1
|
Fidya, Choijookhuu N, Ikenoue M, Yano K, Yamaguma Y, Shirouzu S, Kai K, Ishizuka T, Hishikawa Y. Protective role of estrogen through G-protein coupled receptor 30 in a colitis mouse model. Histochem Cell Biol 2024; 161:81-93. [PMID: 37821557 DOI: 10.1007/s00418-023-02235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Estrogen and its receptors are involved in the pathogenesis of gastrointestinal diseases such as colitis. However, the role of the membrane estrogen receptor G-protein-coupled receptor 30 (GPR30) in colitis is poorly understood. We therefore investigated the effect of estrogen in dextran sulfate sodium (DSS)-induced colitis. Male C57BL/6 mice were administered 1.5% DSS for 5 days and treated with 17β-estradiol (E2), GPR30 agonist (G1), or GPR30 antagonist (G15) for 8 days. Inflammation grade was evaluated by disease activity index (DAI) and histomorphological score. Colon tissues were immunohistochemically analyzed and revealed high expression of membrane GPR30, histone 3 lysine 36 dimethylation, and lysine 79 trimethylation in normal mouse colon epithelial cells but significantly decreased expression in DSS-treated mice, whereas the expression was partially preserved after treatment with E2 or G1. Colon shortening and DAI were significantly lower in E2- and G1-treated mice compared to DSS-treated mice. Caudal type homeobox 2 (CDX2) expression and cell proliferation differed in normal colon epithelial cells but overlapped in those of DSS-treated mice. Administration of E2 and G1 reduced CDX2 expression and cell proliferation. Altered expression of claudin-2 and occludin were observed in the colonic epithelium of DSS-treated mice, and these changes were significantly lower in the colon of E2- and G1-treated mice. These results indicate that estrogen regulates histone modification, cell proliferation, and CDX2 expression through GPR30, which affects intestinal epithelial barrier function. We conclude that estrogen protects against intestinal epithelial damage through GPR30 by enhancing intestinal epithelial barrier function in DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Fidya
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Oral Biology, Faculty of Dentistry, Universitas Brawijaya, Malang, Jawa Timur, Indonesia
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Makoto Ikenoue
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Koichi Yano
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yu Yamaguma
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Shinichiro Shirouzu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Kengo Kai
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
- Department of Surgery, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Takumi Ishizuka
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
2
|
Liang B, Wang Y, Xu J, Shao Y, Xing D. Unlocking the potential of targeting histone-modifying enzymes for treating IBD and CRC. Clin Epigenetics 2023; 15:146. [PMID: 37697409 PMCID: PMC10496233 DOI: 10.1186/s13148-023-01562-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
Dysregulation of histone modifications has been implicated in the pathogenesis of both inflammatory bowel disease (IBD) and colorectal cancer (CRC). These diseases are characterized by chronic inflammation, and alterations in histone modifications have been linked to their development and progression. Furthermore, the gut microbiota plays a crucial role in regulating immune responses and maintaining gut homeostasis, and it has been shown to exert effects on histone modifications and gene expression in host cells. Recent advances in our understanding of the roles of histone-modifying enzymes and their associated chromatin modifications in IBD and CRC have provided new insights into potential therapeutic interventions. In particular, inhibitors of histone-modifying enzymes have been explored in clinical trials as a possible therapeutic approach for these diseases. This review aims to explore these potential therapeutic interventions and analyze previous and ongoing clinical trials that examined the use of histone-modifying enzyme inhibitors for the treatment of IBD and CRC. This paper will contribute to the current body of knowledge by exploring the latest advances in the field and discussing the limitations of existing approaches. By providing a comprehensive analysis of the potential benefits of targeting histone-modifying enzymes for the treatment of IBD and CRC, this review will help to inform future research in this area and highlight the significance of understanding the functions of histone-modifying enzymes and their associated chromatin modifications in gastrointestinal disorders for the development of potential therapeutic interventions.
Collapse
Affiliation(s)
- Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China.
- Qingdao Cancer Institute, Qingdao University, Qingdao, China.
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Indellicato R, Trinchera M. Epigenetic Regulation of Glycosylation in Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22062980. [PMID: 33804149 PMCID: PMC7999748 DOI: 10.3390/ijms22062980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, the newly emerging field of epigenetic regulation of glycosylation acquired more importance because it is unraveling physiological and pathological mechanisms related to glycan functions. Glycosylation is a complex process in which proteins and lipids are modified by the attachment of monosaccharides. The main actors in this kind of modification are the glycoenzymes, which are translated from glycosylation-related genes (or glycogenes). The expression of glycogenes is regulated by transcription factors and epigenetic mechanisms (mainly DNA methylation, histone acetylation and noncoding RNAs). This review focuses only on these last ones, in relation to cancer and other diseases, such as inflammatory bowel disease and IgA1 nephropathy. In fact, it is clear that a deeper knowledge in the fine-tuning of glycogenes is essential for acquiring new insights in the glycan field, especially if this could be useful for finding novel and personalized therapeutics.
