1
|
Lum AM, Miller SN, Clauss TM, Anderson CE. Physiologic responses of Cownose Rays following freshwater dips for treatment of capsalid monogeneans. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:128-135. [PMID: 38053477 DOI: 10.1002/aah.10210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE Two Cownose Rays Rhinoptera bonasus were presented for management of a severe capsalid monogenean infection Benedeniella posterocolpa in a mixed species habitat at an aquarium. METHODS A series of freshwater (FW) dips were elected to mitigate parasite resistance to praziquantel due to the endemic monogenean population in the system. A pretreatment blood sample was opportunistically obtained, and subsequent samples were processed due to development of clinical signs. RESULT While the first FW dip was tolerated well and did not induce abnormal behavior, the second led to one individual presenting with tachypnea, pallor, and lethargy. Marked hematological abnormalities requiring medical intervention occurred in both individuals after the second dip. After treatment with elasmobranch Ringer's fluid therapy, sodium bicarbonate, prednisolone acetate, and vitamin E/selenium in the more severely affected ray, and elasmobranch Ringer's alone in the second ray, hematologic derangements and symptoms resolved. Hemoconcentration, hyperproteinemia, hyperlactatemia, and hyperglycemia were attributed to a stress response. A selective loss of urea after exposure to FW resulted in decreased plasma osmolality. CONCLUSION Given the severity of the stress response and associated complications observed, hyposalinity treatments should be utilized with caution in this species. If this therapy is employed, the clinician is advised to be prepared to administer supportive care coinciding with the FW dip if necessary.
Collapse
Affiliation(s)
- Amber M Lum
- School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | | | | | | |
Collapse
|
2
|
Finotto L, Walker TI, Reina RD. The effect of fishing-capture stress on the oxygen uptake rate and swimming activity of the holocephalan Callorhinchus milii. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:203-214. [PMID: 38158379 DOI: 10.1002/jez.2775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Overfishing, capture mortality, and consequences following the release of surviving animals represent severe threats to chondrichthyans. Although holocephalans are common bycaught and discarded species, other than postrelease mortality, little is known of fishing capture stress impacts. The stress response elicited after capture, essential to increase survival chances, is energetically demanding and affects the amount of energy available for other biological activities, with potential long-term impairments. We measured the effect of 30-min simulated gillnet capture on oxygen uptake rate (ṀO2 ), a proxy for metabolic rate and energy use, on recovery pattern, and on swimming activity of elephant fish (Callorhinchus milii). Immediately after simulated capture, Active and Inactive ṀO2 , measured during swimming and resting periods, respectively, were 27.5% and 43.1% lower than precapture values. This metabolic decline is likely an adaptation for reducing the energy allocated to non-essential activities, thus preserving it to sustain the stress response and processes essential for immediate survival. Supporting this, after gillnet capture, animals decreased their swimming time by 26.6%, probably due to a reduction in the energy allocated to movement. After 7 days, swimming activity and both Inactive ṀO2 and Active ṀO2 returned to precapture values. Although metabolic decline may enhance survival chances, the associated decreased swimming activity might increase predation risk and slow the physiological recovery after a fishing event. Moreover, some of the activities involved in Inactive ṀO2 are fundamental for life maintenance and therefore its depression after a capture event might have long-term repercussions for life sustenance and health.
Collapse
Affiliation(s)
- Licia Finotto
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Terence I Walker
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard D Reina
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Bielmyer-Fraser GK, Franks B, Somerville R, Hueter R, Newton AL, Fischer C. Tissue metal concentrations and antioxidant enzyme activity in western north Atlantic white sharks (Carcharodon carcharias). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106641. [PMID: 37506482 DOI: 10.1016/j.aquatox.2023.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Anthropogenic practices have increased metal contamination in marine ecosystems. Most sharks have long lifespans, occupy an important ecological position at the top of marine food webs, and can accumulate metals. However, reference levels of metal contaminants in the tissues of sharks, particularly, apex predators such as the white shark (Carcharodon carcharias), are lacking. In this study, concentrations of copper (Cu), cadmium (Cd), nickel (Ni), lead (Pb), silver (Ag), and zinc (Zn) were measured in the muscle tissue of white (n = 42) and tiger (Galeocerdo cuvier; n = 3) sharks. Metal exposure in various species, including sharks, has been correlated with increased oxidative stress. Therefore, the main objectives of this study were to assess metal accumulation and antioxidant enzyme activity (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) in the muscle tissue of the population of white sharks and tiger sharks inhabiting the Western North Atlantic. The measured parameters were qualitatively compared between species. The small sample size of tiger sharks (collected from only one site) limited statistical analyses, therefore, white sharks were the primary focus of this study. Differences in tissue metal (Cu, Cd, Ni, and Zn) concentrations and antioxidant enzyme activities were detected based on collection site, with significant positive correlations between Cd and enzymes, SOD and CAT, and Zn and enzymes, SOD and GPx in C. carcharias. Differences in Ni concentration were detected based on sex, with females having higher Ni levels. Additionally, plasma osmolality was not correlated with tissue metal concentrations; however, osmolality decreased with increasing length in C. carcharias. This study is the first to report baseline levels of Cu, Zn, Cd, Ni, Ag, and Pb in muscle of North Atlantic white sharks and provides new insights into oxidative stress responses of these sensitive species to metal contaminants.
