1
|
Adhab AH, Altalbawy FMA, Mahdi MS, Baldaniya L, Omar TM, Ganesan S, Juneja B, Pathak PK, Mansoor AS, Radi UK, Abd NS, Kadhim M. NADPH Oxidases in Cancer Therapy-Induced Cardiotoxicity: Mechanisms and Therapeutic Approaches. Cardiovasc Toxicol 2025; 25:631-649. [PMID: 39966326 DOI: 10.1007/s12012-025-09976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Cancer therapy-induced cardiotoxicity remains a significant clinical challenge, limiting the efficacy of cancer treatments and impacting long-term survival and quality of life. NADPH oxidases, a family of enzymes that are able to generate reactive oxygen species (ROS), have emerged as key players in the pathogenesis of cardiotoxicity associated with various cancer therapies. This review comprehensively examines the role of NADPH oxidases in cancer therapy-induced cardiotoxicity, elucidating the underlying mechanisms and exploring potential therapeutic approaches. We discuss the structure and function of NADPH oxidases in the cardiovascular system and their involvement in cardiotoxicity induced by anthracyclines and ionizing radiation. The molecular mechanisms by which NADPH oxidase-derived ROS contribute to cardiac injury are explored, including direct oxidative damage, activation of pro-apoptotic pathways, mitochondrial dysfunction, vascular damage, inflammation, fibrosis, and others. Furthermore, we evaluate therapeutic strategies targeting NADPH oxidases, such as specific inhibitors, antioxidant therapies, natural products, and other cardioprotectors. The review also addresses current challenges in the field, including the need for isoform-specific targeting and the identification of reliable biomarkers. Finally, we highlight future research directions aimed at mitigating NADPH oxidase-mediated cardiotoxicity and alleviating cardiovascular side effects in cancer survivors. By synthesizing current knowledge and identifying knowledge gaps, this review provides a rationale for future studies and the development of novel cardioprotective strategies in cancer therapy.
Collapse
Affiliation(s)
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, 12613, Egypt.
| | | | - Lalji Baldaniya
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Nineveh, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Bhanu Juneja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Piyus Kumar Pathak
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Nasr Saadoun Abd
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Munther Kadhim
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Gintoni I, Mastrogeorgiou M, Papakosta V, Vassiliou S, Yapijakis C. Genetic Variations Related to Angiotensin II Production and Risk for Basal Cell Carcinoma. Biochem Genet 2025; 63:917-935. [PMID: 38546913 DOI: 10.1007/s10528-024-10746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2025]
Abstract
Basal cell carcinoma (BCC) is the most prevalent human neoplasm, with constantly increasing annual incidence. Despite its slow growth, BCC is locally invasive and, if left untreated, can cause severe complications, including metastasis and death. The renin-angiotensin system (RAS) plays a key role in electrolyte balance, atrial pressure, tissue development, homeostasis, and inflammation, but also in cancer development. After binding to its type 1 receptor (AT1R), angiotensin II (ANGII), the system's principal hormonal effector, regulates cancer pathways spanning from the formation of the initial cancer cell to the construction and nutrition of the tumor microenvironment, angiogenesis, proliferation, and metastasis. Although the role of RAS in the development of skin pathologies has not been widely researched, RAS-targeting antihypertensive medications have been shown to have a chemoprotective effect against BCC. Based on those findings, our group conducted a series of genetic association studies to investigate the association between common functional variations in key genes related to ANGII production (AGT, ACE, ACE2, AT1R, AT2R, and CMA1) and the risk of BCC occurrence. This review provides a summary of the current understanding of the ANGII involvement in BCC development. The reliable and easily assessed pool of genetic biomarkers may be used for predictive testing and prevention purposes in high-risk individuals.
Collapse
Affiliation(s)
- Iphigenia Gintoni
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory "Hagia Sophia" Children's Hospital, Athens, Greece
- Department of Molecular Genetics, Cephalogenetics Center, Philaretou 88, Kallithea, 17675, Athens, Greece
- Department of Oral and Maxillofacial Surgery, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Michael Mastrogeorgiou
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory "Hagia Sophia" Children's Hospital, Athens, Greece
| | - Veronica Papakosta
- Department of Oral and Maxillofacial Surgery, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Stavros Vassiliou
- Department of Oral and Maxillofacial Surgery, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory "Hagia Sophia" Children's Hospital, Athens, Greece.
- Department of Molecular Genetics, Cephalogenetics Center, Philaretou 88, Kallithea, 17675, Athens, Greece.
- Department of Oral and Maxillofacial Surgery, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece.
| |
Collapse
|
3
|
Strohm L, Ubbens H, Mihalikova D, Czarnowski A, Stamm P, Molitor M, Finger S, Oelze M, Atzler D, Wenzel P, Lurz P, Münzel T, Weber C, Lutgens E, Daiber A, Daub S. CD40-TRAF6 inhibition suppresses cardiovascular inflammation, oxidative stress and functional complications in a mouse model of arterial hypertension. Redox Biol 2025; 80:103520. [PMID: 39899926 PMCID: PMC11840497 DOI: 10.1016/j.redox.2025.103520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Cardiovascular disease is the leading cause of disease burden and death worldwide and is fueled by vascular inflammation. CD40L-CD40-TRAF signaling is involved in the progression of atherosclerosis and drives the development of coronary heart disease (CHD). The present study investigates whether the CD40L-CD40-TRAF6 signaling pathway with focus on immune cells and adipocytes could be a therapeutic target in arterial hypertension. Arterial hypertension was induced in WT (C57BL6/J) and cell-specific CD40(L) knockout mice (AdipoqCre x CD40 fl/fl, CD4Cre x CD40 fl/fl, CD19Cre x CD40 fl/fl, and GP1baCre x CD40L fl/fl) via angiotensin (AT-II) infusion (1 mg/kg/d) for seven days. Hypertensive WT mice were also treated with a CD40-TRAF6 inhibitor (2.5 mg/kg/d, for 7d). The TRAF6 inhibitor treatment normalized endothelial dysfunction and reduced blood pressure in hypertensive wild type animals. Reactive oxygen species production was decreased by TRAF6 inhibition in blood, aorta, heart, kidney, and perivascular fat tissue. Additionally, FACS analysis revealed that TRAF6 inhibition prevents immune cell migration into the aortic vessel wall observed by reduced CD45+ leukocyte, Ly6G+/Ly6C+ neutrophil, and Ly6Chigh inflammatory monocyte content. The hypertensive cell type-specific CD40(L) knockout animals showed only a minor effect on endothelial function, blood pressure, and oxidative stress. Therefore, we conclude that targeting CD40 directly on adipocytes, B-cells, T-cells, or CD40L on platelets is not a promising target to prevent hypertension complications. In summary, TRAF6 inhibition but not adipocyte, B-cell, or T-cell-specific CD40 or platelet-specific CD40L deficiency reduces pathophysiological vascular inflammation in hypertensive mice, suggesting TRAF6 inhibition as a potential therapeutic target in hypertensive patients.
