1
|
Quadros V, Inman B, McDonnell N, Williams K, Romero LM, Woodhams DC. Dermal glucocorticoids are uncoupled from stress physiology and infection. CONSERVATION PHYSIOLOGY 2025; 13:coaf005. [PMID: 39944680 PMCID: PMC11821355 DOI: 10.1093/conphys/coaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 02/19/2025]
Abstract
Ongoing amphibian population declines are caused by factors such as climate change, habitat destruction, pollution and infectious diseases not limited to chytridiomycosis. Unfortunately, action is taken against these factors once population collapses are underway. To avoid these post hoc responses, wildlife endocrinology aims to analyse physiological mediators that predict future population declines to inform wildlife management. Mediators typically investigated are stress hormones known as glucocorticoids, which are produced by the Hypothalamus-Pituitary-Interrenal axis (HPI axis). The HPI axis is the part of the endocrine system that helps amphibians cope with stress. Chronic increases in glucocorticoids due to stress can lead to immune dysfunction, which makes amphibians more susceptible to infectious diseases. Despite this predictive potential of glucocorticoids, interpretation of glucocorticoid data is confounded by sampling design and type. Glucocorticoid monitoring classically involves blood sampling, which is not widely applicable in amphibians as some are too small or delicate to sample, and repeated samples are often valued. To address this, we tried to validate skin swabbing via corticosterone (CORT) and adrenocorticotropin hormone (ACTH) injections in adults of two amphibian species: Eastern red-spotted newts, Notophthalmus viridescens viridescens, with natural skin infections with Batrachochytrium dendrobatidis (Bd) upon collection in the field, and Northern leopard frogs, Rana (Lithobates) pipiens, raised in captivity and naïve to Bd exposure. Further, we determined the predictive potential of skin glucocorticoids on Bd load in the field via correlations in Eastern red-spotted newts. We found that hormones present in the skin are not related to the HPI axis and poorly predict infection load; however, skin hormone levels strongly predicted survival in captivity. Although skin swabbing is not a valid method to monitor HPI axis function in these species, the hormones present in the skin still play important roles in organismal physiology under stressful conditions relevant to wildlife managers.
Collapse
Affiliation(s)
- Victor Quadros
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Brady Inman
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Nina McDonnell
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Kaitlyn Williams
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - L Michael Romero
- Department of Biology, Tufts University, Robinson Hall, Rm 369200 College Ave., Medford, MA 02155, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| |
Collapse
|
2
|
Smith TE, Holmes AM, Emmans CJ, Coleman R, Hosie CA. Validating the underpinnings of water corticosterone measurement for aquatic amphibians. F1000Res 2025; 14:53. [PMID: 40018729 PMCID: PMC11865716 DOI: 10.12688/f1000research.157055.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 03/01/2025] Open
Abstract
Background Good animal welfare is important ethically but also to ensure animals provide valid scientific models. Despite thousands of amphibians in research laboratories there is minimal quantitative evidence pertaining to their management and welfare. This study validated methods to non-invasively measure corticosterone, the amphibian 'stress' hormone, from tank water to provide a robust and reliable welfare assessment tool. Methods We report experiments (A) that evaluate parameters linked to the performance of our biochemical extraction methods for waterborne corticosterone and, importantly, associated sampling procedures. We evaluate appropriate sampling water type, sampling vessel, filtration methods, potential degradation of waterborne corticosterone over time and the impact of sampling procedures on animal corticosterone levels. We wanted to determine sampling parameters that yielded the least background corticosterone and had minimum negative impact on the animals. The second series of experiments (B) evaluated parameters linked to the biology of Xenopus, including the influence of circadian rhythm, sex and snout-vent length on waterborne corticosterone levels, since fundamental knowledge of a species' biology is essential for designing robust experiments and in the interpretation of the results. Results We propose collecting corticosterone samples in deionised water in either plastic or glass containers. The filtering process does not impact the amount of corticosterone measured in the water sample. Levels of corticosterone collected in the water change over a 48-hr period so we advocate standardising time from hormone collection to storage at - 20 °C. Repeated transfer of frogs to sampling containers does not increase corticosterone, suggesting our methods are not cumulatively stressful. Corticosterone levels were not impacted by circadian phase, sex or snout-vent length. Conclusion We have developed and validated robust methods to quantify waterborne corticosterone. We hope they provide a template for researchers wishing to develop methods to measure waterborne corticosterone in aquatic amphibians.
