were 56 (35 - 88) kg, and 37 (19 - 77) years, respectively. Bioavailability and clearance of the three drugs were similar between TB/HIV hospitalized and TB outpatients. However, rifampicin's absorption was slower in hospitalized patients than in outpatients; mean absorption time was 49.9% and 154% more in hospitalized survivors and hospitalized deaths, respectively, than in outpatients. Higher levels of conjugated bilirubin correlated with lower rifampicin clearance. Isoniazid's clearance estimates were 25.5 L/h for fast metabolizers and 9.76 L/h for slow metabolizers. Pyrazinamide's clearance was more variable among hospitalized patients. The variability in clearance among patients was 1.70 and 3.56 times more for hospitalized survivors and hospitalized deaths, respectively, than outpatients. Conclusions We showed that the pharmacokinetics of first-line TB drugs are not substantially different between hospitalized TB/HIV patients and TB (with or without HIV) outpatients. Hospitalized patients do not seem to be underexposed compared to their outpatient counterparts, as well as hospitalized patients who survived vs who died within 12 weeks of hospitalization.
Collapse
Affiliation(s)
- Noha Abdelgawad
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Maxwell Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Charlotte Schutz
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - David Barr
- Wellcome Trust Liverpool Glasgow Centre for Global Health Research, University of Liverpool, Liverpool, L3 5QA, UK
| | - Amy Ward
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Saskia Janssen
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, 19268, The Netherlands
| | - Rosie Burton
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Khayelitsha Hospital, Department of Medicine, Khayelitsha, 7784, South Africa
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Muki Shey
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
11
|
Perumal R, Naidoo K, Naidoo A, Padayatchi N. Clinical impact of plasma concentrations of first-line antituberculosis drugs. S Afr Med J 2023; 113:148-153. [PMID: 36876350 PMCID: PMC10613123 DOI: 10.7196/samj.2023.v113i3.16761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND The clinical significance of low antituberculosis (anti-TB) drug concentrations has not been fully elucidated. OBJECTIVES To investigate the clinical consequences of first-line drug concentrations in adult patients with drug-susceptible pulmonary TBin South Africa (SA). METHOD We conducted a pharmacokinetic study nested within the control arm of the Improving Treatment Success (IMPRESS) trial(NCT02114684) in Durban, SA. During the first 2 months of treatment, participants received weight-based dosing of first-line anti-TBdrugs (rifampicin, isoniazid, pyrazinamide and ethambutol), and had plasma drug concentrations measured at 2 and 6 hours after drugadministration during the 8th week of treatment. Intermediate (8 weeks), end-of-treatment (6 months) and follow-up TB outcomes wereassessed using World Health Organization criteria. RESULTS We measured plasma drug concentrations on available samples in 43 participants. Peak drug concentrations were below thetherapeutic range in 39/43 (90.7%) for rifampicin, 32/43 (74.4%) for isoniazid, 27/42 (64.3%) for pyrazinamide and 5/41 (12.2%) forethambutol. At the end of the intensive phase of treatment (week 8), 20.9% (n=9/43) of participants remained culture positive. We did notfind a relationship between the concentrations of first-line drugs and treatment outcomes at week 8. All participants were cured at the endof treatment, and there were no relapses during the 12-month follow-up period. CONCLUSION Treatment outcomes were favourable despite low drug concentrations as defined by current reference thresholds.
Collapse
Affiliation(s)
- R Perumal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
| | - K Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
| | - A Naidoo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - N Padayatchi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa 2 Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
12
|
Soedarsono S, Jayanti RP, Mertaniasih NM, Kusmiati T, Permatasari A, Indrawanto DW, Charisma AN, Lius EE, Yuliwulandari R, Quang Hoa P, Ky Phat N, Thu VTA, Ky Anh N, Ahn S, Phuoc Long N, Cho YS, Shin JG. Development of population pharmacokinetics model and Bayesian estimation of rifampicin exposure in Indonesian patients with tuberculosis. Tuberculosis (Edinb) 2023; 139:102325. [PMID: 36841141 DOI: 10.1016/j.tube.2023.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Interindividual variability in the pharmacokinetics (PK) of anti-tuberculosis (TB) drugs is the leading cause of treatment failure. Herein, we evaluated the influence of demographic, clinical, and genetic factors that cause variability in RIF PK parameters in Indonesian TB patients. METHODS In total, 210 Indonesian patients with TB (300 plasma samples) were enrolled in this study. Clinical data, solute carrier organic anion transporter family member-1B1 (SLCO1B1) haplotypes *1a, *1b, and *15, and RIF concentrations were analyzed. The population PK model was developed using a non-linear mixed effect method. RESULTS A one-compartment model with allometric scaling adequately described the PK of RIF. Age and SLCO1B1 haplotype *15 were significantly associated with variability in apparent clearance (CL/F). For patients in their 40s, each 10-year increase in age was associated with a 10% decrease in CL/F (7.85 L/h). Patients with the SLCO1B1 haplotype *15 had a 24% lower CL/F compared to those with the wild-type. Visual predictive checks and non-parametric bootstrap analysis indicated good model performance. CONCLUSION Age and SLCO1B1 haplotype *15 were significant covariates of RIF CL/F. Geriatric patients with haplotype *15 had significantly greater exposure to RIF. The model could optimize TB pharmacotherapy through its application in therapeutic drug monitoring (clinical trial no. NCT05280886).
Collapse
Affiliation(s)
- Soedarsono Soedarsono
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Sub-pulmonology Department of Internal Medicine, Faculty of Medicine, Hang Tuah University, Surabaya, 60244, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia.
| | - Rannissa Puspita Jayanti
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Ni Made Mertaniasih
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia; Department of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia
| | - Tutik Kusmiati
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Ariani Permatasari
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Dwi Wahyu Indrawanto
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Anita Nur Charisma
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Elvina Elizabeth Lius
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Rika Yuliwulandari
- Department of Pharmacology, Faculty of Medicine, YARSI University, Jakarta, 10510, Indonesia; Genetic Research Center, YARSI Research Institute, YARSI University, Jakarta, 10510, Indonesia
| | - Pham Quang Hoa
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Ky Phat
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Vo Thuy Anh Thu
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Ky Anh
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Sangzin Ahn
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Phuoc Long
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Yong-Soon Cho
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea.
| | - Jae-Gook Shin
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, 47392, Republic of Korea
| |
Collapse
|
13
|
Ge Q, Ma Y, Zhang L, Ma L, Zhao C, Chen Y, Huang X, Shu W, Chen S, Wang F, Li B, Han X, Shi L, Wang X, Li Y, Yang S, Cao W, Liu Q, Chen L, Wu C, Ouyang B, Wang F, Li P, Wu X, Xi X, Leng X, Zhang H, Li H, Li J, Yang C, Zhang P, Cui H, Liu Y, Kong C, Sun Z, Du J, Gao W. Effect of a modified regimen on drug-sensitive retreated pulmonary tuberculosis: A multicenter study in China. Front Public Health 2023; 11:1039399. [PMID: 36778546 PMCID: PMC9909400 DOI: 10.3389/fpubh.2023.1039399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Background and objective Retreatment pulmonary tuberculosis (PTB) still accounts for a large proportion of tuberculosis, and the treatment outcome is unfavorable. The recurrence of retreatment PTB based on long-term follow-up has not been well demonstrated. This study aimed to evaluate effect of a modified regimen on drug-sensitive retreated pulmonary tuberculosis. Methods This multicenter cohort study was conducted in 29 hospitals from 23 regions of China from July 1, 2009, to December 31, 2020. Patients were divided into two treatment regimen groups including experimental group [modified regimen (4H-Rt2-E-Z-S(Lfx)/4H-Rt2-E)]and control group [standard regimen (2H-R-E-Z-S/6H-R-E or 3H-R-E-Z/6H-R-E)]. The patients enrolled were followed up of 56 months after successful treatment. We compared the treatment success rate, treatment failure rate, adverse reaction rate, and recurrence rate between two regimens. Multivariate Cox regression model was used to identify the potential risk factors for recurrence after successful treatment with proportional hazards assumptions tested for all variables. Results A total of 381 patients with retreatment PTB were enrolled, including 244 (64.0%) in the experimental group and 137 (36.0%) in the control group. Overall, the treatment success rate was significant higher in the experimental group than control group (84.0 vs. 74.5%, P = 0.024); no difference was observed in adverse reactions between the two groups (25.8 vs. 21.2%, P > 0.05). A total of 307 patients completed the 56 months of follow-up, including 205 with the modified regimen and 102 with the standard regimen. Among these, 10 cases (3.3%) relapsed, including 3 in the experimental group and 7 in the control group (1.5% vs 6.9%, P = 0.035). Reduced risks of recurrence were observed in patients treated with the modified regimen compared with the standard regimen, and the adjusted hazard ratio was 0.19 (0.04-0.77). Conclusion The modified retreatment regimen had more favorable treatment effects, including higher treatment success rate and lower recurrence rate in patients with retreated drug-sensitive PTB.
