1
|
Lind CM, Agugliaro J, Ortega J, Palmisano JN, Lorch JM, Truong TB, Farrell TM. Glucocorticoid and glycemic responses to immune challenge in a viviparous snake afflicted with an emerging mycosis. J Exp Biol 2024; 227:jeb247962. [PMID: 39422151 DOI: 10.1242/jeb.247962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Disease may be both a cause and a consequence of stress, and physiological responses to infectious disease may involve stress coping mechanisms that have important fitness consequences. For example, glucocorticoid and glycemic responses may affect host fitness by altering resource allocation and use in hosts, and these responses may be affected by competing stressors. To better understand the factors that affect host responses to infection, we challenged the immune system of field-acclimatized pygmy rattlesnakes, Sistrurus miliarius, with a sterile antigen, lipopolysaccharide (LPS), and measured the glucocorticoid and glycemic response in healthy non-reproductive snakes, snakes afflicted with an emerging mycosis (ophidiomycosis) and pregnant snakes. We hypothesized that LPS challenge would result in a glucocorticoid and glycemic response typical of the vertebrate acute phase response (APR), and therefore predicted that LPS challenge would result in an acute increase in plasma corticosterone (CORT) and a decline in plasma glucose in all individuals. Additionally, we hypothesized that the APR would be attenuated in individuals simultaneously coping with additional challenges to homeostasis (i.e. disease or reproduction). As predicted, the immune challenge elicited an acute increase in plasma CORT and a decrease in plasma glucose. Snakes coping with ophidiomycosis and pregnant snakes were able to mount a robust glucocorticoid and hypoglycemic response to LPS challenge, which was contrary to our hypothesis. Our findings clarify directions of causality linking infection, glucocorticoids and glucose, and emphasize the importance of future research examining the fitness consequences of interactions between stress and disease in wildlife threatened by emerging pathogens.
Collapse
Affiliation(s)
- Craig M Lind
- Stockton University, 101 Vera King Farris Dr, Galloway, NJ 08205, USA
| | - Joseph Agugliaro
- Fairleigh Dickinson University, 285 Madison Avenue, Madison, NJ 07940, USA
| | - Jason Ortega
- University of Arkansas - Fort Smith, 5210 Grand Ave., Fort Smith, AR 72913, USA
| | - Jenna N Palmisano
- University of Central Florida, Department of Biology, 4110 Libra Drive, Orlando, FL 32816, USA
| | - Jeffrey M Lorch
- US Geological Survey - National Wildlife Health Center, Madison, WI 53711, USA
| | - Tran B Truong
- Stockton University, 101 Vera King Farris Dr, Galloway, NJ 08205, USA
| | | |
Collapse
|
2
|
Claunch NM, Downs CJ, Schoenle LA, Oakey SJ, Ely T, Romagosa C, Briggs CW. Snap-freezing in the Field: Effect of Sample Holding Time on Performance of Bactericidal Assays. Integr Comp Biol 2022; 62:1693-1699. [PMID: 35294024 PMCID: PMC9801962 DOI: 10.1093/icb/icac007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/05/2023] Open
Abstract
Comparative analyses in biology rely on the quality of available data. Methodological differences among studies may introduce variation in results that obscure patterns. In the field of eco-immunology, functional immune assays such as antimicrobial capacity assays are widely used for among-species applications. Sample storage time and animal handling time can influence assay results in some species, but how sample holding time prior to freezing influences assay results is unknown. Sample holding time can vary widely in field studies on wild animals, prompting the need to understand the implications of such variation on assay results. We investigated the hypothesis that sample holding time prior to freezing influences assay results in six species (Leiocephalus carinatus, Iguana iguana, Loxodonta africana, Ceratotherium simum, Columba livia, and Buteo swainsoni) by comparing antibacterial capacity of serum with varying processing times prior to snap-freezing. Blood was collected once from each individual and aliquots were placed on ice and assigned different holding times (0, 30, 60, 180, and 240 min), after which each sample was centrifuged, then serum was separated and snap-frozen on dry ice and stored at -80ºC for 60 days prior to assaying. For each aliquot, we conducted antibacterial capacity assays with serial dilutions of serum inoculated with E. coli and extracted the dilution at 50% antibacterial capacity for analysis. We found a decrease in antibacterial capacity with increased holding time in one of the six species tested (B. swainsoni), driven in part by complete loss of antibacterial capacity in some individuals at the 240-min time point. While the majority of species' antibacterial capacity were not affected, our results demonstrate the need to conduct pilot assays spanning the anticipated variation in sample holding times to develop appropriate field protocols.
