1
|
Gerber JS, Arroyo EMP, Pastor J, Correia M, Rudloff S, Moe OW, Egli-Spichtig D, Mohebbi N, Wagner CA. Controlled dietary phosphate loading in healthy young men elevates plasma phosphate and FGF23 levels. Pflugers Arch 2025; 477:495-508. [PMID: 39601886 PMCID: PMC11825603 DOI: 10.1007/s00424-024-03046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Increased dietary inorganic phosphate (Pi) intake stimulates renal Pi excretion, in part, by parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23) or dopamine. High dietary Pi may also stimulate sympathetic outflow. Rodent studies provided evidence for these regulatory loops, while controlled experiments in healthy humans examined periods of either a few hours or several weeks, and often varied dietary calcium intake. The effects of controlled, isolated changes in dietary Pi intake over shorter periods are unknown. We studied the effects of a low or high Pi diet on parameters of mineral metabolism in 10 healthy young men. Participants received a standardized diet (1000 mg phosphorus equivalent/day) supplemented with either a phosphate binder (low Pi diet) or phosphate capsules (750 mg phosphorus, high Pi diet) in a randomized cross-over trial for 5 days with a 7-day washout between diets. High Pi intake increased plasma Pi levels and 24-h excretion and decreased urinary calcium excretion. High Pi intake increased intact FGF23 (iFGF23) and suppressed plasma Klotho without affecting cFGF23, PTH, calcidiol, calcitriol, Fetuin-A, dopamine, epinephrine, norepinephrine, metanephrine, or aldosterone. Higher iFGF23 correlated with lower calcitriol and higher PTH. These data support a role for iFGF23 in increasing renal Pi excretion and reducing calcitriol in healthy young men during steady-state high dietary Pi intake. High dietary Pi intake elevated blood Pi levels in healthy young subjects with normal renal function and may therefore be a health risk, as higher serum Pi levels are associated with cardiovascular risk in the general population.
Collapse
Affiliation(s)
- Jennifer Scotti Gerber
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Eva Maria Pastor Arroyo
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Johanne Pastor
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Miguel Correia
- Division of Nephrology and Hypertension, University of Bern and University Hospital Bern, Bern, Switzerland
| | - Stefan Rudloff
- Division of Nephrology and Hypertension, University of Bern and University Hospital Bern, Bern, Switzerland
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniela Egli-Spichtig
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- National Center of Competence in Research, NCCR Kidney.CH, Zurich, Switzerland
| | - Nilufar Mohebbi
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
- National Center of Competence in Research, NCCR Kidney.CH, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- National Center of Competence in Research, NCCR Kidney.CH, Zurich, Switzerland.
| |
Collapse
|
2
|
Courbon G, David V. Fibroblast growth factor 23 is pumping iron: C-terminal-fibroblast growth factor 23 cleaved peptide and its function in iron metabolism. Curr Opin Nephrol Hypertens 2024; 33:368-374. [PMID: 38661434 DOI: 10.1097/mnh.0000000000000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW Iron deficiency regulates the production of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) but also its cleavage, to generate both intact (iFGF23) and C-terminal (Cter)-FGF23 peptides. Novel studies demonstrate that independently of the phosphaturic effects of iFGF23, Cter-FGF23 peptides play an important role in the regulation of systemic iron homeostasis. This review describes the complex interplay between iron metabolism and FGF23 biology. RECENT FINDINGS C-terminal (Cter) FGF23 peptides antagonize inflammation-induced hypoferremia to maintain a pool of bioavailable iron in the circulation. A key mechanism proposed is the down-regulation of the iron-regulating hormone hepcidin by Cter-FGF23. SUMMARY In this manuscript, we discuss how FGF23 is produced and cleaved in response to iron deficiency, and the principal functions of cleaved C-terminal FGF23 peptides. We also review possible implications anemia of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Guillaume Courbon
- INSERM U1059 SAINBIOSE, University of St Etienne, Mines St Etienne, St Etienne, France
| | - Valentin David
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Wagner CA, Rubio Aliaga I, Egli-Spichtig D. Is fibroblast growth factor 23 the main culprit for cardiovascular disease in chronic kidney disease? Am J Physiol Renal Physiol 2024; 326:F561-F562. [PMID: 38205545 DOI: 10.1152/ajprenal.00379.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
4
|
Hamid AK, Pastor Arroyo EM, Lee SS, Wagner CA, Egli-Spichtig D. A novel method for automated crystal visualization and quantification in murine folic acid-induced acute kidney injury. Am J Physiol Renal Physiol 2024; 326:F105-F117. [PMID: 37881875 PMCID: PMC11194050 DOI: 10.1152/ajprenal.00140.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