Collapse
Affiliation(s)
- Qiping Ge
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yan Ma
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijie Zhang
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China,Administration Office, Clinical Center on Tuberculosis, China CDC, Beijing, China
| | - Liping Ma
- Department of TB Control, Henan Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Caiyan Zhao
- Department of Tuberculosis, Haerbin Chest Hospital, Haerbin, China
| | - Yuhui Chen
- Department of Outpatients, Center for Tuberculosis Control of Guangdong Province, Guangzhou, Guangdong, China
| | - Xuerui Huang
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei Shu
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China,Administration Office, Clinical Center on Tuberculosis, China CDC, Beijing, China
| | - Shengyu Chen
- Department of Outpatients, Center for Tuberculosis Control of Tianjin, Tianjin, China
| | - Fei Wang
- Department of TB Control, Zhejiang Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Bo Li
- Department of Outpatients, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Xiqin Han
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Lian Shi
- Department of Tuberculosis, Shenyang Chest Hospital, Shenyang, Liaoning, China
| | - Xin Wang
- Department of TB Control, Heilongjiang Center for Disease Control and Prevention, Haerbin, Heilongjiang, China
| | - Youlun Li
- Department of Tuberculosis, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shangpeng Yang
- Department of Tuberculosis, Jingzhou Hospital for Infectious Diseases, Jingzhou, Hubei, China
| | - Wenli Cao
- Department of Infectious Disease, Beijing Geriatric Hospital, Beijing, China
| | - Qianying Liu
- Department of Tuberculosis, 8th Medical Center, PLA General Hospital, Beijing, China
| | - Ling Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chao Wu
- Department of Tuberculosis, The 3rd People's Hospital of Zhenjiang, Zhenjiang, Jiangsu, China
| | - Bing Ouyang
- Department of Tuberculosis, Kunming 3rd People's Hospital, Kunming, Yunnan, China
| | - Furong Wang
- Department of Medicine, The 4th Hospital of Inner Mongolia Autonomous Region, Huhehaote, China
| | - Po Li
- Department of Tuberculosis, The 3rd Hospital of Baotou, Baotou, China
| | - Xiang Wu
- Department of Tuberculosis, Jingmen Center for Disease Control and Prevention, Jingmen, Hubei, China
| | - Xiue Xi
- Department of Tuberculosis, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| | - Xueyan Leng
- Department of Tuberculosis, The 3rd Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Haiqing Zhang
- Department of Tuberculosis, Xuzhou Hospital for Infectious Diseases, Xuzhou, Jiangsu, China
| | - Hua Li
- Department of Tuberculosis, Linfen 3rd People's Hospital, Linfen, Shanxi, China
| | - Juan Li
- Department of TB Control, Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nangning, China
| | - Chengqing Yang
- Department of Respiratory and Critical Care Medicine of Wuhan Tuberculosis Institute, Wuhan, Hubei, China
| | - Peng Zhang
- Department of Tuberculosis, 4th Hospital of Tangshan City, Tangshan, Hebei, China
| | - Hongzhe Cui
- Department of Tuberculosis Control, Yanbian Institute of Tuberculosis Prevention and Control, Yanbian, Jilin, China
| | - Yuhong Liu
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Chengcheng Kong
- Translational Medicine Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China,*Correspondence: Zhaogang Sun ✉
| | - Jian Du
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China,Jian Du ✉
| | - Weiwei Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China,Weiwei Gao ✉
| |
Collapse
|
14
|
Abdelgawad N, Chirehwa M, Schutz C, Barr D, Ward A, Janssen S, Burton R, Wilkinson RJ, Shey M, Wiesner L, McIlleron H, Maartens G, Meintjes G, Denti P. Pharmacokinetics of antitubercular drugs in patients hospitalized with HIV-associated tuberculosis: a population modeling analysis. Wellcome Open Res 2022; 7:72. [PMID: 37008250 PMCID: PMC10050909 DOI: 10.12688/wellcomeopenres.17660.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Early mortality among hospitalized HIV-associated tuberculosis (TB/HIV) patients is high despite treatment. The pharmacokinetics of rifampicin, isoniazid, and pyrazinamide were investigated in hospitalized TB/HIV patients and a cohort of outpatients with TB (with or without HIV) to determine whether drug exposures differed between groups. METHODS Standard first-line TB treatment was given daily as per national guidelines, which consisted of oral 4-drug fixed-dose combination tablets containing 150 mg rifampicin, 75 mg isoniazid, 400 mg pyrazinamide, and 275 mg ethambutol. Plasma samples were drawn on the 3rd day of treatment over eight hours post-dose. Rifampicin, isoniazid, and pyrazinamide in plasma were quantified and NONMEM ® was used to analyze the data. RESULTS Data from 60 hospitalized patients (11 of whom died within 12 weeks of starting treatment) and 48 outpatients were available. Median (range) weight and age were 56 (35 - 88) kg, and 37 (19 - 77) years, respectively. Bioavailability and clearance of the three drugs were similar between TB/HIV hospitalized and TB outpatients. However, rifampicin's absorption was slower in hospitalized patients than in outpatients; mean absorption time was 49.9% and 154% more in hospitalized survivors and hospitalized deaths, respectively, than in outpatients. Higher levels of conjugated bilirubin correlated with lower rifampicin clearance. Isoniazid's clearance estimates were 25.5 L/h for fast metabolizers and 9.76 L/h for slow metabolizers. Pyrazinamide's clearance was more variable among hospitalized patients. The variability in clearance among patients was 1.70 and 3.56 times more for hospitalized survivors and hospitalized deaths, respectively, than outpatients. Conclusion. We showed that the pharmacokinetics of first-line TB drugs are not substantially different between hospitalized TB/HIV patients and TB (with or without HIV) outpatients. Hospitalized patients do not seem to be underexposed compared to their outpatient counterparts, as well as hospitalized patients who survived vs who died within 12 weeks of hospitalization.
Collapse
Affiliation(s)
- Noha Abdelgawad
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Maxwell Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Charlotte Schutz
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - David Barr
- Wellcome Trust Liverpool Glasgow Centre for Global Health Research, University of Liverpool, Liverpool, L3 5QA, UK
| | - Amy Ward
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Saskia Janssen
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, 19268, The Netherlands
| | - Rosie Burton
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Khayelitsha Hospital, Department of Medicine, Khayelitsha, 7784, South Africa
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Muki Shey
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
15
|
Influence of N-acetyltransferase 2 (NAT2) genotype/single nucleotide polymorphisms on clearance of isoniazid in tuberculosis patients: a systematic review of population pharmacokinetic models. Eur J Clin Pharmacol 2022; 78:1535-1553. [PMID: 35852584 PMCID: PMC9482569 DOI: 10.1007/s00228-022-03362-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
Abstract
Purpose Significant pharmacokinetic variabilities have been reported for isoniazid across various populations. We aimed to summarize population pharmacokinetic studies of isoniazid in tuberculosis (TB) patients with a specific focus on the influence of N-acetyltransferase 2 (NAT2) genotype/single-nucleotide polymorphism (SNP) on clearance of isoniazid. Methods A systematic search was conducted in PubMed and Embase for articles published in the English language from inception till February 2022 to identify population pharmacokinetic (PopPK) studies of isoniazid. Studies were included if patient population had TB and received isoniazid therapy, non-linear mixed effects modelling, and parametric approach was used for building isoniazid PopPK model and NAT2 genotype/SNP was tested as a covariate for model development. Results A total of 12 articles were identified from PubMed, Embase, and hand searching of articles. Isoniazid disposition was described using a two-compartment model with first-order absorption and linear elimination in most of the studies. Significant covariates influencing the pharmacokinetics of isoniazid were NAT2 genotype, body weight, lean body weight, body mass index, fat-free mass, efavirenz, formulation, CD4 cell count, and gender. Majority of studies conducted in adult TB population have reported a twofold or threefold increase in isoniazid clearance for NAT2 rapid acetylators compared to slow acetylators. Conclusion The variability in disposition of isoniazid can be majorly attributed to NAT2 genotype. This results in a trimodal clearance pattern with a multi-fold increase in clearance of NAT2 rapid acetylators compared to slow acetylators. Further studies exploring the generalizability/adaptability of developed PopPK models in different clinical settings are required.
