1
|
Vivarelli M, Barratt J, Beck LH, Fakhouri F, Gale DP, Goicoechea de Jorge E, Mosca M, Noris M, Pickering MC, Susztak K, Thurman JM, Cheung M, King JM, Jadoul M, Winkelmayer WC, Smith RJH. The role of complement in kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2024; 106:369-391. [PMID: 38844295 DOI: 10.1016/j.kint.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Uncontrolled complement activation can cause or contribute to glomerular injury in multiple kidney diseases. Although complement activation plays a causal role in atypical hemolytic uremic syndrome and C3 glomerulopathy, over the past decade, a rapidly accumulating body of evidence has shown a role for complement activation in multiple other kidney diseases, including diabetic nephropathy and several glomerulonephritides. The number of available complement inhibitor therapies has also increased during the same period. In 2022, Kidney Diseases: Improving Global Outcomes (KDIGO) convened a Controversies Conference, "The Role of Complement in Kidney Disease," to address the expanding role of complement dysregulation in the pathophysiology, diagnosis, and management of various glomerular diseases, diabetic nephropathy, and other forms of hemolytic uremic syndrome. Conference participants reviewed the evidence for complement playing a primary causal or secondary role in progression for several disease states and considered how evidence of complement involvement might inform management. Participating patients with various complement-mediated diseases and caregivers described concerns related to life planning, implications surrounding genetic testing, and the need for inclusive implementation of effective novel therapies into clinical practice. The value of biomarkers in monitoring disease course and the role of the glomerular microenvironment in complement response were examined, and key gaps in knowledge and research priorities were identified.
Collapse
Affiliation(s)
- Marina Vivarelli
- Laboratory of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Laurence H Beck
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Fadi Fakhouri
- Department of Nephrology, Centre Hospitalier Universitaire, Nantes, France; INSERM UMR S1064, Nantes, France
| | - Daniel P Gale
- Centre for Kidney and Bladder Health, University College London, UK
| | - Elena Goicoechea de Jorge
- Department of Immunology, Ophthalmology and ORL, Complutense University, Madrid, Spain; Area of Chronic Diseases and Transplantation, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Marta Mosca
- Department of Clinical and Experimental Medicine-Rheumatology Unit, University of Pisa, Pisa, Italy
| | - Marina Noris
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College, Hammersmith Campus, London, UK
| | - Katalin Susztak
- Division of Nephrology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua M Thurman
- Division of Nephrology and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Michel Jadoul
- Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Wolfgang C Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Department of Pediatrics, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
2
|
Lomax-Browne HJ, Medjeral-Thomas NR, Barbour SJ, Gisby J, Han H, Bomback AS, Fervenza FC, Cairns TH, Szydlo R, Tan SJ, Marks SD, Waters AM, Appel GB, D'Agati VD, Sethi S, Nast CC, Bajema I, Alpers CE, Fogo AB, Licht C, Fakhouri F, Cattran DC, Peters JE, Cook HT, Pickering MC. Association of Histologic Parameters with Outcome in C3 Glomerulopathy and Idiopathic Immunoglobulin-Associated Membranoproliferative Glomerulonephritis. Clin J Am Soc Nephrol 2022; 17:994-1007. [PMID: 35777834 PMCID: PMC9269630 DOI: 10.2215/cjn.16801221] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/16/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES C3 glomerulopathy and idiopathic Ig-associated membranoproliferative GN are kidney diseases characterized by abnormal glomerular complement C3 deposition. These conditions are heterogeneous in outcome, but approximately 50% of patients develop kidney failure within 10 years. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS To improve identification of patients with poor prognosis, we performed a detailed analysis of percutaneous kidney biopsies in a large cohort of patients. Using a validated histologic scoring system, we analyzed 156 native diagnostic kidney biopsies from a retrospective cohort of 123 patients with C3 glomerulopathy and 33 patients with Ig-associated membranoproliferative GN. We used linear regression, survival analysis, and Cox proportional hazards models to assess the relationship between histologic and clinical parameters with outcome. RESULTS Frequent biopsy features were mesangial expansion and hypercellularity, glomerular basement membrane double contours, and endocapillary hypercellularity. Multivariable analysis showed negative associations between eGFR and crescents, interstitial inflammation, and interstitial fibrosis/tubular atrophy. Proteinuria positively associated with endocapillary hypercellularity and glomerular basement membrane double contours. Analysis of second native biopsies did not demonstrate associations between immunosuppression treatment and improvement in histology. Using a composite outcome, risk of progression to kidney failure associated with eGFR and proteinuria at the time of biopsy, cellular/fibrocellular crescents, segmental sclerosis, and interstitial fibrosis/tubular atrophy scores. CONCLUSIONS Our detailed assessment of kidney biopsy data indicated that cellular/fibrocellular crescents and interstitial fibrosis/tubular atrophy scores were significant determinants of deterioration in kidney function.