Collapse
Affiliation(s)
- Lea Strohm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Henning Ubbens
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dominika Mihalikova
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Alexander Czarnowski
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Paul Stamm
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael Molitor
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
| | - Stefanie Finger
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany; Walter Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
| | - Philipp Lurz
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Esther Lutgens
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Germany; Mayo Clinic, Dept Cardiovascular Medicine and Immunology, Rochester, MN, USA
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partnersite Rhine-Main, Mainz, Germany.
| | - Steffen Daub
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
4
|
Zhou QY, Pan JQ, Liu W, Jiang ZT, Gao FY, Zhao ZW, Tang CK. Angiotensin II: A novel biomarker in vascular diseases. Clin Chim Acta 2025; 568:120154. [PMID: 39855324 DOI: 10.1016/j.cca.2025.120154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
The renin-angiotensin system (RAS), composed mainly of renin, angiotensin, and aldosterone, is a key endocrine pathway involved in cardiovascular activity regulation. Under physiological conditions, the RAS plays a vital role in water and salt metabolism, blood pressure regulation, and electrolyte balance. Angiotensin II (Ang II) is the most important active component of the RAS, and its receptors are concentrated in vascular, pulmonary, cardiac, and renal tissues in vivo. Moreover, Ang II is closely associated with the development of vascular lesions. Ang II expression is closely associated with atherosclerosis, aortic aneurysm/dissection, ischemic stroke, hypertension, pulmonary hypertension, and type 2 diabetes mellitus. Given the significant pathophysiological role of Ang II in vascular diseases and the availability of advanced detection methods, Ang II holds promise as a reliable biomarker and therapeutic target in clinical settings. This review summarizes the mechanisms through which Ang II contributes to different vascular diseases and discusses its potential application as a biomarker for disease diagnosis.
Collapse
Affiliation(s)
- Qin-Yi Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China; The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Jin-Qian Pan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China
| | - Wang Liu
- The Affiliated Nanhua Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China
| | - Zhen-Tao Jiang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Fang-Ya Gao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Zhen-Wang Zhao
- School of Basic Medicine, Health Science Center, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China.
| |
Collapse
|
5
|
Zeng Y, Buonfiglio F, Li J, Pfeiffer N, Gericke A. Mechanisms Underlying Vascular Inflammaging: Current Insights and Potential Treatment Approaches. Aging Dis 2025:AD.2024.0922. [PMID: 39812546 DOI: 10.14336/ad.2024.0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammaging refers to chronic, low-grade inflammation that becomes more common with age and plays a central role in the pathophysiology of various vascular diseases. Key inflammatory mediators involved in inflammaging contribute to endothelial dysfunction and accelerate the progression of atherosclerosis. In addition, specific pathological mechanisms and the role of inflammasomes have emerged as critical drivers of immune responses within the vasculature. A comprehensive understanding of these processes may lead to innovative treatment strategies that could significantly improve the management of age-related vascular diseases. Emerging therapeutic approaches, including cytokine inhibitors, senolytics, and specialized pro-resolving mediators, aim to counteract inflammaging and restore vascular health. This review seeks to provide an in-depth exploration of the molecular pathways underlying vascular inflammaging and highlight potential therapeutic interventions.
Collapse
|
6
|
Sun WT, Du JY, Wang J, Wang YL, Dong ED. Potential preservative mechanisms of cardiac rehabilitation pathways on endothelial function in coronary heart disease. SCIENCE CHINA. LIFE SCIENCES 2025; 68:158-175. [PMID: 39395086 DOI: 10.1007/s11427-024-2656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 10/14/2024]
Abstract
Cardiac rehabilitation, a comprehensive exercise-based lifestyle and medical management, is effective in decreasing morbidity and improving life quality in patients with coronary heart disease. Endothelial function, an irreplaceable indicator in coronary heart disease progression, is measured by various methods in traditional cardiac rehabilitation pathways, including medicinal treatment, aerobic training, and smoking cessation. Nevertheless, studies on the effect of some emerging cardiac rehabilitation programs on endothelial function are limited. This article briefly reviewed the endothelium-beneficial effects of different cardiac rehabilitation pathways, including exercise training, lifestyle modification and psychological intervention in patients with coronary heart disease, and related experimental models, and summarized both uncovered and potential cellular and molecular mechanisms of the beneficial roles of various cardiac rehabilitation pathways on endothelial function. In exercise training and some lifestyle interventions, the enhanced bioavailability of nitric oxide, increased circulating endothelial progenitor cells (EPCs), and decreased oxidative stress are major contributors to preventing endothelial dysfunction in coronary heart disease. Moreover, the preservation of endothelial-dependent hyperpolarizing factors and inflammatory suppression play roles. On the one hand, to develop more endothelium-protective rehabilitation methods in coronary heart disease, adequately designed and sized randomized multicenter clinical trials should be advanced using standardized cardiac rehabilitation programs and existing assessment methods. On the other hand, additional studies using suitable experimental models are warranted to elucidate the relationship between some new interventions and endothelial protection in both macro- and microvasculature.
Collapse
Affiliation(s)
- Wen-Tao Sun
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Jian-Yong Du
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Jia Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Yi-Long Wang
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Er-Dan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China.
- The Institute of Cardiovascular Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| |
Collapse
|
7
|
Garlapati V, Luo Q, Posma J, Aluia M, Nguyen TS, Grunz K, Molitor M, Finger S, Harms G, Bopp T, Ruf W, Wenzel P. Macrophage-Expressed Coagulation Factor VII Promotes Adverse Cardiac Remodeling. Circ Res 2024; 135:841-855. [PMID: 39234697 DOI: 10.1161/circresaha.123.324114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Excess fibrotic remodeling causes cardiac dysfunction in ischemic heart disease, driven by MAP (mitogen-activated protein) kinase-dependent TGF-ß1 (transforming growth factor-ß1) activation by coagulation signaling of myeloid cells. How coagulation-inflammatory circuits can be specifically targeted to achieve beneficial macrophage reprogramming after myocardial infarction (MI) is not completely understood. METHODS Mice with permanent ligation of the left anterior descending artery were used to model nonreperfused MI and analyzed by single-cell RNA sequencing, protein expression changes, confocal microscopy, and longitudinal monitoring of recovery. We probed the role of the tissue factor (TF)-FVIIa (activated factor VII)-integrin ß1-PAR2 (protease-activated receptor 2) signaling complex by utilizing genetic mouse models and pharmacological intervention. RESULTS Cleavage-insensitive PAR2R38E and myeloid cell integrin ß1-deficient mice had improved cardiac function after MI compared with controls. Proximity ligation assays of monocytic cells demonstrated that colocalization of FVIIa with integrin ß1 was diminished in monocyte/macrophage FVII-deficient mice after MI. Compared with controls, F7fl/fl CX3CR1 (CX3C motif chemokine receptor 1)Cre mice showed reduced TGF-ß1 and MAP kinase activation, as well as cardiac dysfunction after MI, despite unaltered overall recruitment of myeloid cells. Single-cell mRNA sequencing of CD45 (cluster of differentiation 45)+ cells 3 and 7 days after MI uncovered a trajectory from recruited monocytes to inflammatory TF+/TREM (triggered receptor expressed on myeloid cells) 1+ macrophages requiring F7. As early as 7 days after MI, macrophage F7 deletion led to an expansion of reparative Olfml 3 (olfactomedin-like protein 3)+ macrophages and, conversely, to a reduction of TF+/TREM1+ macrophages, which were also reduced in PAR2R38E mice. Short-term treatment from days 1 to 5 after nonreperfused MI with a monoclonal antibody inhibiting the macrophage TF-FVIIa-PAR2 signaling complex without anticoagulant activity improved cardiac dysfunction, decreased excess fibrosis, attenuated vascular endothelial dysfunction, and increased survival 28 days after MI. CONCLUSIONS Extravascular TF-FVIIa-PAR2 complex signaling drives inflammatory macrophage polarization in ischemic heart disease. Targeting this signaling complex for specific therapeutic macrophage reprogramming following MI attenuates cardiac fibrosis and improves cardiovascular function.
Collapse
Affiliation(s)
- Venkata Garlapati
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
| | - Qi Luo
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Biochemistry, Cardiovascular Research Maastricht University, the Netherlands (Q.L.)
| | - Jens Posma
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
| | - Melania Aluia
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
| | - Than Son Nguyen
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
| | - Kristin Grunz
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
| | - Michael Molitor
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
| | - Stefanie Finger
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
| | - Gregory Harms
- Institute of Immunology and Research Center for Immunotherapy (G.H., T.B.), University Medical Center Mainz, Germany
- Cell Biology Unit (G.H.), University Medical Center Mainz, Germany
- Department of Biology, Wilkes University, Wilkes-Barre, PA (G.H.)
| | - Tobias Bopp
- Institute of Immunology and Research Center for Immunotherapy (G.H., T.B.), University Medical Center Mainz, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA (W.R.)