Collapse
|
16
|
Zhang M, Wang M, He JQ. Intensified Antituberculosis Therapy Regimen Containing Higher Dose Rifampin for Tuberculous Meningitis: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:822201. [PMID: 35280900 PMCID: PMC8916538 DOI: 10.3389/fmed.2022.822201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Background Tuberculous meningitis is difficult to diagnose and is associated with high mortality. Recently, several studies evaluated the intensified regimen containing higher dose rifampin to treat tuberculous meningitis. However, this topic remains to be concluded. Therefore, this systematic review and meta-analysis was conducted to evaluate pharmacokinetics parameters, safety, and survival benefits of high-dose rifampin for tuberculous meningitis. Method Data were searched from PubMed, EMBASE, The Cochrane Library, and Web of Science for studies describing an antituberculosis regimen including a higher dose of rifampin for patients with tuberculous meningitis. The quality of eligible studies was evaluated via The Cochrane Risk of Bias Tool. The meta-analysis was performed by Review Manager 5.3 software, the synthesis of the data was shown in mean difference (MD) or relative risk (RR), and 95% confidence intervals (CIs). Results There were six randomized control trails included in this meta-analysis. The results showed that the concentration in plasma and cerebrospinal fluid (CSF) were significantly higher in the intervention group than the standard group [MD = 22.08, 95%CI (16.24, 27.92), p < 0.00001; MD = 0.74, 95%CI (0.42, 1.05), p < 0.00001], as well as the area under the time concentration curve between 0 and 24 h (AUC0−24) of rifampin [MD 203.56, 95%CI (153.07, 254.05), p < 0.00001] in plasma, but the overall survival did not improve [RR = 0.92, 95%CI (0.67, 1.26), p = 0.61]. For adverse events, the results showed a statistically significant lower incidence of hypersensitivity compared with the intervention group [RR = 1.72, 95%CI (1.13, 2.62), p = 0.01]. Fortunately, other common adverse drug reactions such as liver injury, neurological events, myelosuppression, and cardiotoxicity had no significant increase [RR = 0.98, 95%CI (0.77, 1.26), p = 0.90; RR = 1.10, 95%CI (0.94, 1.30), p = 0.23; RR = 0.82, 95%CI (0.59, 1.13), p = 0.22; RR = 1.11, 95%CI (0.66, 1.86), p = 0.70]. Conclusion This meta-analysis suggested that the intensified treatment regimen including a higher dose of rifampin significantly increased the rifampin concentration both in the plasma and CSF, and it was safe in patients with tuberculous meningitis, but resulted in no improvement in survival rates.
Collapse
|
17
|
Lemaitre F. Has the Time Come for Systematic Therapeutic Drug Monitoring of First-Line and WHO Group A Antituberculosis Drugs? Ther Drug Monit 2022; 44:133-137. [PMID: 34857693 DOI: 10.1097/ftd.0000000000000948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Tuberculosis (TB) is a major global health issue, with approximately 10 million people being infected each year, and is the leading cause of mortality from infectious disease, with 1.5 million deaths a year. Optimal TB treatment requires a combination of drugs for an adequate treatment duration owing to persistent organisms, hardly accessible infection sites, and a high risk of resistance selection. Long-term therapy increases the risk of patients' loss of adherence, adverse drug reactions, and drug-drug interactions, potentially leading to treatment failure. The high interpatient variability of TB drug exposure is another point eliciting interest in therapeutic drug monitoring (TDM) to optimize treatment. Studies reporting clinically relevant exposure thresholds, which might be proposed as targets toward treatment personalization, are discussed. Practical TDM strategies have also been reported to circumvent issues related to delayed drug absorption and the need for multiple samples when evaluating the area under the curve of drug concentrations. The need for treatment individualization is further emphasized because of the development of multidrug-resistant TB or extensively drug-resistant TB. Finally, the willingness to shorten the treatment duration while maintaining success is also a driver for ensuring adequate exposure to TB drugs with TDM. The aim of the present review was to underline the role of TDM in drug-susceptible TB and World Health Organization group A TB drugs.
Collapse
Affiliation(s)
- Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail); and
- Univ Rennes, CHU Rennes, Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), Rennes, France
| |
Collapse
|
18
|
Asiimwe IG, Kiiza D, Walimbwa S, Sekaggya CW. Genetic factors associated with tuberculosis-related clinical outcomes in HIV-infected Black African patients: a systematic review and meta-analysis. Pharmacogenomics 2021; 22:997-1017. [PMID: 34605246 DOI: 10.2217/pgs-2021-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the genetic factors influencing tuberculosis (TB) clinical outcomes in HIV-infected Black African patients. Materials & methods: We systematically searched and identified eligible publications from >550 databases indexed through February 2021. Results: Eighteen studies were included in the qualitative synthesis. Only two cohorts from one study were included in quantitative synthesis of which the low expression MIF-794 CATT5,6 (5/5 + 5/6 + 6/6) genotypes were not associated with TB infectivity in HIV-infected patients (OR: 1.31, 95% CI: 0.46-3.79). Other TB clinical outcomes observed in HIV/TB co-infected patients included: drug-induced liver injury, peripheral neuropathy, mortality, lung function and TB cure. Conclusion: This review finds inconclusive evidence that genetic factors are associated with TB clinical outcomes among HIV-infected patients in sub-Saharan Africa.
Collapse
Affiliation(s)
- Innocent Gerald Asiimwe
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology (ISMIB), University of Liverpool, UK
| | - Daniel Kiiza
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology (ISMIB), University of Liverpool, UK.,Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Stephen Walimbwa
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | | |
Collapse
|
19
|
Rao PS, Moore CC, Mbonde AA, Nuwagira E, Orikiriza P, Nyehangane D, Al-Shaer MH, Peloquin CA, Gratz J, Pholwat S, Arinaitwe R, Boum Y, Mwanga-Amumpaire J, Houpt ER, Kagan L, Heysell SK, Muzoora C. Population Pharmacokinetics and Significant Under-Dosing of Anti-Tuberculosis Medications in People with HIV and Critical Illness. Antibiotics (Basel) 2021; 10:antibiotics10060739. [PMID: 34207312 PMCID: PMC8235594 DOI: 10.3390/antibiotics10060739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Critical illness from tuberculosis (TB) bloodstream infection results in a high case fatality rate for people living with human immunodeficiency virus (HIV). Critical illness can lead to altered pharmacokinetics and suboptimal drug exposures. We enrolled adults living with HIV and hospitalized with sepsis, with and without meningitis, in Mbarara, Uganda that were starting first-line anti-TB therapy. Serum was collected two weeks after enrollment at 1-, 2-, 4-, and 6-h post-dose and drug concentrations quantified by validated LC-MS/MS methods. Non-compartmental analyses were used to determine total drug exposure, and population pharmacokinetic modeling and simulations were performed to determine optimal dosages. Eighty-one participants were enrolled. Forty-nine completed pharmacokinetic testing: 18 (22%) died prior to testing, 13 (16%) were lost to follow-up and one had incomplete testing. Isoniazid had the lowest serum attainment, with only 4.1% achieving a target exposure over 24 h (AUC0–24) of 52 mg·h/L despite appropriate weight-based dosing. Simulations to reach target AUC0–24 found necessary doses of rifampin of 1800 mg, pyrazinamide of 2500–3000 mg, and for isoniazid 900 mg or higher. Given the high case fatality ratio of TB-related critical illness in this population, an early higher dose anti-TB therapy should be trialed.
Collapse
Affiliation(s)
- Prakruti S. Rao
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; (P.S.R.); (C.C.M.); (J.G.); (S.P.); (E.R.H.)
| | - Christopher C. Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; (P.S.R.); (C.C.M.); (J.G.); (S.P.); (E.R.H.)
| | - Amir A. Mbonde
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 1410, Uganda; (A.A.M.); (E.N.); (R.A.); (J.M.-A.); (C.M.)
| | - Edwin Nuwagira
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 1410, Uganda; (A.A.M.); (E.N.); (R.A.); (J.M.-A.); (C.M.)
| | - Patrick Orikiriza
- Department of Microbiology, University of Global Health Equity, Kigali 6955, Rwanda;
| | - Dan Nyehangane
- Epicentre Mbarara Research Center, Mbarara 1956, Uganda; (D.N.); (Y.B.)
| | - Mohammad H. Al-Shaer
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.H.A.-S.); (C.A.P.)
| | - Charles A. Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.H.A.-S.); (C.A.P.)
| | - Jean Gratz
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; (P.S.R.); (C.C.M.); (J.G.); (S.P.); (E.R.H.)
| | - Suporn Pholwat
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; (P.S.R.); (C.C.M.); (J.G.); (S.P.); (E.R.H.)
| | - Rinah Arinaitwe
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 1410, Uganda; (A.A.M.); (E.N.); (R.A.); (J.M.-A.); (C.M.)
- Epicentre Mbarara Research Center, Mbarara 1956, Uganda; (D.N.); (Y.B.)
| | - Yap Boum
- Epicentre Mbarara Research Center, Mbarara 1956, Uganda; (D.N.); (Y.B.)
| | - Juliet Mwanga-Amumpaire
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 1410, Uganda; (A.A.M.); (E.N.); (R.A.); (J.M.-A.); (C.M.)
- Epicentre Mbarara Research Center, Mbarara 1956, Uganda; (D.N.); (Y.B.)
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; (P.S.R.); (C.C.M.); (J.G.); (S.P.); (E.R.H.)
| | - Leonid Kagan
- Department of Pharmaceutics and Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; (P.S.R.); (C.C.M.); (J.G.); (S.P.); (E.R.H.)