Collapse
Affiliation(s)
- Rossella Indellicato
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Marco Trinchera
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
4
|
Oxidative Stress in the Pathogenesis of Crohn's Disease and the Interconnection with Immunological Response, Microbiota, External Environmental Factors, and Epigenetics. Antioxidants (Basel) 2021; 10:antiox10010064. [PMID: 33430227 PMCID: PMC7825667 DOI: 10.3390/antiox10010064] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial disorder in which external and environmental factors have a large influence on its onset and development, especially in genetically susceptible individuals. Crohn’s disease (CD), one of the two types of IBD, is characterized by transmural inflammation, which is most frequently located in the region of the terminal ileum. Oxidative stress, caused by an overabundance of reactive oxygen species, is present locally and systemically in patients with CD and appears to be associated with the well-described imbalanced immune response and dysbiosis in the disease. Oxidative stress could also underlie some of the environmental risk factors proposed for CD. Although the exact etiopathology of CD remains unknown, the key role of oxidative stress in the pathogenesis of CD is extensively recognized. Epigenetics can provide a link between environmental factors and genetics, and numerous epigenetic changes associated with certain environmental risk factors, microbiota, and inflammation are reported in CD. Further attention needs to be focused on whether these epigenetic changes also have a primary role in the pathogenesis of CD, along with oxidative stress.
Collapse
|
5
|
Li Yim AY, Duijvis NW, Ghiboub M, Sharp C, Ferrero E, Mannens MM, D’Haens GR, de Jonge WJ, te Velde AA, Henneman P. Whole-Genome DNA Methylation Profiling of CD14+ Monocytes Reveals Disease Status and Activity Differences in Crohn's Disease Patients. J Clin Med 2020; 9:E1055. [PMID: 32276386 PMCID: PMC7230341 DOI: 10.3390/jcm9041055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Crohn's disease (CD) is a multifactorial incurable chronic disorder. Current medical treatment seeks to induce and maintain a state of remission. During episodes of inflammation, monocytes infiltrate the inflamed mucosa whereupon they differentiate into macrophages with a pro-inflammatory phenotype. Here, we sought to characterize the circulating monocytes by profiling their DNA methylome and relate it to the level of CD activity. We gathered an all-female age-matched cohort of 16 CD patients and 7 non-CD volunteers. CD patients were further subdivided into 8 CD patients with active disease (CD-active) and 8 CD patients in remission (CD-remissive) as determined by the physician global assessment. We identified 15 and 12 differentially methylated genes (DMGs) when comparing CD with non-CD and CD-active with CD-remissive, respectively. Differential methylation was predominantly found in the promoter regions of inflammatory genes. Comparing our observations with gene expression data on classical (CD14++CD16-), non-classical (CD14+CD16++) and intermediate (CD14++CD16+) monocytes indicated that while 7 DMGs were differentially expressed across the 3 subsets, the remaining DMGs could not immediately be associated with differences in known populations. We conclude that CD activity is associated with differences in DNA methylation at the promoter region of inflammation-associated genes.
Collapse
Affiliation(s)
- Andrew Y.F. Li Yim
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Genome Diagnostics Laboratory, Amsterdam Reproduction & Development, 1105 AZ Amsterdam, The Netherlands
- R&D GlaxoSmithKline, Stevenage SG1 2NY, UK; (M.G.); (C.S.); (E.F.)
| | - Nicolette W. Duijvis
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, 1105 BK Amsterdam, The Netherlands; (N.W.D.); (W.J.d.J.)
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, 1105 AZ Amsterdam, The Netherlands;
| | - Mohammed Ghiboub
- R&D GlaxoSmithKline, Stevenage SG1 2NY, UK; (M.G.); (C.S.); (E.F.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, 1105 BK Amsterdam, The Netherlands; (N.W.D.); (W.J.d.J.)
| | - Catriona Sharp
- R&D GlaxoSmithKline, Stevenage SG1 2NY, UK; (M.G.); (C.S.); (E.F.)
| | - Enrico Ferrero
- R&D GlaxoSmithKline, Stevenage SG1 2NY, UK; (M.G.); (C.S.); (E.F.)
| | - Marcel M.A.M. Mannens
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Genome Diagnostics Laboratory, Amsterdam Reproduction & Development, 1105 AZ Amsterdam, The Netherlands
| | - Geert R. D’Haens
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, 1105 AZ Amsterdam, The Netherlands;
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, 1105 BK Amsterdam, The Netherlands; (N.W.D.); (W.J.d.J.)
- Department of Surgery, University Clinic of Bonn, 53127 Bonn, Germany
| | - Anje A. te Velde
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, 1105 BK Amsterdam, The Netherlands; (N.W.D.); (W.J.d.J.)
| | - Peter Henneman
- Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Genome Diagnostics Laboratory, Amsterdam Reproduction & Development, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|