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis (V.G., Q.L., J.P., M.A., T.S.N., K.G., M.M., S.F., W.R., P.W.), University Medical Center Mainz, Germany
- Department of Cardiology (V.G., Q.L., M.A., M.M., S.F., P.W.), University Medical Center Mainz, Germany
- German Center for Cardiovascular Research-Partner site Rhine-Main (V.G., Q.L., M.A., M.M., W.R., P.W.), University Medical Center Mainz, Germany
| |
Collapse
|
8
|
Efentakis P, Varela A, Lamprou S, Papanagnou ED, Chatzistefanou M, Christodoulou A, Davos CH, Gavriatopoulou M, Trougakos I, Dimopoulos MA, Terpos E, Andreadou I. Implications and hidden toxicity of cardiometabolic syndrome and early-stage heart failure in carfilzomib-induced cardiotoxicity. Br J Pharmacol 2024; 181:2964-2990. [PMID: 38679957 DOI: 10.1111/bph.16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/25/2023] [Accepted: 09/12/2023] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Cancer therapy-related cardiovascular adverse events (CAEs) in presence of comorbidities, are in the spotlight of the cardio-oncology guidelines. Carfilzomib (Cfz), indicated for relapsed/refractory multiple myeloma (MM), presents with serious CAEs. MM is often accompanied with co-existing comorbidities. However, Cfz use in MM patients with cardiometabolic syndrome (CMS) or in heart failure with reduced ejection fraction (HFrEF), is questionable. EXPERIMENTAL APPROACH ApoE-/- and C57BL6/J male mice received 14 weeks Western Diet (WD) (CMS models). C57BL6/J male mice underwent permanent LAD ligation for 14 days (early-stage HFrEF model). CMS- and HFrEF-burdened mice received Cfz for two consecutive or six alternate days. Daily metformin and atorvastatin administrations were performed additionally to Cfz, as prophylactic interventions. Mice underwent echocardiography, while proteasome activity, biochemical and molecular analyses were conducted. KEY RESULTS CMS did not exacerbate Cfz left ventricular (LV) dysfunction, whereas Cfz led to metabolic complications in both CMS models. Cfz induced autophagy and Ca2+ homeostasis dysregulation, whereas metformin and atorvastatin prevented Cfz-mediated LV dysfunction and molecular deficits in the CMS-burdened myocardium. Early-stage HFrEF led to depressed LV function and increased protein phosphatase 2A (PP2A) activity. Cfz further increased myocardial PP2A activity, inflammation and Ca2+-cycling dysregulation. Metformin co-administration exerted an anti-inflammatory potential on the myocardium without improving LV function. CONCLUSION AND IMPLICATIONS CMS and HFrEF seem to exacerbate Cfz-induced CAEs, by presenting metabolism-related hidden toxicity and PP2A-related cardiac inflammation, respectively. Metformin retains its prophylactic potential in the presence of CMS, while mitigating inflammation and Ca2+ signalling dysregulation in the HFrEF myocardium.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia Varela
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sofia Lamprou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michail Chatzistefanou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Andriana Christodoulou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, Plasma Cell Dyscrasias Unit, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Ioannis Trougakos
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, Plasma Cell Dyscrasias Unit, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Plasma Cell Dyscrasias Unit, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Yang L, Yin L, Hu M, Zhao W, Wang C, Chen Y, Li Z, Wang L. Preliminary Evaluation of 18F-Labeled Benzylguanidine Analogs as NET Tracers for Myocardial Infarction Diagnosis. Mol Imaging Biol 2023; 25:1125-1134. [PMID: 37580463 DOI: 10.1007/s11307-023-01844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE Heart failure (HF) remains a major cause of late morbidity and mortality after myocardial infarction (MI). To date, no clinically established 18F-labeled sympathetic nerve PET tracers for monitoring myocardial infarction are available. Therefore, in this study, we synthesized a series of 18F-labeled benzyl guanidine analogs and evaluated their efficacy as cardiac neuronal norepinephrine transporter (NET) tracers for myocardial imaging. We also investigated the preliminary diagnostic capabilities of these tracers in myocardial infarction animal models, as well as the structure-activity relationship of these tracers. PROCEDURES Three benzyl guanidine-NET tracers, including [18F]1, [18F]2, and [18F]3, were synthesized and evaluated in vivo as PET tracers in a myocardial infarction mouse model. [18F]LMI1195 was used as a positive control for the tracers. H&E staining of the isolated myocardial infarction heart tissue sections was performed to verify the efficacy of the selected PET tracer. RESULTS Our data show that [18F]3 had a moderate decay corrected labeling yield (~10%) and high radiochemical purity (>95%) compared to other tracers. The uptake of [18F]3 in normal mouse hearts was 1.7±0.1%ID/cc at 1 h post-injection (p. i.), while it was 2.4±0.1, 2.6±0.9, and 2.1±0.4%ID/cc in the MI mouse hearts at 1, 2, and 3 days after surgery, respectively. Compared with [18F]LMI1195, [18F]3 had a better myocardial imaging effect in terms of the contrast between normal and MI hearts. The area of myocardial infarction shown by PET imaging corresponded well with the infarcted tissue demonstrated by H&E staining. CONCLUSIONS With an obvious cardiac uptake contrast between normal mice and the myocardial infarction mouse model, [18F]3 appears to be a potential tool in the diagnosis of myocardial infarction. Therefore, it is necessary to conduct further structural modification studies on the chemical structure of [18F]3 to improve its in vivo stability and diagnostic detection ability to achieve reliable and practical imaging effects.
Collapse
Affiliation(s)
- Liping Yang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Liping Yin
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Mei Hu
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Weiling Zhao
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Changjiang Wang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China.
| | - Zibo Li
- Department of Radiology, Lineberger Comprehensive Cancer Center, and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Li Wang
- Department of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St, Jiangyang District, Luzhou, Sichuan, China.
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China.
| |
Collapse
|
10
|
Wu G, Zhou J, Ren H, Qin Y, Qian D, Hu Q, Xu P, Yu T, Ma H, Chen H, He M, Shi J. Unraveling the molecular crosstalk and immune landscape between COVID-19 infections and ischemic heart failure comorbidity: New insights into diagnostic biomarkers and therapeutic approaches. Cell Signal 2023; 112:110909. [PMID: 37777104 DOI: 10.1016/j.cellsig.2023.110909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), resulting from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), remains a persistent global health concern. Evidence has highlighted a significant association between COVID-19 and ischemic heart failure (IHF), contributing to disease progression and increased mortality. This study identified diagnostic biomarkers for these comorbidities and elucidated disease progression's molecular mechanisms. METHODS We retrieved differentially expressed gene (DEG) data for COVID-19 and IHF from publicly available microarray and RNA-Seq datasets to investigate the underlying mechanisms and potential pathways associated with the co-occurrence of COVID-19 and IHF. By intersecting the results from the two diseases, we obtained diagnostic biomarkers using SVM-RFE and LASSO algorithms. Animal experiments and immunological analyses were conducted to help understand the association between SARS-CoV-2 and IHF in patients, enabling early diagnosis of disease progression. Finally, we analyzed the regulatory network of critical genes and identified potential drug compounds that could target the genetic links identified in our study. RESULTS 1974 common DEGs were identified between COVID-19 and IHF, contributing to disease progression and potential cancer risk by participating in immune and cancer-related pathways. In addition, we identified six hub genes (VDAC3, EIF2AK2, CHMP5, FTL, VPS4A, and CHMP4B) associated with the co-morbidity, and their diagnostic potential was confirmed through validation using relevant datasets and a mouse model. Functional enrichment analysis and examination of immune cell infiltration revealed immune dysregulation after disease progression. The comorbid hub genes exhibited outstanding immunomodulatory capacities. We also constructed regulatory networks tightly linked to both disorders, including transcription factors (TFs), miRNAs, and genes at both transcriptional and post-transcriptional levels. Finally, we identified 92 potential drug candidates to enhance the precision of anti-comorbidity treatment strategies. CONCLUSION Our study reveals a shared pathogenesis between COVID-19 and IHF, demonstrating that their coexistence exacerbates disease severity. By identifying and consolidating hub genes as pivotal diagnostic biomarkers for COVID-19 and IHF comorbidity, we have made significant advancements in understanding the underlying mechanisms of these conditions. Moreover, our study highlights dysregulated immunity and increased cancer risk in the advanced stages of disease progression. These findings offer novel perspectives for diagnosing and treating IHF progression during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Gujie Wu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiabin Zhou
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Hefei Ren
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai 200032, China
| | - Yiran Qin
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Diandian Qian
- Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Center for Evidence Based Medicine and Clinical Epidemiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qin Hu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China; Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Peng Xu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Tao Yu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huiyun Ma
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Hongyu Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Min He
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Jiayu Shi
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226000, China.