- Correspondence:
| | - Conrad Muzoora
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 1410, Uganda; (A.A.M.); (E.N.); (R.A.); (J.M.-A.); (C.M.)
| |
Collapse
|
20
|
Onorato L, Gentile V, Russo A, Di Caprio G, Alessio L, Chiodini P, Coppola N. Standard versus high dose of rifampicin in the treatment of pulmonary tuberculosis: a systematic review and meta-analysis. Clin Microbiol Infect 2021; 27:830-837. [PMID: 33813119 DOI: 10.1016/j.cmi.2021.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES A growing amount of evidence suggests that the rifampicin dosing currently recommended for tuberculosis treatment could be associated with inadequate exposure and unfavourable outcomes. We aimed to compare clinical and microbiological efficacy and safety outcomes of standard and higher rifampicin dosing. METHODS Data sources were MEDLINE, Google Scholar and the Cochrane Library. This was a systematic review and meta-analysis that included experimental or observational studies comparing 8-week sputum culture conversion, treatment failure, or safety outcomes in naïve patients with pulmonary tuberculosis treated with standard (10 mg/kg) or higher doses of rifampicin. RESULTS Of a total of 9683 citations screened, eight randomized controlled trials were included, accounting for 1897 subjects; the risk of bias was low in three studies, high in two and intermediate in three. At week 8 a higher proportion of patients in the high-dose group obtained a sputum culture conversion than those in the standard dose group (83.7% versus 80.6%, RR 1.06; 95%CI 1.01-1.12, p 0.028); this result was confirmed in the sub-analysis including patients treated with a rifampicin dose of ≥20 mg/kg, but not in those treated with 11-19 mg/kg. Events of treatment failure at end of treatment showed no significant difference between the two groups (RR 0.84; 95%CI 0.59-1.21, p 0.362). In the analysis evaluating safety outcome, the difference in the occurrence of a grade 3 or 4 liver toxicity or adverse drug reactions leading to discontinuation was not significant at the statistical analysis among the groups (7.2% versus 5.4%, RR 1.19; 95%CI 0.81-1.73, p 0.370, and 1.5% versus 0.6%, RR 2.31; 95%CI 0.65-8.21, p 0.195, respectively). No statistical heterogeneity among studies was observed for each outcome. CONCLUSIONS High doses of rifampicin were associated with an increased rate of sputum culture conversion at 8 weeks of treatment, particularly in patients receiving ≥20 mg/kg.
Collapse
Affiliation(s)
- Lorenzo Onorato
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Valeria Gentile
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Antonio Russo
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Giovanni Di Caprio
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Loredana Alessio
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy
| | - Paolo Chiodini
- Department of Mental Health and Public Medicine, Section of Statistics, University of Campania, Naples, Italy
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania, Naples, Italy.
| |
Collapse
|
21
|
Szipszky C, Van Aartsen D, Criddle S, Rao P, Zentner I, Justine M, Mduma E, Mpagama S, Al-Shaer MH, Peloquin C, Thomas TA, Vinnard C, Heysell SK. Determination of Rifampin Concentrations by Urine Colorimetry and Mobile Phone Readout for Personalized Dosing in Tuberculosis Treatment. J Pediatric Infect Dis Soc 2021; 10:104-111. [PMID: 32170944 PMCID: PMC7996640 DOI: 10.1093/jpids/piaa024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/01/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Individual pharmacokinetic variability is a driver of poor tuberculosis (TB) treatment outcomes. We developed a method for measurement of rifampin concentrations by urine colorimetry and a mobile phone photographic application to predict clinically important serum rifampin pharmacokinetic measurements in children treated for TB. METHODS Among spiked urine samples, colorimetric assay performance was tested with conventional spectrophotometric and the mobile phone/light box methods under various environmental and biologic conditions. Urine rifampin absorbance (Abs) was then determined from timed specimens from children treated for TB in Tanzania, and compared to serum pharmacokinetic measurements collected throughout the dosing interval. RESULTS Both the mobile phone/light box and spectrophotometry demonstrated excellent correlation across a wide range of urine rifampin concentrations (7.8-1000 mg/L) in intra- and interday trials, 24-hour exposure to ambient light or darkness, and varying urinalysis profiles (all r ≥ 0.98). In 12 Tanzanian children, the urine mobile phone/light box measurement and serum peak concentration (Cmax) were significantly correlated (P = .004). Using a Cmax target of 8 mg/L, the area under the receiver operating characteristic curve was 80.1% (range, 47.2%-100%). A urine mobile phone/light box threshold of 50 Abs correctly classified all patients (n = 6) with serum measurements below target. CONCLUSIONS The urine colorimetry with mobile phone/light box assay accurately measured rifampin absorbance in varying environmental and biological conditions that may be observed clinically. Among children treated for TB, the assay was sensitive for detection of low rifampin serum concentrations. Future work will identify the optimal timing for urine collection, and operationalize use in TB-endemic settings.
Collapse
Affiliation(s)
- Claire Szipszky
- Departments of Biology and Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Van Aartsen
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Sarah Criddle
- School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Prakruti Rao
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Isaac Zentner
- Public Health Research Institute, Rutgers State University of New Jersey, Newark, New Jersey, USA
| | | | | | - Stellah Mpagama
- Kibong’oto Infectious Diseases Hospital, Sanya Juu, Kilimanjaro, Tanzania
| | - Mohammad H Al-Shaer
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Charles Peloquin
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Tania A Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher Vinnard
- Public Health Research Institute, Rutgers State University of New Jersey, Newark, New Jersey, USA
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Rifampicin and Isoniazid Maximal Concentrations are Below Efficacy-associated Thresholds in the Majority of Patients: Time to Increase the Doses? Int J Antimicrob Agents 2021; 57:106297. [PMID: 33539932 DOI: 10.1016/j.ijantimicag.2021.106297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND The treatment of drug-sensitive tuberculosis (TB) is highly effective; however, many patients have suboptimal drug exposure, which possibly explains treatment failures and selection of resistance. This study aimed to describe the prevalence and determinants of suboptimal maximal concentrations (Cmax) for anti-TB drugs. METHODS An observational study was conducted in patients receiving first-line anti-TB treatment. At two early time points (T1 and T2), blood samples were withdrawn 2 hours post-dose (Cmax) and drug concentrations were measured. Data were expressed as medians (interquartile ranges). RESULTS The study included 199 participants: 72.9% were male and the median age was 39.8 years (27.5-51.4). The median Cmax at T1 and T2 were 7950 ng/mL and 7122 ng/mL (rifampicin), 3260 ng/mL and 3185 ng/mL (isoniazid), 4210 ng/mL and 5742 ng/mL (ethambutol), and 31 008 ng/mL and 30 352 ng/mL (pyrazinamide), respectively. Higher doses/kg and other variables (being born in Italy and female gender for rifampicin, older age and proton pump inhibitor use for isoniazid, female gender and older age for pyrazinamide) were identified by multivariate linear regression analysis. Participants with a higher body mass index received lower doses/kg of all anti-TB drugs. Suboptimal Cmax at T1 and T2 were observed in 60% and 66% (rifampicin), 54% and 55% (isoniazid), 33% and 39% (ethambutol), 20% and 11% (pyrazinamide) of patients. Despite 21% of patients at T1 and 24% at T2 showing two or more drugs with suboptimal exposure, no effect on treatment outcome was observed. DISCUSSION The majority of patients receiving first-line anti-TB drugs had low isoniazid and rifampin Cmax. Increased doses or the use of therapeutic drug monitoring in selected patients may be advised.
Collapse
|
23
|
Sileshi T, Tadesse E, Makonnen E, Aklillu E. The Impact of First-Line Anti-Tubercular Drugs' Pharmacokinetics on Treatment Outcome: A Systematic Review. Clin Pharmacol 2021; 13:1-12. [PMID: 33469389 PMCID: PMC7811439 DOI: 10.2147/cpaa.s289714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Tuberculosis remains the major public health problem besides tremendous efforts to combat it. Most tuberculosis patients are treated with a standard dose of first-line anti-TB drugs. The cure rate, however, varies from patient to patient. Various factors have been related to anti-TB treatment failure. In recent years, studies associating lower plasma concentrations of anti-TB drugs with poor treatment outcomes are emerging although the results are inconclusive. OBJECTIVE Investigate the impact of first-line anti-tubercular drugs pharmacokinetics on treatment outcome. METHODS A systematic search of Pubmed, EMBASE, Web of Science, and the Cochrane Library for articles published in the English language between January 2010 to June 2020 was conducted to identify eligible studies describing associations of first-line anti-tubercular drug pharmacokinetics with treatment outcomes. The primary outcomes considered were pharmacokinetics parameter results and its association with treatment outcome. RESULTS The search identified 1754 articles of which twelve articles; ten prospective observational studies and two controlled clinical trials fulfilled the eligibility criteria. The majority of the studies showed target concentrations for the first-line anti-tubercular drugs below the current standard range. Among the twelve studies, eleven studies assessed rifampicin pharmacokinetics of which eight reported association of drug concentration and treatment outcomes. Similarly, four out of eight and three out of seven reported drug concentration and treatment outcome association for isoniazid and pyrazinamide, respectively. Despite the low plasma concentration, a favorable treatment outcome was achieved for the bulk of the patients. Irrespective of the inconsistency, an increase in exposure to rifampicin improved the outcome, and lower rifampicin, isoniazid, and pyrazinamide concentration are associated with poor outcome. No data are available for ethambutol associating its pharmacokinetics with treatment outcomes. CONCLUSION The pharmacokinetics of first-line antitubercular drugs can influence treatment outcomes. Further controlled clinical studies are, however, required to establish these relationships.
