1
|
Sun J, Gui Y, Yin H, Yan B, Chen Y, Belke D, Hill JA, Zhou S, Zheng XL. Roles of Brd4 in Vascular Smooth Muscle Cells: Implications for Aging and Vascular Dysfunction. Arterioscler Thromb Vasc Biol 2025. [PMID: 40401376 DOI: 10.1161/atvbaha.124.322158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 05/07/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Growing evidence suggests that the epigenetic reader Brd4 (bromodomain-containing protein 4) is involved in aging and aging-related diseases. However, the specific mechanisms by which Brd4 influences vascular aging, especially senescence of vascular smooth muscle cells (SMCs), remain unexplored. METHODS Primary cell cultures were established using mouse aortic SMCs and treated with Brd4 inhibitor, ARV-825, or (+)-JQ1. Primary Brd4flox/flox mouse aortic SMCs were transduced with Ad-Cre virus to induce Brd4 knockout (KO). Senescence was assessed through SA-β-gal (senescence-associated β-galactosidase) staining. A mouse model of inducible SMC-specific Brd4 gene KO (SMC-Brd4-KO) was generated with the Cre-LoxP system. The control and SMC-Brd4-KO mice were evaluated for arterial contractility, blood pressure, arterial stiffness, and Ang II (angiotensin II)-induced vascular aging, as well as transcriptome profiling using RNA-sequencing analysis. RESULTS Brd4 inhibition with ARV-825, (+)-JQ1, or Brd4 knockdown through Ad-Cre virus in Brd4flox/flox SMCs led to cellular senescence. Induced SMC-Brd4-KO in adult mice prevented neointima formation. SMC-Brd4-KO mice exhibited increased aortic stiffness and blood pressure with enhanced arterial contractility ex vivo. In addition, Brd4 expression was downregulated in aortic tissues of aged mice and senescent human aortic SMCs. Furthermore, SMC-Brd4-KO mice displayed more prominent histopathologic features of vascular aging in response to Ang II infusion. Aortic tissues from SMC-Brd4-KO mice showed a more robust contractile response to Ang II and phenylephrine, accompanied by multiple genetic changes, including alterations in cytoskeleton genes. Transcriptomes of Brd4 KO aortas displayed gene signatures of dampened autophagy, intriguingly associated with a downregulation of microtubule genes, including Tuba4a (α-tubulin). Experiments in vitro with Brd4 KO SMCs demonstrated the potential role of impaired autophagy and depleted α-tubulin in mediating induction of senescence in SMCs. CONCLUSIONS Brd4 depletion in SMCs induces senescence, prevents neointima formation, and exacerbates vascular aging, highlighting its crucial roles in vascular functions and diseases.
Collapse
Affiliation(s)
- Jiaxing Sun
- Department of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada. (J.S., Y.G., B.Y., X.-L.Z.)
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (J.S., S.Z.)
| | - Yu Gui
- Department of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada. (J.S., Y.G., B.Y., X.-L.Z.)
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (H.Y.)
| | - Binjie Yan
- Department of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada. (J.S., Y.G., B.Y., X.-L.Z.)
| | - Yongxiang Chen
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Alberta, Canada. (Y.C., D.B.)
| | - Darrell Belke
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Alberta, Canada. (Y.C., D.B.)
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas (J.A.H.)
| | - Shenghua Zhou
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China (J.S., S.Z.)
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada. (J.S., Y.G., B.Y., X.-L.Z.)