| |
Collapse
|
11
|
Tsigkou V, Oikonomou E, Anastasiou A, Lampsas S, Zakynthinos GE, Kalogeras K, Katsioupa M, Kapsali M, Kourampi I, Pesiridis T, Marinos G, Vavuranakis MA, Tousoulis D, Vavuranakis M, Siasos G. Molecular Mechanisms and Therapeutic Implications of Endothelial Dysfunction in Patients with Heart Failure. Int J Mol Sci 2023; 24:ijms24054321. [PMID: 36901752 PMCID: PMC10001590 DOI: 10.3390/ijms24054321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Heart failure is a complex medical syndrome that is attributed to a number of risk factors; nevertheless, its clinical presentation is quite similar among the different etiologies. Heart failure displays a rapidly increasing prevalence due to the aging of the population and the success of medical treatment and devices. The pathophysiology of heart failure comprises several mechanisms, such as activation of neurohormonal systems, oxidative stress, dysfunctional calcium handling, impaired energy utilization, mitochondrial dysfunction, and inflammation, which are also implicated in the development of endothelial dysfunction. Heart failure with reduced ejection fraction is usually the result of myocardial loss, which progressively ends in myocardial remodeling. On the other hand, heart failure with preserved ejection fraction is common in patients with comorbidities such as diabetes mellitus, obesity, and hypertension, which trigger the creation of a micro-environment of chronic, ongoing inflammation. Interestingly, endothelial dysfunction of both peripheral vessels and coronary epicardial vessels and microcirculation is a common characteristic of both categories of heart failure and has been associated with worse cardiovascular outcomes. Indeed, exercise training and several heart failure drug categories display favorable effects against endothelial dysfunction apart from their established direct myocardial benefit.
Collapse
Affiliation(s)
- Vasiliki Tsigkou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-69-4770-1299
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - George E. Zakynthinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Katsioupa
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Kapsali
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Islam Kourampi
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Theodoros Pesiridis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Georgios Marinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Michael-Andrew Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Sun J, Liu Y, Chen C, Quarm AK, Xi S, Sun T, Zhang D, Qian J, Ding H, Gao J. Cyclophilin D-mediated angiotensin II-induced NADPH oxidase 4 activation in endothelial mitochondrial dysfunction that can be rescued by gallic acid. Eur J Pharmacol 2023; 940:175475. [PMID: 36563952 DOI: 10.1016/j.ejphar.2022.175475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Vascular endothelial dysfunction plays a central role in the most dreadful human diseases, including stroke, tumor metastasis, and the coronavirus disease 2019 (COVID-19). Strong evidence suggests that angiotensin II (Ang II)-induced mitochondrial dysfunction is essential for endothelial dysfunction pathogenesis. However, the precise molecular mechanisms remain obscure. Here, polymerase-interacting protein 2 (Poldip 2) was found in the endothelial mitochondrial matrix and no effects on Poldip 2 and NADPH oxidase 4 (NOX 4) expression treated by Ang II. Interestingly, we first found that Ang II-induced NOX 4 binds with Poldip 2 was dependent on cyclophilin D (CypD). CypD knockdown (KD) significantly inhibited the binding of NOX 4 to Poldip 2, and mitochondrial ROS generation in human umbilical vein endothelial cells (HUVECs). Similar results were also found in cyclosporin A (CsA) treated HUVECs. Our previous study suggested a crosstalk between extracellular regulated protein kinase (ERK) phosphorylation and CypD expression, and gallic acid (GA) inhibited mitochondrial dysfunction in neurons depending on regulating the ERK-CypD axis. Here, we confirmed that GA inhibited Ang II-induced NOX 4 activation and mitochondrial dysfunction via ERK/CypD/NOX 4/Poldip 2 pathway, which provide novel mechanistic insight into CypD act as a key regulator of the NOX 4/Poldip 2 axis in Ang II-induced endothelial mitochondrial dysfunction and GA might be beneficial in the treatment of wide variety of diseases, such as COVID-19, which is worthy further research.
Collapse
Affiliation(s)
- Jing Sun
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China; Department of Traditional Chinese Medicine & Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Yunxi Liu
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chen Chen
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Anthony Kwesi Quarm
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Siyu Xi
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Tingkai Sun
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Dingqi Zhang
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jinjun Qian
- Department of Neurology, The Fourth People's Hospital of Zhenjiang, Zhenjiang, 212001, PR China
| | - Hongqun Ding
- Department of Clinical Laboratory Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Gao
- Neurobiology & Mitochondrial Key Laboratory, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Effective & Toxicity Monitoring Innovative Practice Center for Food Pharmaceutical Specialty, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
13
|
Zhang X, Chen Q, Zhao J, Zhao W, Fan N, Wang Y, Chen H, Rong J. A four-compound remedy AGILe protected H9c2 cardiomyocytes against oxygen glucose deprivation via targeting the TNF-α/NF-κB pathway: Implications for the therapy of myocardial infarction. Front Pharmacol 2023; 14:1050970. [PMID: 36713834 PMCID: PMC9880036 DOI: 10.3389/fphar.2023.1050970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Myocardial infarction (MI) is a highly prevalent and lethal disease worldwide. Prevention and timely recovery are critical for the control of the recurrence and heart failure in MI survivors. The present study was designed to investigate the cardioprotective activity of the herbal medicine formula Baoyuan Decoction (BYD) and identify the active compounds and molecular targets. The ethanolic BYD extract (BYDE) was prepared by water extraction and ethanol precipitation of four herbal medicines, Astragali Radix, Ginseng Radix et Rhizoma, Cinnamomi Cortex, and Glycyrrhizae Radix et Rhizoma. Initially, BYDE was validated for the cardioprotective effectiveness in a mouse model of ischemia injury and rat cardiomyocyte H9C2 cells. As results, BYDE effectively reduced infarct size from 56% to 37% and preserved cardiac functions in mouse MI model while protected H9C2 cells against oxygen glucose deprivation. Subsequent network pharmacology analysis revealed that 122 bioactive ingredients, including flavonoids and saponins from the UPLC-MS/MS profile of BYDE, might target 37 MI-related proteins, including inflammatory and apoptotic mediators (e.g., TNF, NFKB1, CASPs, TNFRSF1A, CXCL12, BCL2A1). Pathway enrichment analysis suggested that BYDE might control the cardiac inflammation via targeting the tumor necrosis factor-alpha (TNF-α)/nuclear factor-κB (NF-κB) pathway while the selected targets were also implicated in IL-17 signaling pathway, lipid and atherosclerosis. Consequently, adenosine, ginsenoside Rh2, isoliquiritigenin, and licochalcone A were selected to generate the four-compound mixture AGILe and validated for the inhibitory effects on the TNF-α/NF-κB pathway. The results of the present study suggested that the mixture AGILe might be a potential cardioprotective remedy against MI.