Collapse
Affiliation(s)
- Tesemma Sileshi
- Ambo University, Department of Pharmacy, Ambo, Ethiopia
- Addis Ababa University, College of Health Sciences, Addis Ababa, Ethiopia
| | | | - Eyasu Makonnen
- Addis Ababa University, College of Health Sciences, Addis Ababa, Ethiopia
| | - Eleni Aklillu
- Karolinska Institutet, Department of Laboratory Medicine, Stockholm, Sweden
| |
Collapse
|
24
|
Nikolayevskyy V, Balabanova Y, Kontsevaya I, Ignatyeva O, Skenders G, Vasiliauskiene E, Bockel DV, Drobniewski F. Biomarkers of treatment success in fully sensitive pulmonary tuberculosis patients: a multicenter longitudinal study. Biomark Med 2020; 14:1439-1452. [PMID: 33140661 DOI: 10.2217/bmm-2020-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Novel biomarkers that are able to accurately monitor tuberculosis (TB) treatment effectiveness are needed to adjust therapy and identify a need for a regimen change. Materials & methods: In our study, conducted on a cohort comprising 100 pulmonary TB patients, we analyzed the role of plasma cytokines and Toll-like receptors expression as biomarkers of treatment response. Results: Changes in toll-interacting protein (TOLLIP) and lymphocyte antigen 96 (LY96) gene expression as well as nine cytokine levels over the first 2 months were significantly associated with successful treatment outcome. Successful treatment was associated with higher serum concentration of Toll-like receptor-2. Conclusion: Our results suggest that differential expression of specific effector molecules and dynamics of selected cytokines may help to identify those responding to TB treatment early.
Collapse
Affiliation(s)
- Vladyslav Nikolayevskyy
- Imperial College London, Du Cane Road, London W12 0NN, UK.,Public Health England, 61 Colindale Ave, London NW9 5EQ, UK
| | - Yanina Balabanova
- Imperial College London, Du Cane Road, London W12 0NN, UK.,Bayer AG, 178 Muelerstrasse, Berlin D-13353, Germany
| | - Irina Kontsevaya
- Imperial College London, Du Cane Road, London W12 0NN, UK.,Research Center Borstel, Parkallee 1-40, Borstel D-23845, Germany.,N.V. Postnikov Samara Region Clinical Tuberculosis Dispensary, 154 Novo-Sadovaya Street, Samara 443068, Russian Federation
| | - Olga Ignatyeva
- N.V. Postnikov Samara Region Clinical Tuberculosis Dispensary, 154 Novo-Sadovaya Street, Samara 443068, Russian Federation.,Medical University Reaviz, 100v Chkalova Street, Samara 443030, Russian Federation
| | - Girts Skenders
- Riga East University Hospital, Centre of Tuberculosis & Lung Diseases, 68 Lielvardes Street, Riga LV-1006, Latvia
| | - Edita Vasiliauskiene
- Department of Physiology, Biochemistry, Microbiology & Laboratory Medicine, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, 21/27 M. K. Ciurlionio, Vilnius LT-03101, Lithuania.,Centre of Laboratory Medicine, Tuberculosis Laboratory, Vilnius University Hospital Santaros Klinikos, Santariskiu Street 2, Vilnius LT-08661, Lithuania
| | - David van Bockel
- The Kirby Institute for Infection & Immunity in Society, University of New South Wales, High Street, NSW 2052 Sydney, Australia
| | | |
Collapse
|
25
|
Zheng X, Bao Z, Forsman LD, Hu Y, Ren W, Gao Y, Li X, Hoffner S, Bruchfeld J, Alffenaar JW. Drug exposure and minimum inhibitory concentration predict pulmonary tuberculosis treatment response. Clin Infect Dis 2020; 73:e3520-e3528. [PMID: 33070176 DOI: 10.1093/cid/ciaa1569] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Prospective studies correlating pharmacokinetic/pharmacodynamic (PK/PD) indices to clinical responses are urgently needed. This study aimed to find clinically relevant PK/PD thresholds that can be used for treatment optimization. METHODS Pharmacokinetic sampling and minimum inhibitory concentration (MIC) measurements were performed for culture-confirmed tuberculosis patients. Classification and regression tree (CART) analysis was applied to obtain PK and/or PD thresholds for first-line drugs predictive of two-week/month culture conversion, treatment outcome determined at 6-8 months, acute kidney injury (AKI) and drug-induced liver injury (DILI). Least absolute shrinkage and selection operator (LASSO) logistic regression was used for model development and validation. RESULTS Finally, 168 and 52 patients with tuberculosis were included in development and validation cohort for analysis, respectively. Area under concentration-time curve (AUC)/MIC below CART-derived thresholds for pyrazinamide of 8.42, pyrazinamide of 2.79 or rifampicin of 435.45 were the predominant predictors of two-week culture conversion, two-month culture conversion or treatment success, respectively. Isoniazid AUC above 21.78 mg·h/L or rifampicin AUC above 82.01 mg·h/L were predictive of DILI or AKI during TB treatment. The predictive performance of trained LASSO models in validation cohort was evaluated by receiver operating characteristic curves and ranged from 0.625 to 0.978. CONCLUSIONS PK/PD indices and drug exposure of anti-TB drugs were associated with clinical outcome and adverse events. The effect of CART-derived thresholds for individualized dosing on treatment outcome should be studied in a randomized controlled trial.
Collapse
Affiliation(s)
- Xubin Zheng
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ziwei Bao
- The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Lina Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Weihua Ren
- Central Laboratory, First Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Yazhou Gao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Xuliang Li
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Sven Hoffner
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Judith Bruchfeld
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Willem Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia.,Westmead hospital, Sydney, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| |
Collapse
|
26
|
Bockman MR, Mishra N, Aldrich CC. The Biotin Biosynthetic Pathway in Mycobacterium tuberculosis is a Validated Target for the Development of Antibacterial Agents. Curr Med Chem 2020; 27:4194-4232. [PMID: 30663561 DOI: 10.2174/0929867326666190119161551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/14/2018] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis, responsible for Tuberculosis (TB), remains the leading cause of mortality among infectious diseases worldwide from a single infectious agent, with an estimated 1.7 million deaths in 2016. Biotin is an essential cofactor in M. tuberculosis that is required for lipid biosynthesis and gluconeogenesis. M. tuberculosis relies on de novo biotin biosynthesis to obtain this vital cofactor since it cannot scavenge sufficient biotin from a mammalian host. The biotin biosynthetic pathway in M. tuberculosis has been well studied and rigorously genetically validated providing a solid foundation for medicinal chemistry efforts. This review examines the mechanism and structure of the enzymes involved in biotin biosynthesis and ligation, summarizes the reported genetic validation studies of the pathway, and then analyzes the most promising inhibitors and natural products obtained from structure-based drug design and phenotypic screening.
Collapse
Affiliation(s)
- Matthew R Bockman
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Neeraj Mishra
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
27
|
Muliaditan M, Della Pasqua O. How long will treatment guidelines for TB continue to overlook variability in drug exposure? J Antimicrob Chemother 2020; 74:3274-3280. [PMID: 31360999 DOI: 10.1093/jac/dkz319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/23/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Despite wide clinical acceptance, the use of weight-banded dosing regimens for the treatment of TB in adults has been defined on an empirical basis. The potential impact of known covariate factors on exposure to different drugs has not been taken into account. OBJECTIVES To evaluate the effect of demographic factors on the exposure to standard of care drugs after weight-banded dosing, as currently recommended by TB treatment guidelines. In addition, we aim to identify alternative dosing regimens that ensure comparable systemic exposure across the overall patient population. METHODS Clinical trial simulations were performed to assess the differences in systemic exposure in a cohort of virtual patients. Secondary pharmacokinetic parameters were used to evaluate the adequacy of each regimen along with the percentage of patients achieving predefined thresholds. RESULTS Our results show that patients weighing less than 40 kg are underexposed relative to patients with higher body weight. The opposite trend was observed following a crude weight band-based dosing regimen with 50 kg as the cut-off point. Simulations indicate that a fixed-dose regimen based on three (<40 kg), four (40-70 kg) or five (>70 kg) tablets of 150 mg rifampicin, 75 mg isoniazid, 400 mg pyrazinamide and 275 mg ethambutol reduces variability in exposure, increasing the overall probability of favourable long-term outcome across the population. CONCLUSIONS These findings suggest the need to revisit current guidelines for the dose of standard of care drugs for TB treatment in adults. The proposed fixed-dose regimen should be considered in future clinical trials.