Collapse
Affiliation(s)
- Tessa E Smith
- Amphibian Behaviour and Endocrinology Group, School of Natural Sciences, University of Chester, Department of Biological Sciences, Chester, England, CH1 4BJ, UK
| | - Andrew M Holmes
- Amphibian Behaviour and Endocrinology Group, School of Natural Sciences, University of Chester, Department of Biological Sciences, Chester, England, CH1 4BJ, UK
| | - Christopher J Emmans
- Amphibian Behaviour and Endocrinology Group, School of Natural Sciences, University of Chester, Department of Biological Sciences, Chester, England, CH1 4BJ, UK
| | - Robert Coleman
- Amphibian Behaviour and Endocrinology Group, School of Natural Sciences, University of Chester, Department of Biological Sciences, Chester, England, CH1 4BJ, UK
| | - Charlotte A Hosie
- Amphibian Behaviour and Endocrinology Group, School of Natural Sciences, University of Chester, Department of Biological Sciences, Chester, England, CH1 4BJ, UK
| |
Collapse
|
3
|
Scheun J, Venter L, Ganswindt A. A frog in hot water: the effect of temperature elevation on the adrenal stress response of an African amphibian. PeerJ 2024; 12:e17847. [PMID: 39157773 PMCID: PMC11328835 DOI: 10.7717/peerj.17847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Amphibians, with their unique physiology and habitat requirements, are especially vulnerable to changes in environmental temperatures. While the activation of the physiological stress response can help to mitigate the impact of such habitat alteration, chronic production of elevated glucocorticoid levels can be deleterious in nature. There is no empirical evidence indicating the physiological response of African amphibians to temperature changes, where individuals are unable to emigrate away from potential stressors. To rectify this, we used the edible bullfrog (Pyxicephalus edulis) as a model species to determine the effect of elevated temperature on the adrenocortical response of the species using a recently established matrix. While a control group was kept at a constant temperature (25 °C) throughout the study period, an experimental group was exposed to control (25 °C) and elevated temperatures (30 °C). Mucous swabs were collected throughout the study period to determine dermal glucocorticoid (dGC) concentrations, as a proxy for physiological stress. In addition to this, individual body mass measurements were collected. The results showed that individuals within the experimental group who experienced increased temperatures had significantly elevated dGC levels compared to the control animals. Furthermore, there was a significant difference in the percentage mass change between experimental and control animals . These findings indicate the physiological sensitivity of the edible bullfrog to a thermal stressor in captivity. While this study shows the importance of proper amphibian management within the captive environment, it also highlights the coming danger of global climate change to this and similar amphibian species.
Collapse
Affiliation(s)
- Juan Scheun
- Department Nature Conservation, Faculty of Science, Tshwane University of Pretoria, Pretoria, Gauteng, South Africa
- Mammal Research Institute, Department Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Leanne Venter
- Department Nature Conservation, Faculty of Science, Tshwane University of Pretoria, Pretoria, Gauteng, South Africa
| | - Andre Ganswindt
- Mammal Research Institute, Department Zoology and Entomology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
4
|
Awkerman JA, Glinski DA, Henderson WM, Van Meter R, Purucker ST. Framework for multi-stressor physiological response evaluation in amphibian risk assessment and conservation. Front Ecol Evol 2024; 12:1-16. [PMID: 39679000 PMCID: PMC11636185 DOI: 10.3389/fevo.2024.1336747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Controlled laboratory experiments are often performed on amphibians to establish causality between stressor presence and an adverse outcome. However, in the field, identification of lab-generated biomarkers from single stressors and the interactions of multiple impacts are difficult to discern in an ecological context. The ubiquity of some pesticides and anthropogenic contaminants results in potentially cryptic sublethal effects or synergistic effects among multiple stressors. Although biochemical pathways regulating physiological responses to toxic stressors are often well-conserved among vertebrates, different exposure regimes and life stage vulnerabilities can yield variable ecological risk among species. Here we examine stress-related biomarkers, highlight endpoints commonly linked to apical effects, and discuss differences in ontogeny and ecology that could limit interpretation of biomarkers across species. Further we identify promising field-based physiological measures indicative of potential impacts to health and development of amphibians that could be useful to anuran conservation. We outline the physiological responses to common stressors in the context of altered functional pathways, presenting useful stage-specific endpoints for anuran species, and discussing multi-stressor vulnerability in the larger framework of amphibian life history and ecology. This overview identifies points of physiological, ecological, and demographic vulnerability to provide context in evaluating the multiple stressors impacting amphibian populations worldwide for strategic conservation planning.