Collapse
Affiliation(s)
- Xiuying Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Pokfulam, Hong Kong SAR, China
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wei Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ni Fan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Pokfulam, Hong Kong SAR, China
| | - Jianhui Rong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,*Correspondence: Jianhui Rong,
| |
Collapse
|
14
|
Chen XS, Cui JR, Meng XL, Wang SH, Wei W, Gao YL, Shou ST, Liu YC, Chai YF. Angiotensin-(1-7) ameliorates sepsis-induced cardiomyopathy by alleviating inflammatory response and mitochondrial damage through the NF-κB and MAPK pathways. J Transl Med 2023; 21:2. [PMID: 36593471 PMCID: PMC9807106 DOI: 10.1186/s12967-022-03842-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There is no available viable treatment for Sepsis-Induced Cardiomyopathy (SIC), a common sepsis complication with a higher fatality risk. The septic patients showed an abnormal activation of the renin angiotensin (Ang) aldosterone system (RAAS). However, it is not known how the Ang II and Ang-(1-7) affect SIC. METHODS Peripheral plasma was collected from the Healthy Control (HC) and septic patients and Ang II and Ang-(1-7) protein concentrations were measured. The in vitro and in vivo models of SIC were developed using Lipopolysaccharide (LPS) to preliminarily explore the relationship between the SIC state, Ang II, and Ang-(1-7) levels, along with the protective function of exogenous Ang-(1-7) on SIC. RESULTS Peripheral plasma Ang II and the Ang II/Ang-(1-7) levels in SIC-affected patients were elevated compared to the levels in HC and non-SIC patients, however, the HC showed higher Ang-(1-7) levels. Furthermore, peripheral plasma Ang II, Ang II/Ang-(1-7), and Ang-(1-7) levels in SIC patients were significantly correlated with the degree of myocardial injury. Additionally, exogenous Ang-(1-7) can attenuate inflammatory response, reduce oxidative stress, maintain mitochondrial dynamics homeostasis, and alleviate mitochondrial structural and functional damage by inhibiting nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thus alleviating SIC. CONCLUSIONS Plasma Ang-(1-7), Ang II, and Ang II/Ang-(1-7) levels were regarded as significant SIC biomarkers. In SIC, therapeutic targeting of RAAS, for example with Ang-(1-7), may exert protective roles against myocardial damage.
Collapse
Affiliation(s)
- Xin-Sen Chen
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Jing-Rui Cui
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Xiang-Long Meng
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Shu-Hang Wang
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Wei Wei
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yu-Lei Gao
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Song-Tao Shou
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yan-Cun Liu
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yan-Fen Chai
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| |
Collapse
|
15
|
Miao R, Wang L, Chen Z, Ge S, Li L, Zhang K, Chen Y, Guo W, Duan X, Zhu M, Zhao G, Lin F. Advances in the study of nicotinamide adenine dinucleotide phosphate oxidase in myocardial remodeling. Front Cardiovasc Med 2022; 9:1000578. [PMID: 36407440 PMCID: PMC9669076 DOI: 10.3389/fcvm.2022.1000578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/18/2022] [Indexed: 07/30/2023] Open
Abstract
Myocardial remodeling is a key pathophysiological basis of heart failure, which seriously threatens human health and causes a severe economic burden worldwide. During chronic stress, the heart undergoes myocardial remodeling, mainly manifested by cardiomyocyte hypertrophy, apoptosis, interstitial fibrosis, chamber enlargement, and cardiac dysfunction. The NADPH oxidase family (NOXs) are multisubunit transmembrane enzyme complexes involved in the generation of redox signals. Studies have shown that NOXs are highly expressed in the heart and are involved in the pathological development process of myocardial remodeling, which influences the development of heart failure. This review summarizes the progress of research on the pathophysiological processes related to the regulation of myocardial remodeling by NOXs, suggesting that NOXs-dependent regulatory mechanisms of myocardial remodeling are promising new therapeutic targets for the treatment of heart failure.
Collapse
Affiliation(s)
- Runran Miao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Libo Wang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Zhigang Chen
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
- Cardiovascular Repair Engineering Technology Research Center, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
- International Joint Laboratory of Cardiovascular Injury and Repair, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shiqi Ge
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Li Li
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Kai Zhang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Yingen Chen
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Wenjing Guo
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Xulei Duan
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Mingyang Zhu
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
- Cardiovascular Repair Engineering Technology Research Center, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
- International Joint Laboratory of Cardiovascular Injury and Repair, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Fei Lin
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Xinxiang, China
- Cardiovascular Repair Engineering Technology Research Center, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
- International Joint Laboratory of Cardiovascular Injury and Repair, The First Affifiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
16
|
Chen XS, Wang SH, Liu CY, Gao YL, Meng XL, Wei W, Shou ST, Liu YC, Chai YF. Losartan attenuates sepsis-induced cardiomyopathy by regulating macrophage polarization via TLR4-mediated NF-κB and MAPK signaling. Pharmacol Res 2022; 185:106473. [PMID: 36182039 DOI: 10.1016/j.phrs.2022.106473] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022]
Abstract
Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis with high mortality but no effective treatment. The renin angiotensin (Ang) aldosterone system (RAAS) is activated in patients with sepsis but it is unclear how the Ang II/Ang II type 1 receptor (AT1R) axis contributes to SIC. This study examined the link between the Ang II/AT1R axis and SIC as well as the protective effect of AT1R blockers (ARBs). The Ang II level in peripheral plasma and AT1R expression on monocytes were significantly higher in patients with SIC compared with those in non-SIC patients and healthy controls and were correlated with the degree of myocardial injury. The ARB losartan reduced the infiltration of neutrophils, monocytes, and macrophages into the heart and spleen of SIC mice. Additionally, losartan regulated macrophage polarization from the M1 to the M2 subtype via nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thereby maintaining the mitochondrial dynamics balance in cardiomyocytes and reducing oxidative stress and cardiomyocyte apoptosis. In conclusion, the plasma Ang II level and AT1R expression on plasma monocytes are an important biomarker in SIC. Therapeutic targeting of AT1R, for example with losartan, can potentially protect against myocardial injury in SIC.
Collapse
Affiliation(s)
- Xin-Sen Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Shu-Hang Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Chen-Yan Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Yu-Lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Xiang-Long Meng
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Wei Wei
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Song-Tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China.
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China.
| |
Collapse
|
17
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, is a global pandemic impacting 254 million people in 190 countries. Comorbidities, particularly cardiovascular disease, diabetes, and hypertension, increase the risk of infection and poor outcomes. SARS-CoV-2 enters host cells through the angiotensin-converting enzyme-2 receptor, generating inflammation and cytokine storm, often resulting in multiorgan failure. The mechanisms and effects of COVID-19 on patients with high-risk diabetes are not yet completely understood. In this review, we discuss the variety of coronaviruses, structure of SARS-CoV-2, mutations in SARS-CoV-2 spike proteins, receptors associated with viral host entry, and disease progression. Furthermore, we focus on possible mechanisms of SARS-CoV-2 in diabetes, leading to inflammation and heart failure. Finally, we discuss existing therapeutic approaches, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Chandrakala Aluganti Narasimhulu
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| |
Collapse
|
18
|
Zhou W, Yang W, Fan K, Hua W, Gou S. A hypoxia-activated NO donor for the treatment of myocardial hypoxia injury. Chem Sci 2022; 13:3549-3555. [PMID: 35432877 PMCID: PMC8943891 DOI: 10.1039/d2sc00048b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
As present NO donor drugs cannot localize to release NO at the hypoxic site, along with the short half-life and bidirectional regulation of NO, they are unable to overcome low bioavailability and side effects in the treatment of myocardial hypoxia injury. In this study, we designed and prepared a novel hypoxia-activated NO donor (Hano) by hybridization of a known NO donor compound (Nno) with a hypoxia-activated group. Hano and isosorbide dinitrate were compared in terms of NO release and anti-myocardial hypoxia injury. Furthermore, the effects of Hano and Nno on releasing NO, dilating blood vessels, and preventing myocardial hypoxia injury were studied and compared in smooth muscle cells, cardiomyocytes and mice. The results showed that the NO release by Hano increased either in smooth muscle cells or in myocardial cells under hypoxia conditions. Significantly, Hano was found capable of dilating blood vessels and attenuating hypoxia injury both in vitro and in vivo, and has great potential as a hypoxia-activated NO donor drug to treat hypoxic heart diseases.