| |
Collapse
|
2
|
Boettger P, Schwertz H, Platsch H, Mueller-Werdan U, Werdan K, Buerke M. Intramural Administration of Translational Inhibitor Puromycin Upon Balloon Angioplasty Inhibits SMC Proliferation and Protein Synthesis-Vascular Proteome Profiling Analysis. Proteomics Clin Appl 2025; 19:e202400066. [PMID: 39993432 DOI: 10.1002/prca.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
INTRODUCTION Percutaneous transluminal coronary angioplasty (PTCA) is an effective procedure to decrease the severity of stenotic coronary atherosclerotic lesions. However, its long-term success is limited by the formation of restenosis or neointima by increased proliferation of smooth muscle cells (SMCs) and synthesis of extracellular matrix. Polypeptide growth factors are potent SMC mitogens and are involved in SMC proliferation and extracellular matrix (ECM) synthesis. In this line, inhibition of de novo protein synthesis might be beneficial. METHODS We examined the effects of different concentrations of translational inhibitor puromycin on SMC proliferation and apoptosis, in vitro. Further, we examined the effects of local administration of puromycin in a rabbit balloon injury model of the iliac artery. RESULTS Injection of puromycin or its vehicle was performed with an infusion-balloon catheter directly into the vessel wall during angioplasty. PTA in the vehicle group resulted in neointima formation 3 weeks after the vascular intervention. In contrast, puromycin treatment resulted in a significant reduction of intima-media ratio. We observed decreased elastin and collagen III synthesis in puromycin-treated animals. With proteomics, we could demonstrate reduced protein expression of lamin, vimentin, alpha-1 antitrypsin, alpha-actin allowing puromycin treatment. In in vitro experiments, puromycin decreased SMCs proliferation (i.e., BrdU incorporation) following FCS stimulation. PERSPECTIVE Based on the data from our animal experiments, aministration of puromycin directly into the vessel wall during angioplasty may be effective in preventing or reducing restenosis in humans.
Collapse
Affiliation(s)
- Priyanka Boettger
- Department of Medicine II Cardiology, Intensive Care Medicine, Angiology, St. Marien Hospital, Siegen, Germany
- Department of Medicine III Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Hansjörg Schwertz
- Molecular Medicine Program The University of Utah, Salt Lake City, Utah, USA
- Division of Occupational Medicine, The University of Utah, Salt Lake City, Utah, USA
- Department of Occupational Medicine, Billings Clinic Bozeman, Bozeman, Montana, USA
| | | | - Ursula Mueller-Werdan
- Department of Medicine III Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Karl Werdan
- Department of Medicine III Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Michael Buerke
- Department of Medicine II Cardiology, Intensive Care Medicine, Angiology, St. Marien Hospital, Siegen, Germany
- Department of Medicine III Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
3
|
Kan Q, Peng Z, Wang K, Deng T, Zhou Z, Wu R, Yao C, Wang R. Vascular restenosis following paclitaxel-coated balloon therapy is attributable to NLRP3 activation and LIN9 upregulation. J Transl Med 2024; 22:871. [PMID: 39334121 PMCID: PMC11430030 DOI: 10.1186/s12967-024-05657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Lower limb arterial occlusive disease is treated with intraluminal devices, such as paclitaxel (PTX)-coated balloons (PCBs); however, post-procedural restenosis remains a significant challenge. NLRP3 activation is known to play a significant role in atherosclerosis, but its involvement in restenosis following PCB intervention remains to be investigated. We identified that NLRP3 was differentially expressed in lower-limb arterial tissues sourced from healthy controls and patients with arterial occlusive disease. Through cell experiments, we confirmed that PTX is involved in the activation of NLRP3. Subsequently, we demonstrated that NLRP3 activation promotes the proliferation and migration of vascular smooth muscle cell (VSMC), thereby reducing their sensitivity to PTX. NLRP3 activation also stimulates the secretion of the inflammatory cytokine interleukin IL-1β. RNA sequencing of IL-1β-treated VSMC revealed the upregulation of BRD4 and LIN9. Further mechanistic investigations confirmed that IL-1β facilitates BRD4 recruitment, leading to enhanced LIN9 expression. The transcription factor LIN9 binds to the promoter region of the cell-cycle regulator AURKA, thereby promoting its transcription and subsequently upregulating the expression of the cell proliferation-associated molecule FOXM1. These processes ultimately mediate the proliferation, migration, and PTX resistance of VSMC. Additionally, we discovered that JQ1 inhibited the overexpression of the above molecules, and exhibited a synergistic effect with PTX. Our conclusions were validated through in vivo experiments in Sprague-Dawley rats. Collectively, our findings provide insights into the molecular mechanisms underlying restenosis following PCB therapy, and suggest that the combined use of JQ1 and PTX devices may represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Qinghui Kan
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhanli Peng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Kangjie Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tang Deng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhihao Zhou
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ridong Wu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chen Yao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Rui Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Sun J, Gui Y, Zhou S, Zheng XL. Unlocking the secrets of aging: Epigenetic reader BRD4 as the target to combatting aging-related diseases. J Adv Res 2024; 63:207-218. [PMID: 37956861 PMCID: PMC11379999 DOI: 10.1016/j.jare.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Aging, a complex and profound journey, leads us through a labyrinth of physiological and pathological transformations, rendering us increasingly susceptible to aging-related diseases. Emerging investigations have unveiled the function of bromodomain containing protein 4 (BRD4) in manipulating the aging process and driving the emergence and progression of aging-related diseases. AIM OF REVIEW This review aims to offer a comprehensive outline of BRD4's functions involved in the aging process, and potential mechanisms through which BRD4 governs the initiation and progression of various aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW BRD4 has a fundamental role in regulating the cell cycle, apoptosis, cellular senescence, the senescence-associated secretory phenotype (SASP), senolysis, autophagy, and mitochondrial function, which are involved in the aging process. Several studies have indicated that BRD4 governs the initiation and progression of various aging-related diseases, including Alzheimer's disease, ischemic cerebrovascular diseases, hypertension, atherosclerosis, heart failure, aging-related pulmonary fibrosis, and intervertebral disc degeneration (IVDD). Thus, the evidence from this review supports that BRD4 could be a promising target for managing various aging-related diseases, while further investigation is warranted to gain a thorough understanding of BRD4's role in these diseases.