Collapse
Affiliation(s)
- Hannah J Lomax-Browne
- Department for Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Nicholas R Medjeral-Thomas
- Department for Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Sean J Barbour
- Division of Nephrology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jack Gisby
- Department for Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Heedeok Han
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York
| | - Andrew S Bomback
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York
| | | | - Thomas H Cairns
- West London Renal and Transplant Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Richard Szydlo
- Department for Immunology and Inflammation, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Stephen D Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Aoife M Waters
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Gerald B Appel
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Cynthia C Nast
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ingeborg Bajema
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Charles E Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fadi Fakhouri
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniel C Cattran
- Toronto General Research Institute, Division of Nephrology, University of Toronto, Toronto, Ontario, Canada
| | - James E Peters
- Department for Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - H Terence Cook
- Department for Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Matthew C Pickering
- Department for Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Wong EK, Marchbank KJ, Lomax-Browne H, Pappworth IY, Denton H, Cooke K, Ward S, McLoughlin AC, Richardson G, Wilson V, Harris CL, Morgan BP, Hakobyan S, McAlinden P, Gale DP, Maxwell H, Christian M, Malcomson R, Goodship TH, Marks SD, Pickering MC, Kavanagh D, Cook HT, Johnson SA. C3 Glomerulopathy and Related Disorders in Children: Etiology-Phenotype Correlation and Outcomes. Clin J Am Soc Nephrol 2021; 16:1639-1651. [PMID: 34551983 PMCID: PMC8729419 DOI: 10.2215/cjn.00320121] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Membranoproliferative GN and C3 glomerulopathy are rare and overlapping disorders associated with dysregulation of the alternative complement pathway. Specific etiologic data for pediatric membranoproliferative GN/C3 glomerulopathy are lacking, and outcome data are based on retrospective studies without etiologic data. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A total of 80 prevalent pediatric patients with membranoproliferative GN/C3 glomerulopathy underwent detailed phenotyping and long-term follow-up within the National Registry of Rare Kidney Diseases (RaDaR). Risk factors for kidney survival were determined using a Cox proportional hazards model. Kidney and transplant graft survival was determined using the Kaplan-Meier method. RESULTS Central histology review determined 39 patients with C3 glomerulopathy, 31 with immune-complex membranoproliferative GN, and ten with immune-complex GN. Patients were aged 2-15 (median, 9; interquartile range, 7-11) years. Median complement C3 and C4 levels were 0.31 g/L and 0.14 g/L, respectively; acquired (anticomplement autoantibodies) or genetic alternative pathway abnormalities were detected in 46% and 9% of patients, respectively, across all groups, including those with immune-complex GN. Median follow-up was 5.18 (interquartile range, 2.13-8.08) years. Eleven patients (14%) progressed to kidney failure, with nine transplants performed in eight patients, two of which failed due to recurrent disease. Presence of >50% crescents on the initial biopsy specimen was the sole variable associated with kidney failure in multivariable analysis (hazard ratio, 6.2; 95% confidence interval, 1.05 to 36.6; P<0.05). Three distinct C3 glomerulopathy prognostic groups were identified according to presenting eGFR and >50% crescents on the initial biopsy specimen. CONCLUSIONS Crescentic disease was a key risk factor associated with kidney failure in a national cohort of pediatric patients with membranoproliferative GN/C3 glomerulopathy and immune-complex GN. Presenting eGFR and crescentic disease help define prognostic groups in pediatric C3 glomerulopathy. Acquired abnormalities of the alternative pathway were commonly identified but not a risk factor for kidney failure.
Collapse
Affiliation(s)
- Edwin K.S. Wong
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Renal Medicine, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Kevin J. Marchbank
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hannah Lomax-Browne
- Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - Isabel Y. Pappworth
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Harriet Denton
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Katie Cooke
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sophie Ward
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy-Claire McLoughlin
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Grant Richardson
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Valerie Wilson
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Claire L. Harris
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - B. Paul Morgan
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Svetlana Hakobyan
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Paul McAlinden
- Research and Development Department, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London, United Kingdom
| | | | - Martin Christian
- Nottingham Children’s Hospital, Queens Medical Centre, Nottingham, United Kingdom
| | - Roger Malcomson
- Histopathology Department, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Timothy H.J. Goodship
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Stephen D. Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Matthew C. Pickering
- Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - David Kavanagh
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Renal Medicine, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - H. Terence Cook
- Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - Sally A. Johnson
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Nephrology, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Kumar A, Nada R, Ramachandran R, Rawat A, Tiewsoh K, Das R, Rayat CS, Gupta KL, Vasishta RK. Outcome of C3 glomerulopathy patients: largest single-centre experience from South Asia. J Nephrol 2019; 33:539-550. [PMID: 31820418 DOI: 10.1007/s40620-019-00672-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND C3 glomerulopathy (C3G) is related to dysfunction of alternative complement pathway (ACP) because of its hyperactivation. Triggering factors and genetic profile are likely to be different in developing countries as compared to the Western world. Data regarding C3G from South Asian is scanty. STUDY DESIGN In the present study, 115 patients of C3G from 2012 to 2017 were analyzed. Clinical details were reviewed; serological levels of C3, C4, complement factor H or B and autoantibody testing was done by nephelometry/ELISA. Limited genetics workup for CFH and CFHR5 genes was done. RESULTS The prevalence of C3G was 1.52%. There was no difference in demographic and histopathologic profiles of C3G patients. Majority of patients had low functional assay and C3 levels. C3 nephritic factor was present in 47.5% of DDD and 38.6% of C3GN. Autoantibodies to CFH were present more often in the patients of C3GN (29.5%) than DDD (12.5%). Autoantibodies to CFB were equally common in both groups. Past history of infections was present in one-third patients and monoclonal paraproteins were present only in two patients. No pathogenic variants were noted in CFH/CFHR5 gene. On follow-up (3.2 + 1.6 years), complete and partial remission was achieved in one-fourth patients and 26% had resistance disease. About 40% progressed to ESRD and 18 underwent renal transplantation of which nine had a post-transplant recurrence. CONCLUSIONS Indian cohort had some differences in the immunological and genetic profile when compared to the Western literature; most significant was the absence of monoclonal immunoglobulins as a trigger for C3G.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Raja Ramachandran
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Rawat
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Karalanglin Tiewsoh
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Reena Das
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Charan Singh Rayat
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Krishan Lal Gupta
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rakesh Kumar Vasishta
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|