Collapse
Affiliation(s)
- Jill A. Awkerman
- Center for Ecosystem Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Gulf Breeze, FL, United States
| | - Donna A. Glinski
- Center for Ecosystem Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Athens, GA, United States
| | - W. Matthew Henderson
- Center for Ecosystem Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Athens, GA, United States
| | - Robin Van Meter
- Environmental Science and Studies, Washington College, Chestertown, MD, United States
| | - S. Thomas Purucker
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC, United States
| |
Collapse
|
5
|
Park JK, Do Y. Current State of Conservation Physiology for Amphibians: Major Research Topics and Physiological Parameters. Animals (Basel) 2023; 13:3162. [PMID: 37893886 PMCID: PMC10603670 DOI: 10.3390/ani13203162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Analysis of physiological responses can be used to assess population health, identify threat factors, and understand mechanisms of stress. In addition to this, conservation physiologists have sought to establish potential management strategies for environmental change and evaluate the effectiveness of conservation efforts. From past to present, the field of conservation physiology is developing in an increasingly broader context. In this review, we aim to categorize the topics covered in conservation physiology research on amphibians and present the measured physiological parameters to provide directions for future research on conservation physiology. Physiological responses of amphibians to environmental stressors are the most studied topic, but conservation physiological studies on metamorphosis, habitat loss and fragmentation, climate change, and conservation methods are relatively lacking. A number of physiological indices have been extracted to study amphibian conservation physiology, and the indices have varying strengths of correlation with each subject. Future research directions are suggested to develop a comprehensive monitoring method for amphibians, identify interactions among various stressors, establish physiological mechanisms for environmental factors, and quantify the effects of conservation activities on amphibian physiology.
Collapse
Affiliation(s)
| | - Yuno Do
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea;
| |
Collapse
|
6
|
Clarke E, Heugten KAV, Tollefson TN, Ridgley FN, Smith D, Brown JL, Scott H, Minter LJ. Comparison of Corticosterone Concentrations in Dermal Secretions and Urine in Free-Ranging Marine Toads ( Rhinella marina) in Human Care. Vet Med Int 2023; 2023:1467549. [PMID: 37766874 PMCID: PMC10522434 DOI: 10.1155/2023/1467549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Corticosterone concentrations have been measured in amphibians by collecting blood or urine samples. However, blood sampling is invasive, and urine can be difficult to collect. A novel method of swabbing the skin of an amphibian has been utilized in numerous species but has not been verified in marine toads (Rhinella marina). This pilot study tested dermal swabs as a noninvasive method for collecting and measuring dermal corticosterone secretions. Swabs were used to collect dermal secretion samples from sixty-six free-ranging marine toads collected on Zoo Miami grounds. The subsequent day the toads were shipped to the North Carolina Zoo where dermal samples were collected again. Additional dermal and urine samples were collected on days 9, 15, 32, and 62 under human care to measure corticosterone concentrations. There was no significant correlation (P ≥ 0.05) noted between corticosterone concentrations reported in dermal swabs and those in urine samples at all four of the euthanasia time points or between the corticosterone concentrations reported in either urine or dermal swabs and the weight of the toads. Dermal swab concentrations (ng/mL) were significantly higher (P ≤ 0.05) on the day of capture (0.64 ± 0.03) and the day of arrival (0.67 ± 0.03) than on day 15 (0.47 ± 0.03). The urine corticosterone concentrations decreased while the toads were in human care with a significant decrease (P ≤ 0.05) between days 9 (0.45 ± 0.07) and 32 (0.21 ± 0.06). This study demonstrated that dermal swabs can be used to collect marine toad corticosterone concentration samples.