Collapse
Affiliation(s)
- Jiaxing Sun
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada; Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Gui
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Shenghua Zhou
- Department of Cardiology, the Second Xiangya Hospital of Central South University, Changsha, China.
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, AB, Canada.
| |
Collapse
|
5
|
Song Y, Deng M, Qiu Y, Cui Y, Zhang B, Xin J, Feng L, Mu X, Cui J, Li H, Sun Y, Yi W. Bergenin alleviates proliferative arterial diseases by modulating glucose metabolism in vascular smooth muscle cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155592. [PMID: 38608597 DOI: 10.1016/j.phymed.2024.155592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) proliferation and phenotypic switching are key mechanisms in the development of proliferative arterial diseases. Notably, reprogramming of the glucose metabolism pattern in VSMCs plays an important role in this process. PURPOSE The aim of this study is to investigate the therapeutic potential and the mechanism underlying the effect of bergenin, an active compound found in Bergenia, in proliferative arterial diseases. METHODS The effect of bergenin on proliferative arterial disease was evaluated using platelet-derived growth factor (PDGF)-stimulated VSMCs and a mouse model of carotid artery ligation. VSMC proliferation and phenotypic switching were evaluated in vitro using cell counting kit-8, 5-ethynyl-2-deoxyuridine incorporation, scratch, and transwell assays. Carotid artery neointimal hyperplasia was evaluated in vivo using hematoxylin and eosin staining and immunofluorescence. The expression of proliferation and VSMC contractile phenotype markers was evaluated using PCR and western blotting. RESULTS Bergenin treatment inhibited PDGF-induced VSMC proliferation and phenotypic switching and reduced neointimal hyperplasia in the carotid artery ligation model. Additionally, bergenin partially reversed the PDGF-induced Warburg-like glucose metabolism pattern in VSMCs. RNA-sequencing data revealed that bergenin treatment significantly upregulated Ndufs2, an essential subunit of mitochondrial complex I. Ndufs2 knockdown attenuated the inhibitory effect of bergenin on PDGF-induced VSMC proliferation and phenotypic switching, and suppressed neointimal hyperplasia in vivo. Conversely, Ndufs2 overexpression enhanced the protective effect of bergenin. Moreover, Ndufs2 knockdown abrogated the effects of bergenin on the regulation of glucose metabolism in VSMCs. CONCLUSION These findings suggest that bergenin is effective in alleviating proliferative arterial diseases. The reversal of the Warburg-like glucose metabolism pattern in VSMCs during proliferation and phenotypic switching may underlie this therapeutic mechanism.
Collapse
Affiliation(s)
- Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710000, China
| | - Meng Deng
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710000, China
| | - Yufeng Qiu
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710000, China
| | - Yang Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710000, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710000, China
| | - Jialin Xin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710000, China
| | - Lele Feng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710000, China
| | - Xingdou Mu
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710000, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710000, China
| | - Hong Li
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710000, China
| | - Yang Sun
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710000, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710000, China,.