Collapse
Affiliation(s)
- Wen Zhou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Wanxiang Yang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Keyu Fan
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Wuyang Hua
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University Nanjing 211189 China
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| |
Collapse
|
19
|
[Experimental study on the construction of telmisartan/collagen/polycaprolactone nerve conduit and its repair effect on rat sciatic nerve defect]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:352-361. [PMID: 35293178 PMCID: PMC8923921 DOI: 10.7507/1002-1892.202108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To construction the telmisartan/collagen/polycaprolactone (PCL) nerve conduit and assess its effect on repairing sciatic nerve defect in rats. METHODS The 60% collagen/hexafluoroisopropanol (HFIP) solution and 40% PCL/HFIP solution were prepared and mixed (collagen/PCL solution). Then the 0, 5, 10, and 20 mg of telmisartan were mixed with the 10 mL collagen/PCL solution, respectively. Telmisartan/collagen/PCL nerve conduits were fabricated via high voltage electrospinning technology. The structure of nerve conduit before and after crosslinking was observed by using scanning electron microscope (SEM). The drug release efficiency was detected by in vitro sustained release method. RAW264.7 cells were cultured with lipopolysaccharide to induce inflammation, and then co-cultured with nerve conduits loaded with different concentrations of telmisartan for 24 hours. The mRNA expressions of inducible nitric oxide synthase (iNOS) and Arginase 1 (Arg-1) were detected by using real-time fluorescence quantitative PCR. Forty adult Wistar rats were randomly divided into 4 groups ( n=10). After preparing 15-mm-long sciatic nerve defect, the defect was repaired by cross-linked nerve conduits loaded with 0, 5, 10, and 20 mg telmisartan in groups A, B, C, and D, respectively. After operation, the general condition of rats was observed after operation; the sciatic function index (SFI) was tested; the bridging between the nerve conduit and sciatic nerve, and the integrity of nerve conduit were observed; the tissue growth in nerve conduit and material degradation were observed by HE staining; the expressions of CD86 (M1 macrophage marker), CD206 (M2 macrophage marker), myelin basic protein (MBP), and myelin protein 0 (P0) in new tissues were also observed by immunohistochemical staining; the expressions of neurofilament 200 (NF-200) and S-100β in new tissues were assessed by immunofluorescence staining. RESULTS The general observation showed that the inner diameter of the nerve conduit was 1.8 mm and the outer diameter was 2.0 mm. After cross-linking by genipin, the nanofiber became thicker and denser. The drug release test showed that the telmisartan loaded nerve conduit could be released gradually. With the increase of telmisartan content in nerve conduit, the iNOS mRNA expression decreased and the Arg-1 mRNA expression increased; and the differences between 20 mg group and other groups were significant ( P<0.05). In vivo experiment showed that all animals in each group survived until the completion of the experiment. The SFI was significantly higher in groups C and D than in groups A and B at different time points ( P<0.05) and in group D than in group C at 6 months after operation ( P<0.05). HE staining showed that there were significantly more new tissues in the middle of the nerve conduit in group D after operation than in other groups. Immunohistochemical staining showed that CD86 and CD206 stainings were positive in each group at 1 month after operation, among which group D had the lowest positive rate of CD86 and the highest positive rate of CD206, and there were significant differences in the positive rate of CD206 between group D and groups A, B, and C ( P<0.05); the MBP and P0 stainings were positive in groups C and D at 6 months, and the positive rate in group D was significantly higher than that in group C ( P<0.05). Immunofluorescence staining showed that the NF-200 and S-100β expressions in group D were significantly higher than those in other groups. CONCLUSION Telmisartan/collagen/PLC nerve conduit can promote the sciatic nerve defect repair in rats through promoting the polarization of M1 macrophages to M2 macrophages, and the nerve conduit loaded with20 mg telmisartan has the most significant effect.
Collapse
|
20
|
Sharma GP, Fish BL, Frei AC, Narayanan J, Gasperetti T, Scholler D, Pierce L, Szalewski N, Blue N, Medhora M, Himburg HA. Pharmacological ACE-inhibition Mitigates Radiation-Induced Pneumonitis by Suppressing ACE-expressing Lung Myeloid Cells. Int J Radiat Oncol Biol Phys 2022; 113:177-191. [PMID: 35093482 PMCID: PMC9018504 DOI: 10.1016/j.ijrobp.2022.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE Radiation-induced lung injury is a major dose-limiting toxicity for thoracic radiotherapy patients. In experimental models, treatment with angiotensin converting enzyme (ACE) inhibitors mitigates radiation pneumonitis; however, the mechanism of action is not well understood. Here, we evaluate the direct role of ACE inhibition on lung immune cells. METHODS AND MATERIALS ACE expression and activity were determined in the lung immune cell compartment of irradiated adult rats following either high dose fractionated radiation therapy (RT) to the right lung (5 fractions x 9 Gy) or a single dose of 13.5 Gy partial body irradiation (PBI). Mitigation of radiation-induced pneumonitis with the ACE-inhibitor lisinopril was evaluated in the 13.5 Gy rat PBI model. During pneumonitis, we characterized inflammation and immune cell content in the lungs and bronchoalveolar lavage fluid (BALF). In vitro mechanistic studies were performed using primary human monocytes and the human monocytic THP-1 cell line. RESULTS In both the PBI and fractionated RT models, radiation increased ACE activity in lung immune cells. Treatment with lisinopril improved survival during radiation pneumonitis (p=0.0004). Lisinopril abrogated radiation-induced increases in BALF MCP-1 (CCL2) and MIP-1α cytokine levels (p < 0.0001). Treatment with lisinopril reduced both ACE expression (p=0.006) and frequency of CD45+CD11b+ lung myeloid cells (p=0.004). In vitro, radiation injury acutely increased ACE activity (p=0.045) and reactive oxygen species (ROS) generation (p=0.004) in human monocytes, whereas treatment with lisinopril blocked radiation-induced increases in both ACE and ROS. Interestingly, radiation-induced ROS generation was blocked by pharmacological inhibition of either NADPH oxidase 2 (NOX2) (p=0.012) or the type 1 angiotensin receptor (AGTR1) (p=0.013). CONCLUSIONS These data demonstrate radiation-induced ACE activation within the immune compartment promotes the pathogenesis of radiation pneumonitis, while ACE inhibition suppresses activation of pro-inflammatory immune cell subsets. Mechanistically, our in vitro data demonstrate radiation directly activates the ACE/AGTR1 pathway in immune cells and promotes generation of ROS via Nox2.