Collapse
Affiliation(s)
- Morris Muliaditan
- Clinical Pharmacology & Therapeutics Group, University College London, London, UK
| | - Oscar Della Pasqua
- Clinical Pharmacology & Therapeutics Group, University College London, London, UK.,Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, Uxbridge, UK
| |
Collapse
|
28
|
van den Elsen SH, Sturkenboom MG, Akkerman O, Barkane L, Bruchfeld J, Eather G, Heysell SK, Hurevich H, Kuksa L, Kunst H, Kuhlin J, Manika K, Moschos C, Mpagama SG, Muñoz Torrico M, Skrahina A, Sotgiu G, Tadolini M, Tiberi S, Volpato F, van der Werf TS, Wilson MR, Zúñiga J, Touw DJ, Migliori GB, Alffenaar JW. Prospective evaluation of improving fluoroquinolone exposure using centralised therapeutic drug monitoring (TDM) in patients with tuberculosis (PERFECT): a study protocol of a prospective multicentre cohort study. BMJ Open 2020; 10:e035350. [PMID: 32554740 PMCID: PMC7304807 DOI: 10.1136/bmjopen-2019-035350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Global multidrug-resistant tuberculosis (MDR-TB) treatment success rates remain suboptimal. Highly active WHO group A drugs moxifloxacin and levofloxacin show intraindividual and interindividual pharmacokinetic variability which can cause low drug exposure. Therefore, therapeutic drug monitoring (TDM) of fluoroquinolones is recommended to personalise the drug dosage, aiming to prevent the development of drug resistance and optimise treatment. However, TDM is considered laborious and expensive, and the clinical benefit in MDR-TB has not been extensively studied. This observational multicentre study aims to determine the feasibility of centralised TDM and to investigate the impact of fluoroquinolone TDM on sputum conversion rates in patients with MDR-TB compared with historical controls. METHODS AND ANALYSIS Patients aged 18 years or older with sputum smear and culture-positive pulmonary MDR-TB will be eligible for inclusion. Patients receiving TDM using a limited sampling strategy (t=0 and t=5 hours) will be matched to historical controls without TDM in a 1:2 ratio. Sample analysis and dosing advice will be performed in a centralised laboratory. Centralised TDM will be considered feasible if >80% of the dosing recommendations are returned within 7 days after sampling and 100% within 14 days. The number of patients who are sputum smear and culture-negative after 2 months of treatment will be determined in the prospective TDM group and will be compared with the control group without TDM to determine the impact of TDM. ETHICS AND DISSEMINATION Ethical clearance was obtained by the ethical review committees of the 10 participating hospitals according to local procedures or is pending (online supplementary file 1). Patients will be included after obtaining written informed consent. We aim to publish the study results in a peer-reviewed journal. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT03409315).
Collapse
Affiliation(s)
- Simone Hj van den Elsen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marieke Gg Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Onno Akkerman
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Tuberculosis Center Beatrixoord, University of Groningen, University Medical Center Groningen, Haren, The Netherlands
| | - Linda Barkane
- Department of Multidrug Resistant Tuberculosis, Riga East University Hospital TB and Lung Disease Clinic, Riga, Latvia
| | - Judith Bruchfeld
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Geoffrey Eather
- Department of Respiratory Medicine and Metro South Clinical Tuberculosis Service, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Henadz Hurevich
- The Republican Scientific and Practical Center for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Liga Kuksa
- Department of Multidrug Resistant Tuberculosis, Riga East University Hospital TB and Lung Disease Clinic, Riga, Latvia
| | - Heinke Kunst
- Department of Respiratory Medicine, Blizard Institute, Queen Mary University of London, Barts Health NHS Trust, London, UK
| | - Johanna Kuhlin
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Katerina Manika
- Pulmonary Department, Respiratory Infections Unit, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalampos Moschos
- Drug-Resistant Tuberculosis Unit, 'Sotiria' Hospital for Chest Diseases, Athens, Greece
| | - Stellah G Mpagama
- Kibong'oto Infectious Diseases Hospital, Kilimanjaro, United Republic of Tanzania
| | - Marcela Muñoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Alena Skrahina
- The Republican Scientific and Practical Center for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Giovanni Sotgiu
- Department of Medical, Surgical and Experimental Sciences, Clinical Epidemiology and Medical Statistics Unit, University of Sassari, Sassari, Italy
| | - Marina Tadolini
- Department of Medical and Surgical Sciences, Unit of Infectious Diseases, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Simon Tiberi
- Department of Infection, Blizard Institute, Queen Mary University of London, Barts Health NHS Trust, London, UK
| | - Francesca Volpato
- Department of Medical and Surgical Sciences, Unit of Infectious Diseases, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Tjip S van der Werf
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Malcolm R Wilson
- Department of Respiratory Medicine and Metro South Clinical Tuberculosis Service, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Joaquin Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de Salud, Mexico City, Mexico
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Giovanni B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Jan-Willem Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Byashalira K, Mbelele P, Semvua H, Chilongola J, Semvua S, Liyoyo A, Mmbaga B, Mfinanga S, Moore C, Heysell S, Mpagama S. Clinical outcomes of new algorithm for diagnosis and treatment of Tuberculosis sepsis in HIV patients. Int J Mycobacteriol 2020; 8:313-319. [PMID: 31793499 DOI: 10.4103/ijmy.ijmy_135_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Despite effort to diagnose tuberculosis (TB) in the Human Immunodeficiency Virus (HIV) infected population, 45% of adults with HIV that had a previously unknown reason for death, demonstrated TB was the cause by autopsy examination. We aimed to assess the clinical outcomes of implementation a new algorithm for diagnosis and treatment of tuberculosis (TB) related sepsis among PLHIV presenting with life-threatening illness. Methods This study is a prospective cohort conducted in three-referral hospitals in Kilimanjaro, recruited 97 PLHIV from February through June 2018. Patients provided urine and sputum samples for testing lateral flow - lipoarabinomannan (LF-LAM) and Xpert Mycobacterium tuberculosis (MTB)/rifampicin (RIF) assays, respectively. Anti-TB was prescribed to patients with positive LF-LAM or Xpert MTB/RIF or received broad-spectrum antibiotics but deteriorated. Results Of 97 patients, 84 (87%) provided urine and sputa, and 13 (13%) provided only urine. The mean age (95% confidence interval) was 40 (38-43) years and 52 (54%) were female. In 84 patients, LF-LAM increased TB detection from 26 (31%) by Xpert MTB/RIF to 41 (55%) by both tests. Of 97 patients, 69 (71%) prescribed anti-TB, 67% (46/69) and 33% (23/69) had definitive and probable TB respectively. Sixteen (16.5%) patients died, of which one died before treatment, 73% (11/15) died within 7 days of admission. The 30-day survival was similar in both treatment groups (log rank = 0.1574). Mortality was significantly higher among hospitalized patients compared to outpatients (P ≤ 0.027). Conclusion Implementation of new algorithm increased TB case detection in patients that could have been missed by Xpert MTB/RIF assay. Survival of PLHIV with confirmed or probable TB was comparable to those of PLHIV that were treated with broad-spectrum antibiotics alone. Further work should focus on the optimal timing and content of the immediate antimicrobial regimen for sepsis among PLHIV in TB-endemic settings.
Collapse
Affiliation(s)
- Kenneth Byashalira
- Kilimanjaro Christian Medical University College; Kibong'oto Infectious Diseases Hospital, Tanzania
| | | | - Hadija Semvua
- Kilimanjaro Christian Medical University College; Kilimanjaro Clinical Research Institute, Tanzania
| | - Jaffu Chilongola
- Kilimanjaro Christian Medical University College; Kilimanjaro Clinical Research Institute, Tanzania
| | - Seleman Semvua
- Kilimanjaro Christian Medical University College, Tanzania
| | | | - Blandina Mmbaga
- Kilimanjaro Christian Medical University College; Kilimanjaro Clinical Research Institute, Tanzania
| | - Sayoki Mfinanga
- National Institute for Medical Research-Muhimbili Medical Research Centre, Tanzania
| | - Christopher Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Scott Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Stellah Mpagama
- Kilimanjaro Christian Medical University College; Kibong'oto Infectious Diseases Hospital, Tanzania
| |
Collapse
|
30
|
von Braun A, Castelnuovo B, Ledergerber B, Cusato J, Buzibye A, Kambugu A, Fehr J, Calcagno A, Lamorde M, Sekaggya-Wiltshire C. High efavirenz serum concentrations in TB/HIV-coinfected Ugandan adults with a CYP2B6 516 TT genotype on anti-TB treatment. J Antimicrob Chemother 2020; 74:135-138. [PMID: 30239753 DOI: 10.1093/jac/dky379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/24/2018] [Indexed: 01/15/2023] Open
Abstract
Objectives To report the efavirenz serum concentrations in TB/HIV-coinfected Ugandan adults on concomitant anti-TB treatment and analyse factors associated with elevated concentrations in this specific population. Methods Serum efavirenz concentrations in TB/HIV-coinfected Ugandan adults on efavirenz-based ART (600 mg daily) were measured onsite at 2, 8, 12 and 24 weeks of concomitant anti-TB treatment, including rifampicin. Genetic analysis was done retrospectively through real-time PCR by allelic discrimination (CYP2B6 516G>T, rs3745274). Univariable and multivariable logistic regression analyses were done to assess factors potentially associated with elevated efavirenz serum concentrations. Results A total of 166 patients were included in the analysis. The median age was 34 (IQR = 30-40) years, 99 (59.6%) were male, the median CD4 cell count was 195 (IQR = 71-334) cells/mm3 and the median BMI was 19 (IQR = 17.6-21.5) kg/m2. Almost half of all patients (82, 49.4%) had at least one efavirenz serum concentration above the reference range of 4 mg/L. The serum efavirenz concentrations of patients with genotype CYP2B6 516 TT were consistently above 4 mg/L and significantly higher than those of patients with GG/GT genotypes: CYP2B6 516 TT 9.6 mg/L (IQR = 7.3-13.3) versus CYP2B6 516 GT 3.4 mg/L (IQR = 2.1-5.1) and CYP2B6 516 GG 2.6 mg/L (IQR = 1.3-4.0) (Wilcoxon rank-sum test: P < 0.0001). Conclusions A large proportion of our study participants had at least one efavirenz serum concentration >4 mg/L. The CYP2B6 516 TT genotype was the strongest predictor of high concentration. Physicians should be vigilant that efavirenz serum concentrations may be elevated in patients on concomitant anti-TB treatment and that individualized care is warranted whenever possible.
