1
|
Richard CMC, Dejoie E, Wiegand C, Gouesbet G, Colinet H, Balzani P, Siaussat D, Renault D. Plastic pollution in terrestrial ecosystems: Current knowledge on impacts of micro and nano fragments on invertebrates. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135299. [PMID: 39067293 DOI: 10.1016/j.jhazmat.2024.135299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
The increasing accumulation of small plastic particles, in particular microplastics (>1 µm to 5 mm) and nanoplastics (< 1 µm), in the environment is a hot topic in our rapidly changing world. Recently, studies were initiated to better understand the behavior of micro- and nanoplastics (MNP) within complex matrices like soil, as well as their characterization, incorporation and potential toxicity to terrestrial biota. However, there remains significant knowledge gaps in our understanding of the wide-extent impacts of MNP on terrestrial invertebrates. We first summarized facts on global plastic pollution and the generation of MNP. Then, we focused on compiling the existing literature examining the consequences of MNP exposure in terrestrial invertebrates. The diversity of investigated biological endpoints (from molecular to individual levels) were compiled to get a better comprehension of the effects of MNP according to different factors such as the shape, the polymer type, the organism, the concentration and the exposure duration. The sublethal effects of MNP are acknowledged in the literature, yet no general conclusion was drawn as their impacts are highly dependent on their characteristic and experimental design. Finally, the synthesis highlighted some research gaps and remediation strategies, as well as a protocol to standardize ecotoxicological studies.
Collapse
Affiliation(s)
- Chloé M C Richard
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Elsa Dejoie
- Groupe de Recherche en Écologie de la MRC Abitibi, Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Amos, Québec J9T 2L8, Canada
| | - Claudia Wiegand
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Gwenola Gouesbet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, F-75005 Paris, France
| | - David Renault
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, Rennes, France.
| |
Collapse
|
2
|
Dar MA, Xie R, Zabed HM, Pawar KD, Dhole NP, Sun J. Current paradigms and future challenges in harnessing gut bacterial symbionts of insects for biodegradation of plastic wastes. INSECT SCIENCE 2024. [PMID: 38990171 DOI: 10.1111/1744-7917.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
The ubiquitous incorporation of plastics into daily life, coupled with inefficient recycling practices, has resulted in the accumulation of millions of metric tons of plastic waste, that poses a serious threat to the Earth's sustainability. Plastic pollution, a global problem, disrupts the ecological balance and endangers various life forms. Efforts to combat plastic pollution are underway, with a promising avenue being biological degradation facilitated by certain insects and their symbiotic gut microorganisms, particularly bacteria. This review consolidates existing knowledge on plastic degradation by insects and their influence on gut microbiota. Additionally, it delves into the potential mechanisms employed by insects in symbiosis with gut bacteria, exploring the bioconversion of waste plastics into value-added biodegradable polymers through mineralization. These insights hold significant promise for the bio-upcycling of plastic waste, opening new horizons for future biomanufacturing of high-value chemicals from plastic-derived compounds. Finally, we weigh the pros and cons of future research endeavors related to the bioprospection of plastic-degrading bacteria from underexplored insect species. We also underscore the importance of bioengineering depolymerases with novel characteristics, aiming for their application in the remediation and valorization of waste plastics.
Collapse
Affiliation(s)
- Mudasir A Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, India
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra, India
| | - Neeraja P Dhole
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, India
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Ritchie MW, Provencher JF, Allison JE, Muzzatti MJ, MacMillan HA. The digestive system of a cricket pulverizes polyethylene microplastics down to the nanoplastic scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123168. [PMID: 38104765 DOI: 10.1016/j.envpol.2023.123168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Microplastics (MPs; <5 mm) are a growing concern and a poorly understood threat to biota. We used a generalist insect (a cricket; Gryllodes sigillatus) to examine whether individuals would ingest and physically degrade MPs in their food. We fed crickets a range of concentrations (0, 2.5, 5, and 10% w/w) of fluorescent polyethylene MPs mixed into a standard diet and dissected the gut regions to isolate the MPs within. Comparing plastic content and fragment size within gut regions, we sought to identify whether and where crickets can fragment ingested MP particles. Given the digestive tract morphology of this species, we expected that the crickets would both ingest and egest the MPs. We also predicted that the MPs would be fragmented into smaller pieces during this digestive process. We found that G. sigillatus egested much smaller pieces than they ingested, and this fragmentation occurs early in the digestive process of this insect. We found this for both sexes as well as across the range of concentrations of MPs. The degree of plastic breakdown relative to plastic feeding time suggests that the ability to fragment MPs is intrinsic and not altered by how much time crickets have spent eating the plastics. The amount of plastics found in each region of the gut in relation to feeding time also suggests that this size and shape of PE microplastic does not cause any physical blockage in the gut. This lack of evidence for blockage is likely due to plastic breakdown. We found a ∼1000-fold reduction in plastic size occurs during passage through the digestive system, yielding particles very near nanoplastics (NPs; <1 μm), and likely smaller, that are then excreted back into the environment. These findings suggest that generalist insects can act as agents of plastic transformation in their environment if/when encountering MPs.
Collapse
Affiliation(s)
- Marshall W Ritchie
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
| | - Jennifer F Provencher
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada; National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Jane E Allison
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Matthew J Muzzatti
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|