Collapse
Affiliation(s)
- Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Anne C Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Dana Scholler
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Lauren Pierce
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Nathan Szalewski
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Noah Blue
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Cancer Center, Medical College of Wisconsin.
| |
Collapse
|
21
|
Liu J, Ning L. Protective role of emodin in rats with post-myocardial infarction heart failure and influence on extracellular signal-regulated kinase pathway. Bioengineered 2021; 12:10246-10253. [PMID: 34839778 PMCID: PMC8809930 DOI: 10.1080/21655979.2021.1983977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Abstract
We aimed to explore the effects of emodin on the energy metabolism of myocardial cells in rats with post-myocardial infarction (MI) heart failure (HF) and the extracellular signal-regulated kinase (ERK) pathway. The model of MI was established by ligation of the left anterior descending branch. After 4 weeks, the rats with left ventricular ejection fraction (LVEF) of ≤45% were used aspost-MI HF model animals and randomly divided into model, low-dose, middle-dose, high-dose and control groups (n=10). Low-, middle- and high-dose groups were gavaged with 20 mg/kg, 40 mg/kg and 60 mg/kg emodin daily, respectively. After administration for 14 d, the changes in LVEF, left ventricular end-systolic diameter (LVESD), left ventricular end-diastolic diameter (LVEDD) and interventricular septum thickness (IVS) were analyzed. The apoptosis rate of myocardial cells was detected by TUNEL staining. The levels of serum cardiac troponin I (cTnI) and peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) were determined using ELISA, and the expressions of mitochondrial respiratory chain complex I protein and phosphorylated-ERK (p-ERK) in myocardial tissues were determined by Western blotting. Compared with model group, LVEDD, LVESD, apoptosis rate of myocardial cells, levels of serum cTnI and PGC-1, and expressions of complex I and p-ERK in myocardial tissues significantly decreased, while LVEF and IVS increased in low-dose, middle-dose, high-dose and control groups (P<0.05). The changes in the above indices were significantly dependent on the dose of emodin (P<0.05).Emodin can significantly relieve post-MI HF, reduce the apoptosis rate of myocardial tissues, and ameliorate the cardiac function of rats.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Cardiovascular Medicine, Avic 363 Hospital, Chengdu, Sichuan Province, China
| | - Liang Ning
- Department of Cardiovascular Medicine, Avic 363 Hospital, Chengdu, Sichuan Province, China
| |
Collapse
|
22
|
Violi F, Cammisotto V, Pignatelli P. Thrombosis in Covid-19 and non-Covid-19 pneumonia: role of platelets. Platelets 2021; 32:1009-1017. [PMID: 34097572 PMCID: PMC8204311 DOI: 10.1080/09537104.2021.1936478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/09/2023]
Abstract
Platelets may be a target of bacteria and viruses, which can directly or indirectly activate them so promoting thrombosis. In accordance with this, community-acquired pneumonia (CAP) is complicated by ischemia-related vascular disease (myocardial infarction and stroke) in roughly 10% of patients while the incidence of venous thrombosis is uncertain. In CAP platelet biosynthesis of TxA2 is augmented and associated with myocardial infarction; however, a cause-effect relationship is still unclear as unclear is if platelet activation promotes thrombosis or functional changes of coronary tree such vasospasm. Retrospective studies suggested a potential role of aspirin in reducing mortality but the impact on vascular disease is still unknown. Coronavirus disease 2019 (Covid-19) is complicated by thrombosis in roughly 20% of patients with an almost equivalent localization in arterial and venous circulation. Platelet activation seems to have a pivot role in the thrombotic process in Covid-19 as consistently evidenced by its involvement in promoting Tissue Factor up-regulation via leucocyte interaction. Until now, antiplatelet treatment has been scarcely considered for the treatment of Covid-19; interventional trials, however, are in progress to explore this issue. The aim of this review is 1) to compare the type of vascular diseases complicating CAP and Covid-19 2) to assess the different role of platelets in both diseases and 3) to discuss if antiplatelet treatment is potentially useful to improve clinical outcomes.
Collapse
Affiliation(s)
- Francesco Violi
- I Clinica Medica, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Specialty Paride Stefanini, Sapienza University of Rome, Rome, Italy
| | - Pasquale Pignatelli
- I Clinica Medica, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
23
|
Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid Redox Signal 2021; 35:1226-1268. [PMID: 33985343 DOI: 10.1089/ars.2021.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna D Clark
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), Biochemistry, Biophysics and Structural Biology, CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
24
|
Verma K, Pant M, Paliwal S, Dwivedi J, Sharma S. An Insight on Multicentric Signaling of Angiotensin II in Cardiovascular system: A Recent Update. Front Pharmacol 2021; 12:734917. [PMID: 34489714 PMCID: PMC8417791 DOI: 10.3389/fphar.2021.734917] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
The multifaceted nature of the renin-angiotensin system (RAS) makes it versatile due to its involvement in pathogenesis of the cardiovascular disease. Angiotensin II (Ang II), a multifaceted member of RAS family is known to have various potential effects. The knowledge of this peptide has immensely ameliorated after meticulous research for decades. Several studies have evidenced angiotensin I receptor (AT1 R) to mediate the majority Ang II-regulated functions in the system. Functional crosstalk between AT1 R mediated signal transduction cascades and other signaling pathways has been recognized. The review will provide an up-to-date information and recent discoveries involved in Ang II receptor signal transduction and their functional significance in the cardiovascular system for potential translation in therapeutics. Moreover, the review also focuses on the role of stem cell-based therapies in the cardiovascular system.
Collapse
Affiliation(s)
- Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Malvika Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| |
Collapse
|
25
|
Garcia-Garduño TC, Padilla-Gutierrez JR, Cambrón-Mora D, Valle Y. RAAS: A Convergent Player in Ischemic Heart Failure and Cancer. Int J Mol Sci 2021; 22:7106. [PMID: 34281199 PMCID: PMC8268500 DOI: 10.3390/ijms22137106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
The current global prevalence of heart failure is estimated at 64.34 million cases, and it is expected to increase in the coming years, especially in countries with a medium-low sociodemographic index where the prevalence of risk factors is increasing alarmingly. Heart failure is associated with many comorbidities and among them, cancer has stood out as a contributor of death in these patients. This connection points out new challenges both in the context of the pathophysiological mechanisms involved, as well as in the quality of life of affected individuals. A hallmark of heart failure is chronic activation of the renin-angiotensin-aldosterone system, especially marked by a systemic increase in levels of angiotensin-II, a peptide with pleiotropic activities. Drugs that target the renin-angiotensin-aldosterone system have shown promising results both in the prevention of secondary cardiovascular events in myocardial infarction and heart failure, including a lower risk of certain cancers in these patients, as well as in current cancer therapies; therefore, understanding the mechanisms involved in this complex relationship will provide tools for a better diagnosis and treatment and to improve the prognosis and quality of life of people suffering from these two deadly diseases.
Collapse
Affiliation(s)
- Texali C. Garcia-Garduño
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico; (T.C.G.-G.); (J.R.P.-G.)
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Jorge R. Padilla-Gutierrez
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico; (T.C.G.-G.); (J.R.P.-G.)
| | - Diego Cambrón-Mora
- Doctorado en Biología Molecular, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Yeminia Valle
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico; (T.C.G.-G.); (J.R.P.-G.)