Collapse
Affiliation(s)
- Amrei von Braun
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Barbara Castelnuovo
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruno Ledergerber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jessica Cusato
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Allan Buzibye
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Andrew Kambugu
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jan Fehr
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Mohammed Lamorde
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
31
|
Perumal R, Naidoo K, Naidoo A, Ramachandran G, Requena-Mendez A, Sekaggya-Wiltshire C, Mpagama SG, Matteelli A, Fehr J, Heysell SK, Padayatchi N. A systematic review and meta-analysis of first-line tuberculosis drug concentrations and treatment outcomes. Int J Tuberc Lung Dis 2020; 24:48-64. [PMID: 32005307 PMCID: PMC10622255 DOI: 10.5588/ijtld.19.0025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Low serum concentrations of first-line tuberculosis (TB) drugs have been widely reported. However, the impact of low serum concentrations on treatment outcome is less well studied. A systematic search of MEDLINE/Pubmed and the Cochrane Central Register of Controlled Trials up to 31 March 2018 was conducted for articles describing drug concentrations of first-line TB drugs and treatment outcome in adult patients with drug-susceptible TB. The search identified 3073 unique publication abstracts, which were reviewed for suitability: 21 articles were acceptable for inclusion in the qualitative analysis comprising 13 prospective observational cohorts, 4 retrospective observational cohorts, 1 case-control study and 3 randomised controlled trials. Data for meta-analysis were available for 15 studies, 13 studies of rifampicin (RMP), 10 of isoniazid (INH), 8 of pyrazinamide (PZA) and 4 of ethambutol (EMB). This meta-analysis revealed that low PZA concentration appears to increase the risk of poor outcomes (8 studies, n = 2727; RR 1.73, 95%CI 1.10-2.72), low RMP concentrations may slightly increase the risk of poor outcomes (13 studies, n = 2753; RR 1.40, 95%CI 0.91-2.16), whereas low concentrations of INH (10 studies, n = 2640; RR 1.32, 95%CI 0.66-2.63) and EMB (4 studies, n = 551; RR 1.12, 95%CI 0.41-3.05) appear to make no difference to treatment outcome. There was no significant publication bias or between-study heterogeneity in any of the analyses. The potential clinical impact of low concentrations of PZA and RMP warrants further evaluation. Also, comprehensive assessments of the complex pharmacokinetic-pharmacodynamic relationships in the treatment of TB are urgently needed.
Collapse
Affiliation(s)
- R Perumal
- Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, College of Health Sciences, Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, Department of Pulmonology and Critical Care, Groote Schuur Hospital, University of Cape Town, South Africa
| | - K Naidoo
- Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, College of Health Sciences, Department of Pulmonology and Critical Care, Groote Schuur Hospital, University of Cape Town, South Africa
| | - A Naidoo
- Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, College of Health Sciences
| | - G Ramachandran
- Department of Biochemistry and Clinical Pharmacology, National Institute for Research in Tuberculosis, Chennai, India
| | - A Requena-Mendez
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Uganda
| | | | | | - A Matteelli
- Kibong'oto Infectious Diseases Hospital, Siha, Kilimanjaro, Tanzania
| | - J Fehr
- Department of Infectious and Tropical Diseases, WHO Collaborating Centre for TB/HIV and TB Elimination, University of Brescia, Brescia, Italy
| | - S K Heysell
- Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland
| | - N Padayatchi
- Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, College of Health Sciences, Department of Pulmonology and Critical Care, Groote Schuur Hospital, University of Cape Town, South Africa
| |
Collapse
|
32
|
Alffenaar JWC, Heysell SK, Mpagama SG. Therapeutic Drug Monitoring: The Need for Practical Guidance. Clin Infect Dis 2019; 68:1065-1066. [PMID: 30219826 DOI: 10.1093/cid/ciy787] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Stellah G Mpagama
- Kibong'oto Infectious Diseases Hospital/Kilimanjaro Clinical Research Institute, Sanya Juu, Tanzania
| |
Collapse
|
33
|
Mukonzo JK, Kengo A, Kutesa B, Nanzigu S, Pohanka A, McHugh TD, Zumla A, Aklillu E. Role of pharmacogenetics in rifampicin pharmacokinetics and the potential effect on TB–rifampicin sensitivity among Ugandan patients. Trans R Soc Trop Med Hyg 2019; 114:107-114. [DOI: 10.1093/trstmh/trz108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/15/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Suboptimal anti-TB drugs exposure may cause multidrug-resistant TB. The role of African predominant SLCO1B1 variant alleles on rifampicin pharmacokinetics and the subsequent effect on the occurrence of Mycobacterium tuberculosis–rifampicin sensitivity needs to be defined. We describe the rifampicin population pharmacokinetics profile and investigate the relevance of SLCO1B1 genotypes to rifampicin pharmacokinetics and rifampicin-TB sensitivity status.
Methods
Fifty patients with TB (n=25 with rifampicin-resistant TB and n=25 with rifampicin-susceptible TB) were genotyped for SLOC1B1 rs4149032 (g.38664C>T), SLOC1B1*1B (c.388A>G) and SLOC1B1*5 (c.521 T>C). Steady state plasma rifampicin levels were determined among patients infected with rifampicin-sensitive TB. Data were analysed using NONMEM to estimate population rifampicin pharmacokinetics as well as the effect of SLOC1B1 genotypes on rifampicin pharmacokinetics and on rifampicin-TB sensitivity status.
Results
Overall allele frequencies of SLOC1B1 rs4149032, *1B and *5 were 0.66, 0.90 and 0.01, respectively. Median (IQR) Cmax and Tmax were 10.2 (8.1–12.5) mg/L and 1.7 (1.125–2.218) h, respectively. Twenty-four percent of patients exhibited Cmax below the recommended 8–24 mg/L range. SLOC1B1 genotypes, gender and age did not influence rifampicin pharmacokinetics or TB-rifampicin sensitivity.
Conclusions
Although SLOC1B1 genotype, age and gender do not influence either rifampicin pharmacokinetics or rifampicin-TB sensitivity status, one in every four Ugandan TB patients achieve subtherapeutic plasma rifampicin concentrations.