| |
Collapse
|
6
|
Mao S, Song C, Huang H, Nie Y, Ding K, Cui J, Tian J, Tang H. Role of transcriptional cofactors in cardiovascular diseases. Biochem Biophys Res Commun 2024; 706:149757. [PMID: 38490050 DOI: 10.1016/j.bbrc.2024.149757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Cardiovascular disease is a main cause of mortality in the world and the highest incidence of all diseases. However, the mechanism of the pathogenesis of cardiovascular disease is still unclear, and we need to continue to explore its mechanism of action. The occurrence and development of cardiovascular disease is significantly associated with genetic abnormalities, and gene expression is affected by transcriptional regulation. In this complex process, the protein-protein interaction promotes the RNA polymerase II to the initiation site. And in this process of transcriptional regulation, transcriptional cofactors are responsible for passing cues from enhancers to promoters and promoting the binding of RNA polymerases to promoters, so transcription cofactors playing a key role in gene expression regulation. There is growing evidence that transcriptional cofactors play a critical role in cardiovascular disease. Transcriptional cofactors can promote or inhibit transcription by affecting the function of transcription factors. It can affect the initiation and elongation process of transcription by forming complexes with transcription factors, which are important for the stabilization of DNA rings. It can also act as a protein that interacts with other proteins to affect the expression of other genes. Therefore, the aim of this overview is to summarize the effect of some transcriptional cofactors such as BRD4, EP300, MED1, EZH2, YAP, SIRT6 in cardiovascular disease and to provide a promising therapeutic strategy for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Shuqing Mao
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chao Song
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Huang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yali Nie
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Kai Ding
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jian Cui
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Huifang Tang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
7
|
Møller AL, Vasan RS, Levy D, Andersson C, Lin H. Integrated omics analysis of coronary artery calcifications and myocardial infarction: the Framingham Heart Study. Sci Rep 2023; 13:21581. [PMID: 38062110 PMCID: PMC10703905 DOI: 10.1038/s41598-023-48848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Gene function can be described using various measures. We integrated association studies of three types of omics data to provide insights into the pathophysiology of subclinical coronary disease and myocardial infarction (MI). Using multivariable regression models, we associated: (1) single nucleotide polymorphism, (2) DNA methylation, and (3) gene expression with coronary artery calcification (CAC) scores and MI. Among 3106 participants of the Framingham Heart Study, 65 (2.1%) had prevalent MI and 60 (1.9%) had incident MI, median CAC value was 67.8 [IQR 10.8, 274.9], and 1403 (45.2%) had CAC scores > 0 (prevalent CAC). Prevalent CAC was associated with AHRR (linked to smoking) and EXOC3 (affecting platelet function and promoting hemostasis). CAC score was associated with VWA1 (extracellular matrix protein associated with cartilage structure in endomysium). For prevalent MI we identified FYTTD1 (down-regulated in familial hypercholesterolemia) and PINK1 (linked to cardiac tissue homeostasis and ischemia-reperfusion injury). Incident MI was associated with IRX3 (enhancing browning of white adipose tissue) and STXBP3 (controlling trafficking of glucose transporter type 4 to plasma). Using an integrative trans-omics approach, we identified both putatively novel and known candidate genes associated with CAC and MI. Replication of findings is warranted.
Collapse
Affiliation(s)
- Amalie Lykkemark Møller
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
- Department of Cardiology, Nordsjællands Hospital, Hillerød, Denmark.
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- University of Texas School of Public Health San Antonio, and Departments of Medicine and Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | - Daniel Levy
- Boston University's and National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Institutes of Health, Bethesda, MD, USA
| | - Charlotte Andersson
- Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
8
|
Shirasu T, Yodsanit N, Li J, Huang Y, Xie X, Tang R, Wang Q, Zhang M, Urabe G, Webb A, Wang Y, Wang X, Xie R, Wang B, Kent KC, Gong S, Guo LW. Neointima abating and endothelium preserving - An adventitia-localized nanoformulation to inhibit the epigenetic writer DOT1L. Biomaterials 2023; 301:122245. [PMID: 37467597 PMCID: PMC10530408 DOI: 10.1016/j.biomaterials.2023.122245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Open vascular reconstructions such as bypass are common treatments for cardiovascular disease. Unfortunately, neointimal hyperplasia (IH) follows, leading to treatment failure for which there is no approved therapy. Here we combined the strengths of tailoring nanoplatforms for open vascular reconstructions and targeting new epigenetic mechanisms. We produced adhesive nanoparticles (ahNP) that could be pen-brushed and immobilized on the adventitia to sustainably release pinometostat, an inhibitor drug selective to the epigenetic writer DOT1L that catalyzes histone-3 lysine-79 dimethylation (H3K79me2). This treatment not only reduced IH by 76.8% in injured arteries mimicking open reconstructions in obese Zucker rats with human-like diseases but also avoided the shortcoming of endothelial impairment in IH management. In mechanistic studies, chromatin immunoprecipitation (ChIP) sequencing revealed co-enrichment of the histone mark H3K27ac(acetyl) and its reader BRD4 at the gene of aurora kinase B (AURKB), where H3K79me2 was also enriched as indicated by ChIP-qPCR. Accordingly, DOT1L co-immunoprecipitated with H3K27ac. Furthermore, the known IH driver BRD4 governed the expression of DOT1L which controlled AURKB's protein level, revealing a BRD4- > DOT1L- > AURKB axis. Consistently, AURKB-selective inhibition reduced IH. Thus, this study presents a prototype nanoformulation suited for open vascular reconstructions, and the new insights into chromatin modulators may aid future translational advances.