Collapse
Affiliation(s)
| | - Bryan Franks
- Jacksonville University, 2800 University Blvd. North, Jacksonville, FL 32211, USA
| | - Rachel Somerville
- Jacksonville University, 2800 University Blvd. North, Jacksonville, FL 32211, USA
| | | | | | | |
Collapse
|
4
|
Finotto L, Walker TI, Reina RD. Influence of female reproductive state and of fishing-capture stress on the oxygen uptake rate of a viviparous elasmobranch. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:357-368. [PMID: 36690919 DOI: 10.1002/jez.2682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
In animals discarded after a fishing capture event, the elicited stress response necessary to ensure their survival is energetically costly. This energy is diverted from other important biological activities, including growth and reproduction, possibly impairing them. Given that elasmobranchs are among the most threatened vertebrate groups, estimating capture-induced energetic changes and comparing these variations to the energy requirements of pregnancy maintenance is necessary. In pregnant southern fiddler rays (Trygonorrhina dumerilii), we measured changes in oxygen uptake rate (ṀO2 ; a proxy for metabolic rate and energy usage) in response to trawling simulation and air exposure, and estimated the oxygen requirements of sustaining late-term pregnancy and embryos. ṀO2 was measured in pregnant females, before (prestress ṀO2 ) and after trawling simulation (after-capture ṀO2 ), and again after females gave birth (postpartum ṀO2 ). After-capture ṀO2 was 31.7% lower than ṀO2 measured in minimally stressed females, suggesting a reduction in energy expenditure. This reduction is likely triggered by an initially excessive energetic investment in the stress response, and is aimed at shutting down nonessential activities to redirect energy to processes fundamental for survival. Prestress ṀO2 was 78.5% higher than postpartum ṀO2 . Capture simulation decreased ṀO2 to values similar to those observed postpartum, suggesting a capture-induced reduction in oxygen and energy allocation to pregnancy and embryonic respiration, which could be associated with reproductive impairments. These data, by better estimating the impact of capture and discard on energetic requirements and reproductive fitness, may support the introduction of area and/or seasonal closures to fishing.
Collapse
Affiliation(s)
- Licia Finotto
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Terence I Walker
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard D Reina
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Morash AJ, Lyle JM, Currie S, Bell JD, Stehfest KM, Semmens JM. The endemic and endangered Maugean Skate ( Zearaja maugeana) exhibits short-term severe hypoxia tolerance. CONSERVATION PHYSIOLOGY 2020; 8:coz105. [PMID: 31976076 PMCID: PMC6969080 DOI: 10.1093/conphys/coz105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
The endangered and range-restricted Maugean skate (Zearaja maugeana) is subjected to large environmental variability coupled with anthropogenic stressors in its endemic habitat, Macquarie Harbour, Tasmania. However, little is known about the basic biology/physiology of this skate, or how it may respond to future environmental challenges predicted from climate change and/or increases in human activities such as aquaculture. These skate live at a preferred depth of 5-15 m where the dissolved oxygen (DO) levels are moderate (~55% air saturation), but can be found in areas of the Harbour where DO can range from 100% saturation to anoxia. Given that the water at their preferred depth is already hypoxic, we sought to investigate their response to further decreases in DO that may arise from potential increases in anthropogenic stress. We measured oxygen consumption, haematological parameters, tissue-enzyme capacity and heat shock protein (HSP) levels in skate exposed to 55% dissolved O2 saturation (control) and 20% dissolved O2 saturation (hypoxic) for 48 h. We conclude that the Maugean skate appears to be an oxyconformer, with a decrease in the rate of O2 consumption with increasing hypoxia. Increases in blood glucose and lactate at 20% O2 suggest that skate are relying more on anaerobic metabolism to tolerate periods of very low oxygen. Despite these metabolic shifts, there was no difference in HSP70 levels between groups, suggesting this short-term exposure did not elicit a cellular stress response. The metabolic state of the skate suggests that low oxygen stress for longer periods of time (i.e. >48 h) may not be tolerable and could potentially result in loss of habitat or shifts in their preferred habitat. Given its endemic distribution and limited life-history information, it will be critical to understand its tolerance to environmental challenges to create robust conservation strategies.
