1
|
Charostad J, Rezaei Zadeh Rukerd M, Mahmoudvand S, Bashash D, Hashemi SMA, Nakhaie M, Zandi K. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Med Infect Dis 2023; 55:102638. [PMID: 37652253 DOI: 10.1016/j.tmaid.2023.102638] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Avian influenza viruses (AIVs) are globally challenging due to widespread circulation and high mortality rates. Highly pathogenic avian influenza (HPAI) strains like H5N1 have caused significant outbreaks in birds. Since 2003 to 14 July 2023, the World Health Organization (WHO) has documented 878 cases of HPAI H5N1 infection in humans and 458 (52.16%) fatalities in 23 countries. Recent outbreaks in wild birds, domestic birds, sea lions, minks, and etc., and the occurrence of genetic variations among HPAI H5N1 strains raise concerns about potential transmission and public health risks. This paper aims to provide a comprehensive overview of the current understanding and new insights into HPAI H5N1. It begins with an introduction to the significance of studying this virus and highlighting the need for updated knowledge. The origin and evaluation of HPAI H5N1 are examined, shedding light on its emergence, and spread across different geographic regions. The genome organization and structural biology of the H5N1 virus are explored, providing insights into its molecular composition and key structural features. This manuscript also delves into the phylogeny, evolution, mutational trends, reservoirs, and transmission routes of HPAI H5N1. The immune response against HPAI H5N1 and its implications for vaccine development are analyzed, along with an exploration of the pathogenesis and clinical manifestations of HPAI H5N1 in human cases. Furthermore, diagnostic tools and preventive and therapeutic strategies are discussed, highlighting the current approaches and potential future directions for better management of the potential pandemic.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Virology, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Keivan Zandi
- Arrowhead Pharmaceuticals, San Diego, CA, USA; Tropical Infectious Diseases Research and Education Center (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Yuan S, Jiang SC, Zhang ZW, Fu YF, Zhu F, Li ZL, Hu J. Abuse of Amantadine in Poultry May Be Associated with Higher Fatality Rate of H5N1 Infections in Humans. J Med Virol 2022; 94:2588-2597. [PMID: 35170774 DOI: 10.1002/jmv.27664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/12/2022] [Indexed: 11/07/2022]
Abstract
Amantadine, an anti-viral drug, has been widely used in human anti-influenza treatments. However, several highly-pathogenic avian influenza viruses show amantadine-resistance mutations in the viral matrix 2 (M2) protein. Here we analyzed global H5N1 sequencing data and calculate possible correlations between frequencies of key mutations in M2 and the mortality rates. We found that frequency of L26I/V27A mutation in M2 (isolated from both human and avian hosts) is linearly correlated with the mortality rates of human H5N1 infections. The significant correlation between M2 mutations in avians and the mortality rates in humans suggest that the pre-existence of L26I/V27A in birds may determine patient fatalities after trans-infections from avian to human hosts. 100% prevalence of L26I/V27A mutation increased the mortality rates from 51% (95% CI 37%-65%) to 89% (95% CI 88%-90%). Mutations involving Leu26 or Val27 were identified to be the major mutations emerging from drug selection pressure. Thus the emergence of the super H5N1 virus with a fatality over 90% may be attributed to the abuse of amantadine in poultry, especially in some southeast Asian countries. A more stringent control to anti-viral veterinary drugs is imperative. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Si-Cong Jiang
- Chengdu KangHong Pharmaceutical Group Comp. Ltd., Chengdu, 610036, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feng Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zi-Lin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Medical University of the Air Force, Xi'an, 710032, China
| | - Jing Hu
- School of Medicine, Northwest University, Xi'an, 710069, China
| |
Collapse
|
3
|
Faíco-Filho KS, Passarelli VC, Bellei N. Is Higher Viral Load in SARS-CoV-2 Associated with Death? Am J Trop Med Hyg 2020; 103:2019-2021. [PMID: 32996443 PMCID: PMC7646800 DOI: 10.4269/ajtmh.20-0954] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