Collapse
Affiliation(s)
- Emma Clarke
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Dr., Raleigh, NC 27607, USA
| | - Kimberly Ange-van Heugten
- Department of Animal Science, North Carolina State University, 120 W. Broughton Dr., Raleigh, NC 27695, USA
- Environment Medicine Consortium, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA
| | - Troy N. Tollefson
- Mazuri® Exotic Animal Nutrition, PMI Nutrition, 4001 Lexington Ave. North, Arden Hills, MN 55126, USA
| | - Frank N. Ridgley
- The Conservation and Research Department, Zoo Miami, 12400 SW 152nd St., Miami, FL 33177, USA
| | - Dustin Smith
- North Carolina Zoo, 4401 Zoo Pkwy, Asheboro, NC 27205, USA
| | - Janine L. Brown
- Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA
| | - Heather Scott
- North Carolina Zoo, 4401 Zoo Pkwy, Asheboro, NC 27205, USA
| | - Larry J. Minter
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, 1060 William Moore Dr., Raleigh, NC 27607, USA
- Environment Medicine Consortium, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA
- North Carolina Zoo, 4401 Zoo Pkwy, Asheboro, NC 27205, USA
| |
Collapse
|
7
|
Santymire RM, Young M, Lenihan E, Murray MJ. Preliminary Investigation into Developing the Use of Swabs for Skin Cortisol Analysis for the Ocean Sunfish (Mola mola). Animals (Basel) 2022; 12:ani12202868. [PMID: 36290254 PMCID: PMC9597772 DOI: 10.3390/ani12202868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Zoos and aquaria play an important role in preventing the mass extinction of wildlife through public awareness of conservation issues and providing a safe haven for wildlife populations. Because aquatic populations face many challenges due to pollution and global warming, it is important to develop an understanding of how species can cope with their environment whether it be in the wild or under human care. Here, we were interested in developing non-invasive methods to study fish stress physiology. We use the unique ocean sunfish (Mola mola) to develop the use of skin swabs to measure the stress hormone, cortisol. We used known times of stress including when a mola was injured or ill and during acclimation to the Monterey Bay Aquarium. We found that cortisol increased initially within the first month of being admitted to the aquarium, but returned to normal values afterward. Molas also had elevated cortisol when being treated for an injury or illness. This is the first step in the development of the use of skin swabs to collect samples for stress analysis in the mola. Additional biochemical analysis is needed to confirm these results and allow this method to be applied to other species of fish. Abstract The ocean sunfish (mola; Mola mola) is the heaviest bony fish in the world. This slow-moving fish often is injured by fishing boats that use drift gillnets attributing to its listing as Vulnerable by the IUCN. The Monterey Bay Aquarium (Monterey, CA, USA) has a program that brings in smaller molas from the ocean and acclimates them for an exhibit. When they grow too large for the million-gallon Open Seas exhibit, they are returned to Monterey Bay through a “reverse” acclimatization. Our overall goal was to use skin swabs to evaluate mola stress physiology to better understand the effects of this program. Our objectives were to validate this non-invasive method by taking opportunistic swabs throughout acclimatization and during stressful events. We swabbed each individual (n = 12) in three different body locations. Swabs were analyzed using a cortisol enzyme immunoassay. We averaged the three swabs and examined the absolute change of cortisol from the first taken upon handling to during treatments and the different acclimation stages. We considered elevated cortisol concentrations to be ≥1.5-fold higher than the first sample. Overall, mean (±SEM) cortisol varied among individuals (564.2 ± 191.5 pg/mL swab (range, 18.3–7012.0 pg/mL swab). The majority (four of six) of molas swabbed within the first week or month had elevated skin cortisol compared to their first sample. All seven molas that were being treated for an injury or illness had elevated skin cortisol (range, 1.7- to 127.6-fold higher) compared to their post-acclimation sample. This is the first step in validating the use of non-invasive skin swabs for glucocorticoid analysis in the mola. Further biochemical analysis is needed to determine the specific steroids that are being measured.
Collapse
Affiliation(s)
- Rachel M. Santymire
- Biology Department, Georgia State University, 100 Piedmont Ave SE, 4th Floor, Atlanta, GA 30303, USA
- Correspondence:
| | - Marissa Young
- Veterinary Services, Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA 93940, USA
| | - Erin Lenihan
- Veterinary Services, Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA 93940, USA
| | - Michael J. Murray
- Veterinary Services, Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA 93940, USA
| |
Collapse
|
8
|
Santymire RM, Sacerdote-Velat AB, Gygli A, Keinath DA, Poo S, Hinkson KM, McKeag EM. Using dermal glucocorticoids to determine the effects of disease and environment on the critically endangered Wyoming toad. CONSERVATION PHYSIOLOGY 2021; 9:coab093. [PMID: 35186296 PMCID: PMC8849142 DOI: 10.1093/conphys/coab093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/25/2021] [Accepted: 12/05/2021] [Indexed: 05/15/2023]
Abstract
Amphibian populations are declining worldwide, and increased exposure to environmental stressors, including global climate change and pathogens like Batrachochytrium dendrobatidis (Bd), may be contributing to this decline. Our goal was to use a novel dermal swabbing method to measure glucocorticoid (GC) hormones and investigate the relationship among disease and environmental conditions in the critically endangered Wyoming toad (Anaxyrus baxteri). Our objectives were to (i) validate the use of dermal swabs to measure GCs using an adrenocorticotropic hormone (ACTH) challenge on eight captive toads (4 ACTH: 2 M, 2F and 4 saline as a control: 2 M, 2F), (ii) investigate stress physiology and disease status of toads across six reintroduction sites and (iii) compare dermal cortisol between reintroduced and captive toads. Dermal cortisol peaked immediately after the ACTH and saline injections. Faecal GC metabolites (FGMs) were significantly higher one week after the ACTH injection compared with the week before. Saline-injected toads had no change in FGM over time. Toads were only found in three reintroduction sites and dermal cortisol was similar across sites; however, reintroduced toads had higher dermal cortisol in August compared with June and compared with captive individuals. Bd status did not influence dermal cortisol concentrations. Dermal and faecal hormonal metabolite analyses can be used to study amphibian stress physiology and learn how environmental conditions are impacting population success.