Collapse
Affiliation(s)
- Natalie M Claunch
- School of Natural Resources and Environment, University of Florida, Gainesville, FL 32601, USA
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Cynthia J Downs
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Laura A Schoenle
- Office of Undergraduate Biology, Cornell University, Ithaca, NY 14850, USA
| | - Samantha J Oakey
- College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Teresa Ely
- Golden Gate Raptor Observatory, Golden Gate National Parks Conservancy, Sausalito, CA 94965, USA
| | - Christina Romagosa
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
3
|
Boardman L, Lockwood JL, Angilletta MJ, Krause JS, Lau JA, Loik ME, Simberloff D, Thawley CJ, Meyerson LA. The Future of Invasion Science Needs Physiology. Bioscience 2022. [DOI: 10.1093/biosci/biac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Incorporating physiology into models of population dynamics will improve our understanding of how and why invasions succeed and cause ecological impacts, whereas others fail or remain innocuous. Targeting both organismal physiologists and invasion scientists, we detail how physiological processes affect every invasion stage, for both plants and animals, and how physiological data can be better used for studying the spatial dynamics and ecological effects of invasive species. We suggest six steps to quantify the physiological functions related to demography of nonnative species: justifying physiological traits of interest, determining ecologically appropriate time frames, identifying relevant abiotic variables, designing experimental treatments that capture covariation between abiotic variables, measuring physiological responses to these abiotic variables, and fitting statistical models to the data. We also provide brief guidance on approaches to modeling invasions. Finally, we emphasize the benefits of integrating research between communities of physiologists and invasion scientists.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Biological Sciences and with the Center for Biodiversity Research, University of Memphis , Memphis, Tennessee, United States
| | - Julie L Lockwood
- Department of Ecology, Evolution, and Natural Resources at Rutgers University , New Brunswick, New Jersey, United States
| | - Michael J Angilletta
- School of Life Sciences and with the Center for Learning Innovation in Science, Arizona State University , Tempe, Arizona, United States
| | - Jesse S Krause
- Department of Biology, University of Nevada , Reno, Nevada, United States
| | - Jennifer A Lau
- Department of Biology, Indiana University , Bloomington, Indian, United States
| | - Michael E Loik
- Environmental Studies Department, University of California , Santa Cruz, Santa Cruz, California, United States
| | - Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee , Knoxville, Tennessee, United States
| | - Christopher J Thawley
- Department of Biological Sciences, University of Rhode Island , Kingston, Rhode Island, United States
| | - Laura A Meyerson
- Department of Natural Resources Science, University of Rhode Island , Kingston, Rhode Island, United States
| |
Collapse
|
4
|
Claunch NM, Bartoszek IA, Tillis S, Stacy NI, Ossiboff RJ, Oakey S, Schoenle LA, Wellehan JFX, Romagosa CM. Physiological effects of capture and short-term captivity in an invasive snake species, the Burmese python (Python bivittatus) in Florida. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111162. [PMID: 35149178 DOI: 10.1016/j.cbpa.2022.111162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
It is important to evaluate the role of captivity as a potential stressor. An understanding of stress responses to capture and transition to captivity may inform the limitations of laboratory studies on wild animals, aid in understanding the consequences of introducing animals into captive environments, and help predict which species may be successful invasives. We investigated physiological effects of captivity by comparing at-capture blood variables in wild Burmese pythons (Python bivittatus) in Florida to pythons recently brought into captivity (1-109 days). We conducted an acute restraint test by collecting samples at baseline (immediately at handling) and one hour post-restraint across wild field-sampled (n = 19) and recently-captive (n = 33) pythons to evaluate fluctuations in plasma corticosterone, bacterial killing ability, antibody response, leukogram, and serpentovirus infection. We observed higher baseline plasma corticosterone and monocytes in recently captive compared to wild snakes, which both subsided in snakes held for a longer time in captivity, and a mild decrease in lymphocytes in the middle of the captivity period. Functional immunity and viral infection were not affected by captivity, and pythons maintained restraint-induced responses in corticosterone, heterophil to lymphocyte ratio, and monocyte counts throughout captivity. Prevalence for serpentovirus was 50%, though infection status was related to sampling date rather than captivity, indicating that viral infection may be seasonal. The history of Burmese python as a common captive animal for research and pet trade, as well as its general resilience to effects of capture and short-term captivity, may contribute to its invasion success in Florida.
Collapse
Affiliation(s)
- Natalie M Claunch
- School of Natural Resources and Environment, University of Florida, USA.
| | | | - Steve Tillis
- College of Veterinary Medicine, University of Florida, USA
| | - Nicole I Stacy
- College of Veterinary Medicine, University of Florida, USA
| | | | - Samantha Oakey
- College of Veterinary Medicine, University of Georgia, USA
| | | | | | | |
Collapse
|