There is no proven prognostic marker for patients hospitalized with COVID-19. We conducted a retrospective cohort study of patients hospitalized with COVID-19 from March 14, 2020 to June 17, 2020, at São Paulo Hospital, in São Paulo, Brazil. SARS-CoV-2 viral load was assessed using the cycle threshold (Ct) values obtained from a reverse transcription-PCR assay applied to the nasopharyngeal swab samples. The reactions were performed following the CDC U.S. protocol targeting the N1 and N2 sequences of the SARS-CoV-2 nucleoprotein gene and human ribonuclease P gene serving as an endogenous control. Disease severity and patient outcomes were compared. Among 875 patients, 50.1% (439/875) were categorized as having mild disease (nonhospitalized patients), 30.4% (266/875) moderate (hospitalized in the ward), and 19.5% (170/875) severe disease (admitted to the intensive care unit). A Ct value of < 25 (472/875) indicated a high viral load, which was independently associated with mortality (odds ratio [OR]: 2.93; 95% CI: 1.87-4.60; P < 0.0001). We concluded that admission SARS-CoV-2 viral load was independently associated with mortality among patients hospitalized with COVID-19.
Collapse
Affiliation(s)
- Klinger Soares Faíco-Filho
- Universidade Federal de São Paulo (UNIFESP), Laboratório de Virologia, Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina (EPM), São Paulo, Brazil
| | - Victor Cabelho Passarelli
- Universidade Federal de São Paulo (UNIFESP), Laboratório de Virologia, Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina (EPM), São Paulo, Brazil
| | - Nancy Bellei
- Universidade Federal de São Paulo (UNIFESP), Laboratório de Virologia, Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina (EPM), São Paulo, Brazil
| |
Collapse
|
4
|
Pawestri HA, Nugraha AA, Han AX, Pratiwi E, Parker E, Richard M, van der Vliet S, Fouchier RAM, Muljono DH, de Jong MD, Setiawaty V, Eggink D. Genetic and antigenic characterization of influenza A/H5N1 viruses isolated from patients in Indonesia, 2008-2015. Virus Genes 2020; 56:417-429. [PMID: 32483655 PMCID: PMC7262163 DOI: 10.1007/s11262-020-01765-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 01/07/2023]
Abstract
Since the initial detection in 2003, Indonesia has reported 200 human cases of highly pathogenic avian influenza H5N1 (HPAI H5N1), associated with an exceptionally high case fatality rate (84%) compared to other geographical regions affected by other genetic clades of the virus. However, there is limited information on the genetic diversity of HPAI H5N1 viruses, especially those isolated from humans in Indonesia. In this study, the genetic and antigenic characteristics of 35 HPAI H5N1 viruses isolated from humans were analyzed. Full genome sequences were analyzed for the presence of substitutions in the receptor binding site, and polymerase complex, as markers for virulence or human adaptation, as well as antiviral drug resistance substitutions. Only a few substitutions associated with human adaptation were observed, a remarkably low prevalence of the human adaptive substitution PB2-E627K, which is common during human infection with other H5N1 clades and a known virulence marker for avian influenza viruses during human infections. In addition, the antigenic profile of these Indonesian HPAI H5N1 viruses was determined using serological analysis and antigenic cartography. Antigenic characterization showed two distinct antigenic clusters, as observed previously for avian isolates. These two antigenic clusters were not clearly associated with time of virus isolation. This study provides better insight in genetic diversity of H5N1 viruses during human infection and the presence of human adaptive markers. These findings highlight the importance of evaluating virus genetics for HPAI H5N1 viruses to estimate the risk to human health and the need for increased efforts to monitor the evolution of H5N1 viruses across Indonesia.
Collapse
Affiliation(s)
- Hana A Pawestri
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Arie A Nugraha
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Alvin X Han
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eka Pratiwi
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Edyth Parker
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Mathilde Richard
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Menno D de Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Vivi Setiawaty
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia.
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
|