Collapse
Affiliation(s)
- Rachel M Santymire
- Davee Center for Epidemiology and Endocrinology, Lincoln Park Zoo, 2001 North Clark Street, Chicago, IL 60614, USA
- Department of Biology, Georgia State University, 100 Piedmont Avenue SE, Fourth floor, Atlanta, GA 30303, USA
| | | | - Andrew Gygli
- US Fish & Wildlife Service, Wyoming Ecological Services Field Office, 334 Parsley Boulevard, Cheyenne, WY, 82007, USA
| | - Douglas A Keinath
- US Fish & Wildlife Service, Wyoming Ecological Services Field Office, 334 Parsley Boulevard, Cheyenne, WY, 82007, USA
| | - Sinlan Poo
- Department of Conservation & Research, Memphis Zoo, 2000 Prentiss Place, Memphis, TN 38112, USA
- Department of Biological Sciences, Arkansas State University, P.O. Box 599, State University, Jonesboro, AR 72467, USA
| | - Kristin M Hinkson
- Department of Conservation & Research, Memphis Zoo, 2000 Prentiss Place, Memphis, TN 38112, USA
| | - Elizabeth M McKeag
- USDA Forest Service, Nez Perce-Clearwater National Forests, 104 Airport Drive, Grangeville, ID 83530, USA
| |
Collapse
|
9
|
Nagel AH, Beshel M, DeChant CJ, Huskisson SM, Campbell MK, Stoops MA. Non-invasive methods to measure inter-renal function in aquatic salamanders-correlating fecal corticosterone to the environmental and physiologic conditions of captive Necturus. CONSERVATION PHYSIOLOGY 2019; 7:coz074. [PMID: 31737273 PMCID: PMC6845813 DOI: 10.1093/conphys/coz074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 05/08/2023]
Abstract
This study sought to develop non-invasive techniques to monitor glucocorticoids in captive Necturus as a means to correlate inter-renal gland function in relation to environmental and physiological changes. Six individually housed breeding pairs of captive Necturus beyeri were subjected to seasonal changes in water temperature (30°F temperature differential) to stimulate natural breeding, specifically spermatophore deposition and oviposition. An enzyme immunoassay was validated for the measurement of N. beyeri faecal corticosterone metabolites (fCMs) by exhibiting parallelism and accuracy to the standard curve. Longitudinal (December 2016-October 2017) assessment of fCM concentrations and pattern of excretion from samples collected from the six breeding pairs revealed a seasonal inter-renal effect with higher concentrations (P < 0.05) excreted during months (December-March) of the year associated with breeding activity and when water temperatures were lowest. Males from each pair produced spermatophores starting on 08 December 8 2016 and ending on 05 April 2017. Females from four of the six pairs went on to successfully oviposit eggs in mid-late April 2017. One clutch was fertile, and three were non-fertile. No differences (P > 0.05) were detected in fCM concentrations between pairs in which oviposition did or did not occur. In addition, a novel waterborne corticosterone metabolite (wCM) assay was validated to overcome challenges associated with faecal collection in a group-housed amphibian. An adrenocorticotropic hormone (ACTH) challenge performed in an adult male Necturus maculosus resulted in a 50-fold increase in wCM at 4 h post-injection and marked the first demonstration of a waterborne inter-renal response to ACTH in Necturus. This study not only provides insight into inter-renal function in an aquatic salamander that exhibits marked reproductive seasonality but also confirms utility of fCM and wCM measurements as non-invasive means of assessment.
Collapse
Affiliation(s)
- Andrew H Nagel
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA
| | - Mark Beshel
- Jacksonville Zoo and Gardens, 370 Zoo Parkway, Jacksonville, FL 32218, USA
| | | | - Sarah M Huskisson
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA
| | - Mark K Campbell
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA
| | - Monica A Stoops
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA
- Omaha’s Henry Doorly Zoo and Aquarium, 3701 South 10th Street, Omaha, NE 68107, USA
- Corresponding author: Omaha’s Henry Doorly Zoo and Aquarium, 3701 South 10th Street, Omaha, NE 68107, USA. Tel: 402-557-6927.
| |
Collapse
|