Collapse
Affiliation(s)
- Jackson K Mukonzo
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072 Kampala, Uganda
| | - Allan Kengo
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072 Kampala, Uganda
| | - Bisaso Kutesa
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072 Kampala, Uganda
| | - Sarah Nanzigu
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072 Kampala, Uganda
| | - Anton Pohanka
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital-Huddinge, SE-141 86 Stockholm, Sweden
| | - Timothy D McHugh
- Center for Clinical Microbiology, Division of Infection and Immunology, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF London, UK
| | - Alimuddin Zumla
- Center for Clinical Microbiology, Division of Infection and Immunology, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF London, UK
- NIHR Biomedical Research Center at UCL Hospitals NHS Foundation Trust, 162 City Rd, EC1V 2PD London, Bungereza
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital-Huddinge, SE-141 86 Stockholm, Sweden
| |
Collapse
|
34
|
Pasipanodya JG, Gumbo T. Individualizing Tuberculosis (TB) Treatment: Are TB Programs in High Burden Settings Ready for Prime Time Therapeutic Drug Monitoring? Clin Infect Dis 2019. [PMID: 29514180 DOI: 10.1093/cid/ciy184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jotam G Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
35
|
Low Antituberculosis Drug Concentrations in HIV-Tuberculosis-Coinfected Adults with Low Body Weight: Is It Time To Update Dosing Guidelines? Antimicrob Agents Chemother 2019; 63:AAC.02174-18. [PMID: 30910890 DOI: 10.1128/aac.02174-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 03/12/2019] [Indexed: 01/28/2023] Open
Abstract
Antituberculosis drugs display large pharmacokinetic variability, which may be influenced by several factors, including body size, genetic differences, and drug-drug interactions. We set out to determine these factors, quantify their effect, and determine the dose adjustments necessary for optimal drug concentrations. HIV-infected Ugandan adults with pulmonary tuberculosis treated according to international weight-based dosing guidelines underwent pharmacokinetic sampling (1, 2, and 4 h after drug intake) 2, 8, and 24 weeks after treatment initiation. Between May 2013 and November 2015, we enrolled 268 patients (148 males) with a median weight of 53.5 (interquartile range [IQR], 47.5 to 59.0) kg and a median age of 35 (IQR, 29 to 40) years. Population pharmacokinetic modeling was used to interpret the data and revealed that patients weighing <55 kg achieved lower concentrations than those in higher weight bands for all drugs in the regimen. The models predicted that this imbalance could be solved with a dose increment of one fixed-dose combination (FDC) tablet for the weight bands of 30 to 37 and 38 to 54 kg. Additionally, the concomitant use of efavirenz increased isoniazid clearance by 24.1%, while bioavailability and absorption of rifampin and isoniazid varied up to 30% in patients on different formulations. Current dosing guidelines lead to lower drug exposure in patients in the lower weight bands. Simply adding one FDC tablet to current weight band-based dosing would address these differences in exposure and possibly improve outcomes. Lower isoniazid exposures due to efavirenz deserve further attention, as does the quality of currently used drug formulations of anti-TB drugs. (This study has been registered at ClinicalTrials.gov under identifier NCT01782950.).
Collapse
|
36
|
Metcalfe J, Bacchetti P, Gerona R, Esmail A, Dheda K, Gandhi M. Association of anti-tuberculosis drug concentrations in hair and treatment outcomes in MDR- and XDR-TB. ERJ Open Res 2019; 5:00046-2019. [PMID: 31041318 PMCID: PMC6484095 DOI: 10.1183/23120541.00046-2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 11/05/2022] Open
Abstract
Therapeutic drug monitoring for drug-resistant tuberculosis (TB) is likely to improve treatment outcomes. While assessments of plasma drug levels can explain pharmacokinetic variability among trial participants, these measures require phlebotomy and a cold chain, and are generally not repeated frequently enough to characterise drug exposure over time. Using a novel multi-analyte assay, we found evidence that higher anti-TB drug concentrations in hair, a non-biohazardous and noninvasively collected biomatrix, predict extensively-drug resistant-TB clinical outcomes in a high-burden setting.
Collapse
Affiliation(s)
- John Metcalfe
- Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California, San Francisco, CA, USA
| | - Peter Bacchetti
- Dept of Epidemiology and Biostatistics, University of California, UCSF, San Francisco, CA, USA
| | - Roy Gerona
- Maternal-Fetal Medicine Division, Dept of Obstetrics, Gynecology and Reproductive Sciences, University of California, UCSF, San Francisco, CA, USA
| | - Ali Esmail
- Lung Infection and Immunity Unit, Division of Pulmonology, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Lung Infection and Immunity Unit, Division of Pulmonology, University of Cape Town, Cape Town, South Africa
| | - Monica Gandhi
- Division of HIV, Infectious Diseases and Global Medicine, Dept of Medicine, University of California, UCSF, San Francisco, CA, USA
| |
Collapse
|
37
|
Calcagno A, Cusato J, Sekaggya-Wiltshire C, von Braun A, Motta I, Turyasingura G, Castelnuovo B, Fehr J, Di Perri G, Lamorde M. The Influence of Pharmacogenetic Variants in HIV/Tuberculosis Coinfected Patients in Uganda in the SOUTH Study. Clin Pharmacol Ther 2019; 106:450-457. [PMID: 30779340 DOI: 10.1002/cpt.1403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/08/2019] [Indexed: 11/10/2022]
Abstract
Unsatisfactory treatment outcomes have been reported in patients coinfected with HIV/tuberculosis (TB). The aim of this study was to assess the influence of single-nucleotide polymorphisms (SNPs) in genes encoding for proteins involved in antitubercular drug disposition or effect. A pharmacogenetic study was conducted in Kampala, Uganda, where all analysis was performed. The impact of SNPs on antitubercular drug exposure, adverse events, and treatment outcomes was evaluated in patients coinfected with HIV/TB receiving treatments for both conditions. In 221 participants, N-acetyltransferase 2 (NAT2; rs1799930), solute carrier organic anion transporter family member 1B1 (SLCO1B1; rs4149032), and pregnane X receptor (PXR; rs2472677) variants affected isoniazid exposure in multivariate analysis. Most patients were deemed cured (163; 73.8%), yet PXR 63396TT carriers had a higher probability of death (P = 0.007) and of worsening peripheral neuropathy (P = 0.018). In this exploratory study in Ugandan patients coinfected with HIV/TB, genetic variants in PXR, SLCO1B1, and NAT2 were moderately associated with isoniazid exposure, whereas PXR 63396TT carriers showed worse outcomes.
Collapse
Affiliation(s)
- Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Jessica Cusato
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | | | - Amrei von Braun
- Division of Infectious Diseases and Tropical Medicine, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Ilaria Motta
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Grace Turyasingura
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Barbara Castelnuovo
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jan Fehr
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Public Health, Epidemiology, Biostatistics, and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Mohammed Lamorde
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
38
|
Whole-Genome Sequencing for Drug Resistance Profile Prediction in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.02175-18. [PMID: 30718257 PMCID: PMC6496161 DOI: 10.1128/aac.02175-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/25/2019] [Indexed: 01/10/2023] Open
Abstract
Whole-genome sequencing allows rapid detection of drug-resistant Mycobacterium tuberculosis isolates. However, the availability of high-quality data linking quantitative phenotypic drug susceptibility testing (DST) and genomic data have thus far been limited. We determined drug resistance profiles of 176 genetically diverse clinical M. tuberculosis isolates from the Democratic Republic of the Congo, Ivory Coast, Peru, Thailand, and Switzerland by quantitative phenotypic DST for 11 antituberculous drugs using the BD Bactec MGIT 960 system and 7H10 agar dilution to generate a cross-validated phenotypic DST readout. We compared DST results with predicted drug resistance profiles inferred by whole-genome sequencing. Classification of strains by the two phenotypic DST methods into resistotype/wild-type populations was concordant in 73 to 99% of cases, depending on the drug. Our data suggest that the established critical concentration (5 mg/liter) for ethambutol resistance (MGIT 960 system) is too high and misclassifies strains as susceptible, unlike 7H10 agar dilution. Increased minimal inhibitory concentrations were explained by mutations identified by whole-genome sequencing. Using whole-genome sequences, we were able to predict quantitative drug resistance levels for the majority of drug resistance mutations. Predicting quantitative levels of drug resistance by whole-genome sequencing was partially limited due to incompletely understood drug resistance mechanisms. The overall sensitivity and specificity of whole-genome-based DST were 86.8% and 94.5%, respectively. Despite some limitations, whole-genome sequencing has the potential to infer resistance profiles without the need for time-consuming phenotypic methods.
Collapse
|
39
|
Pettit AC, Shepherd BE, Sterling TR. Treatment of drug-susceptible tuberculosis among people living with human immunodeficiency virus infection: an update. Curr Opin HIV AIDS 2018; 13:469-477. [PMID: 30222609 PMCID: PMC6389504 DOI: 10.1097/coh.0000000000000506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The present review describes recent advances in the treatment of drug-susceptible tuberculosis (DS-TB) among people living with human immunodeficiency virus (PLWH). RECENT FINDINGS Higher than standard rifampicin doses (>10 mg/kg/day) are well tolerated and have improved sterilizing activity. Standard pyrazinamide doses may result in low drug exposures; modeling reveals that higher doses (>25 mg/kg/day) may be required to reach target levels, although safety is unknown. Four-month fluoroquinolone-containing regimens are not recommended in the 2017 World Health Organization DS-TB treatment guidelines. These guidelines also recommend fixed-dose combination (FDC) therapy over single drug formulations based on patient preference, though FDC is not associated with improved outcomes. Treatment for 6 months is recommended, with an emphasis on expanded antiretroviral therapy (ART) coverage and monitoring for relapse among those not started on ART within 8 weeks of tuberculosis treatment. Directly observed therapy (DOT) is recommended over self-administered therapy, as is daily therapy over intermittent therapy - both are associated with better tuberculosis outcomes. SUMMARY Current WHO tuberculosis treatment guidelines recommend 6 months of daily tuberculosis treatment for PLWH who have DS-TB, and timely ART initiation. Higher rifampin and pyrazinamide doses may enhance treatment effectiveness, but safety data are needed. DOT and FDC therapy are recommended.
Collapse
Affiliation(s)
- April C. Pettit
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bryan E. Shepherd
- Vanderbilt Tuberculosis Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timothy R. Sterling
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Tuberculosis Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|