Collapse
Affiliation(s)
- Takuro Shirasu
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nisakorn Yodsanit
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jing Li
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yitao Huang
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA; The Biomedical Sciences Graduate Program (BIMS), School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Xiujie Xie
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Runze Tang
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Qingwei Wang
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Mengxue Zhang
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Go Urabe
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Amy Webb
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yuyuan Wang
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Xiuxiu Wang
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Bowen Wang
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - K Craig Kent
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.
| | - Shaoqin Gong
- Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Lian-Wang Guo
- Division of Surgical Sciences, Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
9
|
Chen TQ, Guo X, Huo B, Zhong XX, Wang QH, Chen Y, Zhu XH, Feng GK, Jiang DS, Fang ZM, Wei X. BRD4770 inhibits vascular smooth muscle cell proliferation via SUV39H2, but not EHMT2 to protect against neointima formation. Hum Cell 2023; 36:1672-1688. [PMID: 37306883 PMCID: PMC10390615 DOI: 10.1007/s13577-023-00924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
The behavior of vascular smooth muscle cells (VSMCs) contributes to the formation of neointima. We previously found that EHMT2 suppressed autophagy activation in VSMCs. BRD4770, an inhibitor of EHMT2/G9a, plays a critical role in several kinds of cancers. However, whether and how BRD4770 regulates the behavior of VSMCs remain unknown. In this study, we evaluate the cellular effect of BRD4770 on VSMCs by series of experiments in vivo and ex vivo. We demonstrated that BRD4770 inhibited VSMCs' growth by blockage in G2/M phase in VSMCs. Moreover, our results demonstrated that the inhibition of proliferation was independent on autophagy or EHMT2 suppression which we previous reported. Mechanistically, BRD4770 exhibited an off-target effect from EHMT2 and our further study reveal that the proliferation inhibitory effect by BRD4770 was associated with suppressing on SUV39H2/KTM1B. In vivo, BRD4770 was also verified to rescue VIH. Thus, BRD4770 function as a crucial negative regulator of VSMC proliferation via SUV39H2 and G2/M cell cycle arrest and BRD4770 could be a molecule for the therapy of vascular restenosis.
Collapse
Affiliation(s)
- Tai-Qiang Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Xuan Zhong
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun-Hui Wang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Minist of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Gao-Ke Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Minist of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Minist of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
10
|
Yan B, Gui Y, Guo Y, Sun J, Saifeddine M, Deng J, Hill JA, Hollenberg MD, Jiang ZS, Zheng XL. Impact of Short-Term (+)-JQ1 Exposure on Mouse Aorta: Unanticipated Inhibition of Smooth Muscle Contractility. Cells 2023; 12:1461. [PMID: 37296583 PMCID: PMC10252217 DOI: 10.3390/cells12111461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
(+)-JQ1, a specific chemical inhibitor of bromodomain and extraterminal (BET) family protein 4 (BRD4), has been reported to inhibit smooth muscle cell (SMC) proliferation and mouse neointima formation via BRD4 regulation and modulate endothelial nitric oxide synthase (eNOS) activity. This study aimed to investigate the effects of (+)-JQ1 on smooth muscle contractility and the underlying mechanisms. Using wire myography, we discovered that (+)-JQ1 inhibited contractile responses in mouse aortas with or without functional endothelium, reducing myosin light chain 20 (LC20) phosphorylation and relying on extracellular Ca2+. In mouse aortas lacking functional endothelium, BRD4 knockout did not alter the inhibition of contractile responses by (+)-JQ1. In primary cultured SMCs, (+)-JQ1 inhibited Ca2+ influx. In aortas with intact endothelium, (+)-JQ1 inhibition of contractile responses was reversed by NOS inhibition (L-NAME) or guanylyl cyclase inhibition (ODQ) and by blocking the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. In cultured human umbilical vein endothelial cells (HUVECs), (+)-JQ1 rapidly activated AKT and eNOS, which was reversed by PI3K or ATK inhibition. Intraperitoneal injection of (+)-JQ1 reduced mouse systolic blood pressure, an effect blocked by co-treatment with L-NAME. Interestingly, (+)-JQ1 inhibition of aortic contractility and its activation of eNOS and AKT were mimicked by the (-)-JQ1 enantiomer, which is structurally incapable of inhibiting BET bromodomains. In summary, our data suggest that (+)-JQ1 directly inhibits smooth muscle contractility and indirectly activates the PI3K/AKT/eNOS cascade in endothelial cells; however, these effects appear unrelated to BET inhibition. We conclude that (+)-JQ1 exhibits an off-target effect on vascular contractility.