| |
Collapse
|
26
|
Perrotta S, Carnevale D. A neurohumoral activation of renin-angiotensin-aldosterone system in endothelial dysfunction modulating immunity in heart failure. Cardiovasc Res 2021; 117:9-10. [PMID: 32750101 DOI: 10.1093/cvr/cvaa243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sara Perrotta
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Daniela Carnevale
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.,Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| |
Collapse
|
27
|
Hsu WT, Tseng YH, Jui HY, Kuo CC, Wu KK, Lee CM. 5-Methoxytryptophan attenuates postinfarct cardiac injury by controlling oxidative stress and immune activation. J Mol Cell Cardiol 2021; 158:101-114. [PMID: 34087195 DOI: 10.1016/j.yjmcc.2021.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/20/2023]
Abstract
AIMS Myocardial infarction (MI) remains a major cause of heart failure. 5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of L-tryptophan, exerts anti-inflammatory and antifibrotic effects, but MI impairs the biosynthesis of cardiac 5-MTP. Therefore, we evaluated the effect of exogenous 5-MTP administration on rescuing post-MI cardiac injury. METHODS AND RESULTS After a detailed pharmacokinetic analysis of 5-MTP, Sprague Dawley rats that had undergone left anterior descending coronary artery ligation received intraperitoneal administration of either 17 mg/kg 5-MTP or saline at 0.5 and 24 h after MI. Cardiac systolic function, infarction size, and fibrosis were evaluated using echocardiography, triphenyltetrazolium chloride staining, and Masson trichrome staining, respectively. Myocardial apoptosis was analyzed by staining for caspase-3 and cardiac troponin I. 5-MTP treatment decreased the infarct area and myocardial apoptosis; attenuated systolic dysfunction and left ventricular dilatation; and reduced cardiomyocyte hypertrophy, myocardial fibrosis, and infarct expansion. Crucially, 5-MTP alleviated oxidative stress by preserving mitochondrial antioxidant enzymes and downregulating reactive oxygen species-generating NADPH oxidase isoforms and endothelin-1. Consequently, 5-MTP-treated MI rat hearts exhibited lower levels of chemokines and cytokines, namely interleukin (IL)-1β, IL-18, IL-6, C-C motif chemokine ligand (CCL)-2, and CCL5, accompanied by reduced infiltration of CD11b+ cells and CD4+ T cells. Notably, 5-MTP protected against H2O2-induced damage in HL-1 cardiomyocytes and human umbilical vein endothelial cells in vitro. CONCLUSION 5-MTP prevented post-MI cardiac injury by promoting mitochondrial stabilization and controlling redox imbalance. This cytoprotective effect ameliorated macrophage and T-cell infiltration, thus reducing the infarct size, attenuating fibrosis, and restoring myocardial function.
Collapse
Affiliation(s)
- Wan-Tseng Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hsuan Tseng
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiang-Yiang Jui
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; College of Life Sciences, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Chii-Ming Lee
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
28
|
Münzel T, Templin C, Cammann VL, Hahad O. Takotsubo Syndrome: Impact of endothelial dysfunction and oxidative stress. Free Radic Biol Med 2021; 169:216-223. [PMID: 33864955 DOI: 10.1016/j.freeradbiomed.2021.03.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/30/2022]
Abstract
Takotsubo Syndrome (TTS) is characterized by a transient left ventricular dysfunction recovering spontaneously within days or weeks. Although the pathophysiology of TTS remains obscure, there is growing evidence suggesting TTS to be associated with increased production of reactive oxygen species (ROS), which may be involved in causing transient coronary and peripheral endothelial dysfunction leading to a transient impairment of myocardial contraction due to stunning (apical ballooning). Endothelial dysfunction is mainly caused by decreased vascular and myocardial nitric oxide bioavailability in response to increased ROS production. Accordingly, studies in humans and animal models demonstrated increased myocardial dihydroethidium staining of the myocardium in endomyocardial biopsy specimens, increased levels of hydrogen peroxide and malondialdehyde as well as reduced glutathione levels compatible with increased oxidative stress. As significant superoxide sources the mitochondria and the NADPH oxidase isoform NOX-4 and the NOX-2 regulating cytosolic subunit p67phox have been identified. Treatment with antioxidants such as sodium hydrosulfide reduced superoxide production in mitochondria and reduced expression of NOX-4 and p67phox, respectively. The presence of superoxide and nitric oxide also provides the basis for the concept of nitro-oxidative as well as nitrosative stress in TTS.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany.
| | | | | | - Omar Hahad
- Department of Cardiology, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
29
|
Succurro E, Andreozzi F, Carnevale R, Sciacqua A, Cammisotto V, Cassano V, Mannino GC, Fiorentino TV, Pastori D, Pignatelli P, Sesti G, Violi F. Nox2 up-regulation and hypoalbuminemia in patients with type 2 diabetes mellitus. Free Radic Biol Med 2021; 168:1-5. [PMID: 33775771 DOI: 10.1016/j.freeradbiomed.2021.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with oxidative stress but the underlying mechanisms promoting oxidative stress as well as its relationship with cardiovascular events is still unclear. In 375 T2DM patients who were followed-up for approximately 5 years we measured the serum levels of soluble NOX2-derived peptide (sNOX2-dp), a marker of Nox2 activation, and albumin, a powerful antioxidant protein. In the entire cohort soluble Nox2 and serum albumin were significantly correlated (r = -0.348, P < 0.0001). During the follow-up 49 cardiovascular events (CVE) were registered, of which 45 were non-fatal myocardial infarction (MI); patients with non-fatal MI had significantly higher soluble NOX2/albumin ratio compared to cardiovascular events-free patients. Cox regression analysis showed a significant association between sNox2-dp/serum albumin ratio and the incidental risk of non-fatal MI (HR 1.106, CI95% 1.020-1.198, P = 0.014). The study suggests that redox status imbalance negatively influences vascular outcomes in T2DM.
Collapse
Affiliation(s)
- Elena Succurro
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, Rome, Italy
| | - Velia Cassano
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Gaia C Mannino
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Teresa V Fiorentino
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Daniele Pastori
- Department of Clinical, Internal, Anaesthesiologic, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Pasquale Pignatelli
- Mediterranea Cardiocentro, Napoli, Italy; Department of Clinical, Internal, Anaesthesiologic, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, Sapienza, University of Rome, Rome, Italy
| | - Francesco Violi
- Mediterranea Cardiocentro, Napoli, Italy; Department of Clinical, Internal, Anaesthesiologic, and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
30
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
31
|
ACE Inhibition Modulates Myeloid Hematopoiesis after Acute Myocardial Infarction and Reduces Cardiac and Vascular Inflammation in Ischemic Heart Failure. Antioxidants (Basel) 2021; 10:antiox10030396. [PMID: 33807982 PMCID: PMC8001011 DOI: 10.3390/antiox10030396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
Aims: Angiotensin-converting-enzyme inhibitors (ACE inhibitors) are a cornerstone of drug therapy after myocardial infarction (MI) and improve left ventricular function and survival. We aimed to elucidate the impact of early treatment with the ACE inhibitor ramipril on the hematopoietic response after MI, as well as on the chronic systemic and vascular inflammation. Methods and Results: In a mouse model of MI, induced by permanent ligation of the left anterior descending artery, immediate initiation of treatment with ramipril (10 mg/k/d via drinking water) reduced cardiac inflammation and the number of circulating inflammatory monocytes, whereas left ventricular function was not altered significantly, respectively. This effect was accompanied by enhanced retention of hematopoietic stem cells, Lin−Sca1−c-Kit+CD34+CD16/32+ granulocyte–macrophage progenitors (GMP) and Lin−Sca1−c-Kit+CD150−CD48− multipotent progenitors (MPP) in the bone marrow, with an upregulation of the niche factors Angiopoetin 1 and Kitl at 7 d post MI. Long-term ACE inhibition for 28 d limited vascular inflammation, particularly the infiltration of Ly6Chigh monocytes/macrophages, and reduced superoxide formation, resulting in improved endothelial function in mice with ischemic heart failure. Conclusion: ACE inhibition modulates the myeloid inflammatory response after MI due to the retention of myeloid precursor cells in their bone marrow reservoir. This results in a reduction in cardiac and vascular inflammation with improvement in survival after MI.
Collapse
|
32
|
Harenberg J, Violi F. Waves of SARS-CoV-2 Infection and Blood Coagulation-A Link and Beyond. Thromb Haemost 2021; 121:4-6. [PMID: 33477197 DOI: 10.1055/s-0040-1721778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Job Harenberg
- Medical Faculty Mannheim, Ruprecht-Karls-University, Heidelberg, Germany.,DOASENSE GmbH, Heidelberg, Germany
| | | |
Collapse
|
33
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to multi-system dysfunction with emerging evidence suggesting that SARS-CoV-2-mediated endothelial injury is an important effector of the virus. Potential therapies that address vascular system dysfunction and its sequelae may have an important role in treating SARS-CoV-2 infection and its long-lasting effects.
Collapse
Affiliation(s)
- Hasan K Siddiqi
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Paul M Ridker
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|