Collapse
Affiliation(s)
- Andrea J Morash
- Institute for Marine and Antarctic Studies, University of Tasmania, 15-21 Nubeena Crescent, Taroona, Tasmania, Australia 7053, Australia
| | - Jeremy M Lyle
- Fisheries and Aquaculture Centre, Institute of Marine and Antarctic Studies, University of Tasmania, 15-21 Nubeena Crescent, Taroona, Tasmania, Australia 7053, Australia
| | - Suzanne Currie
- Department of Biology, Acadia University, 15 University Avenue PO Box 107 Wolfville, Nova Scotia, Canada B4P 2R6, Canada
| | - Justin D Bell
- Fisheries and Aquaculture Centre, Institute of Marine and Antarctic Studies, University of Tasmania, 15-21 Nubeena Crescent, Taroona, Tasmania, Australia 7053, Australia
| | - Kilian M Stehfest
- Fisheries and Aquaculture Centre, Institute of Marine and Antarctic Studies, University of Tasmania, 15-21 Nubeena Crescent, Taroona, Tasmania, Australia 7053, Australia
| | - Jayson M Semmens
- Fisheries and Aquaculture Centre, Institute of Marine and Antarctic Studies, University of Tasmania, 15-21 Nubeena Crescent, Taroona, Tasmania, Australia 7053, Australia
| |
Collapse
|
6
|
Schwieterman GD, Bouyoucos IA, Potgieter K, Simpfendorfer CA, Brill RW, Rummer JL. Analysing tropical elasmobranch blood samples in the field: blood stability during storage and validation of the HemoCue® haemoglobin analyser. CONSERVATION PHYSIOLOGY 2019; 7:coz081. [PMID: 31803471 PMCID: PMC6883209 DOI: 10.1093/conphys/coz081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Blood samples collected from wild-caught fishes can provide important information regarding the effects of capture (and thus post-release survival) as well as other stressors. Unfortunately, blood samples often cannot be analysed immediately upon sampling, and blood parameters (e.g. blood oxygen levels and acid-base parameters) are known to change with storage duration due to the metabolic activity of the red blood cells. We obtained blood samples from both untreated and stressed individuals of both blacktip reef shark (Carcharhinus melanopterus) and sicklefin lemon shark (Negaprion acutidens) to determine the effects of storage duration on blood pH, haematocrit and haemoglobin concentration ([Hb]). We found no significant effects after storage on ice for up to 180 minutes. Moreover, to validate the usability of a HemoCue haemoglobin analyser (a point-of-care device), we compared data from this device to [Hb] determined using the cyanomethaemoglobin method with blood samples from 10 individuals from each of the aforementioned species as well as epaulette shark (Hemiscyllium ocellatum). Values from the HemoCue consistently overestimated [Hb], and we therefore developed the necessary correction equations. The correction equations were not statistically different among the three elasmobranch species within the biologically relevant range but did differ from published corrections developed using blood from temperate teleost fishes. Although the HemoCue is useful in field situations, development of species-specific calibration equations may be necessary to ensure the reliability of inter-species comparisons of blood [Hb]. Together, these data should increase confidence in haematological stress indicators in elasmobranch fishes, measurements of which are critical for understanding the impact of anthropogenic stressors on these ecologically important species.
Collapse
Affiliation(s)
- Gail D Schwieterman
- Department of Fisheries Science, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, Perpignan Cedex 66860, France
| | - Kristy Potgieter
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Richard W Brill
- Department of Fisheries Science, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
7
|
Bouyoucos IA, Talwar BS, Brooks EJ, Brownscombe JW, Cooke SJ, Suski CD, Mandelman JW. Exercise intensity while hooked is associated with physiological status of longline-captured sharks. CONSERVATION PHYSIOLOGY 2018; 6:coy074. [PMID: 30591841 PMCID: PMC6301290 DOI: 10.1093/conphys/coy074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 06/03/2023]
Abstract
Some shark populations face declines owing to targeted capture and by-catch in longline fisheries. Exercise intensity during longline capture and physiological status may be associated, which could inform management strategies aimed at reducing the impacts of longline capture on sharks. The purpose of this study was to characterize relationships between exercise intensity and physiological status of longline-captured nurse sharks (Ginglymostoma cirratum) and Caribbean reef sharks (Carcharhinus perezi). Exercise intensity of longline-captured sharks was quantified with digital cameras and accelerometers, which was paired with blood-based physiological metrics from samples obtained immediately post-capture. Exercise intensity was associated with physiological status following longline capture. For nurse sharks, blood pH increased with capture duration and the proportion of time exhibiting low-intensity exercise. Nurse sharks also had higher blood glucose and plasma potassium concentrations at higher sea surface temperatures. Associations between exercise intensity and physiological status for Caribbean reef sharks were equivocal; capture duration had a positive relation with blood lactate concentrations and a negative relationship with plasma chloride concentrations. Because Caribbean reef sharks did not appear able to influence blood pH through exercise intensity, this species was considered more vulnerable to physiological impairment. While both species appear quite resilient to longline capture, it remains to be determined if exercise intensity during capture is a useful tool for predicting mortality or tertiary sub-lethal consequences. Fisheries management should consider exercise during capture for sharks when developing techniques to avoid by-catch or reduce physiological stress associated with capture.
Collapse
Affiliation(s)
- Ian A Bouyoucos
- Shark Research and Conservation Program, Cape Eleuthera Institute, Rock Sound, The Bahamas
| | - Brendan S Talwar
- Shark Research and Conservation Program, Cape Eleuthera Institute, Rock Sound, The Bahamas
| | - Edward J Brooks
- Shark Research and Conservation Program, Cape Eleuthera Institute, Rock Sound, The Bahamas
| | - Jacob W Brownscombe
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON, Canada
| | - Cory D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John W Mandelman
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| |
Collapse
|