Folic acid (FA)-induced acute kidney injury (FA-AKI) is an increasingly prevalent rodent disease model involving the injection of a high dose of FA that culminates in renal FA crystal deposition and injury. However, the literature characterizing the FA-AKI model is sparse and dated in part due to the absence of a well-described methodology for the visualization and quantification of renal FA crystals. Using widely available materials and tools, we developed a straightforward and crystal-preserving histological protocol that can be coupled with automated imaging for renal FA crystal visualization and generated an automated macro for downstream crystal content quantification. The applicability of the method was demonstrated by characterizing the model in male and female C57BL6/JRj mice after 3 and 30 h of FA treatment. Kidneys from both sexes and timepoints showed a bimodal distribution of FA crystal deposition in the cortical and medullary regions while, compared with males, females exhibited higher renal FA crystal content at the 30-h timepoint accompanied by greater kidney weight and higher plasma urea. Despite comparable plasma phosphate concentrations, FA-AKI resulted in a substantially more elevated plasma intact fibroblast growth factor 23 (FGF23) in females, reflected by a similar pattern in osseous Fgf23 mRNA expression. Therefore, the presented method constitutes a valuable tool for the quantification of renal FA crystals, which can aid the mechanistic characterization of the FA-AKI model and serves as a means to control for confounding changes in FA crystallization when using the model for investigating early and prophylactic AKI therapeutic interventions.NEW & NOTEWORTHY Here, we describe a novel method for the visualization and quantification of renal folic acid (FA) crystals in the rodent FA-induced acute kidney injury (FA-AKI) model. The protocol involves a straightforward histological approach followed by fully automated imaging and quantification steps. Applicability was confirmed by showing that the FA-AKI model is sex-dependent. The method can serve as a tool to aid in characterizing FA-AKI and to control for studies investigating prophylactic therapeutic avenues using FA-AKI.
Collapse
Affiliation(s)
- Ahmad Kamal Hamid
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | - Eva Maria Pastor Arroyo
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | - Sung Sik Lee
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Zurich, Switzerland
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Carsten Alexander Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | - Daniela Egli-Spichtig
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Centre of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| |
Collapse
|
5
|
Magagnoli L, Cozzolino M, Galassi A. The open system of FGF-23 at the crossroad between additional P-lowering therapy, anemia and inflammation: how to deal with the intact and the C-terminal assays? Clin Kidney J 2023; 16:1543-1549. [PMID: 37779858 PMCID: PMC10539210 DOI: 10.1093/ckj/sfad144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 10/03/2023] Open
Abstract
Fibroblast growth factor 23 (FGF-23) has been associated with increased cardiovascular risk and poor survival in dialysis patients. It is well established that FGF-23 synthesis is directly induced by positive phosphate (P) balance. On the other hand, P-lowering treatments such as nutritional P restriction, P binders and dialysis are capable of reducing FGF-23 levels. However, there are many uncertainties regarding the possibility of adopting FGF-23 to guide the clinical decision-making process in the context of chronic kidney disease-mineral bone disorder (CKD-MBD). Furthermore, the best assay to adopt for measurement of FGF-23 levels (namely the intact vs the C-terminal one) remains to be determined, especially in conditions capable of altering the synthesis as well as the cleavage of the intact and biologically active molecule, as occurs in the presence of CKD and its complications. This Editorial discusses the main insights provided by the post hoc analysis of the NOPHOS trial, with particular attention given to evidence-based peculiarities of the intact and the C-terminal assays available for measuring FGF-23 levels, especially in patients receiving additive P-lowering therapy in the presence of inflammation, anemia and iron deficiency.
Collapse
Affiliation(s)
- Lorenza Magagnoli
- University of Milan, Department of Health Sciences, Milano, Italy
- ASST Santi Paolo e Carlo, Renal Division, Milano, Italy
| | - Mario Cozzolino
- University of Milan, Department of Health Sciences, Milano, Italy
- ASST Santi Paolo e Carlo, Renal Division, Milano, Italy
| | - Andrea Galassi
- University of Milan, Department of Health Sciences, Milano, Italy
- ASST Santi Paolo e Carlo, Renal Division, Milano, Italy
| |
Collapse
|