Collapse
Affiliation(s)
- Binjie Yan
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada; (B.Y.)
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Yu Gui
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada; (B.Y.)
| | - Yanan Guo
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada; (B.Y.)
| | - Jiaxing Sun
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada; (B.Y.)
| | - Mahmoud Saifeddine
- Department of Physiology & Pharmacology, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
| | - Jingti Deng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada; (B.Y.)
| | - Joseph A. Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA
| | - Morley D. Hollenberg
- Department of Physiology & Pharmacology, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada; (B.Y.)
| |
Collapse
|
11
|
Zhang M, Li J, Wang Q, Urabe G, Tang R, Huang Y, Mosquera JV, Kent KC, Wang B, Miller CL, Guo LW. Gene-repressing epigenetic reader EED unexpectedly enhances cyclinD1 gene activation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:717-729. [PMID: 36923952 PMCID: PMC10009644 DOI: 10.1016/j.omtn.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Epigenetically switched, proliferative vascular smooth muscle cells (SMCs) form neointima, engendering stenotic diseases. Histone-3 lysine-27 trimethylation (H3K27me3) and acetylation (H3K27ac) marks are associated with gene repression and activation, respectively. The polycomb protein embryonic ectoderm development (EED) reads H3K27me3 and also enhances its deposition, hence is a canonical gene repressor. However, herein we found an unexpected role for EED in activating the bona fide pro-proliferative gene Ccnd1 (cyclinD1). EED overexpression in SMCs increased Ccnd1 mRNA, seemingly contradicting its gene-repressing function. However, consistently, EED co-immunoprecipitated with gene-activating H3K27ac reader BRD4, and they co-occupied at both mitogen-activated Ccnd1 and mitogen-repressed P57 (bona fide anti-proliferative gene), as indicated by chromatin immunoprecipitation qPCR. These results were abolished by an inhibitor of either the EED/H3K27me3 or BRD4/H3K27ac reader function. In accordance, elevating BRD4 increased H3K27me3. In vivo, while EED was upregulated in rat and human neointimal lesions, selective EED inhibition abated angioplasty-induced neointima and reduced cyclinD1 in rat carotid arteries. Thus, results uncover a previously unknown role for EED in Ccnd1 activation, likely via its cooperativity with BRD4 that enhances each other's reader function; i.e., activating pro-proliferative Ccnd1 while repressing anti-proliferative P57. As such, this study confers mechanistic implications for the epigenetic intervention of neointimal pathology.
Collapse
Affiliation(s)
- Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Qingwei Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Go Urabe
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Runze Tang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jose Verdezoto Mosquera
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - K. Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Clint L. Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
12
|
Dutzmann J, Bode LM, Kalies K, Korte L, Knöpp K, Kloss FJ, Sirisko M, Pilowski C, Koch S, Schenk H, Daniel JM, Bauersachs J, Sedding DG. Empagliflozin prevents neointima formation by impairing smooth muscle cell proliferation and accelerating endothelial regeneration. Front Cardiovasc Med 2022; 9:956041. [PMID: 36017090 PMCID: PMC9396257 DOI: 10.3389/fcvm.2022.956041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundEmpagliflozin, an inhibitor of the sodium glucose co-transporter 2 (SGLT2) and developed as an anti-diabetic agent exerts additional beneficial effects on heart failure outcomes. However, the effect of empagliflozin on vascular cell function and vascular remodeling processes remains largely elusive.Methods/ResultsImmunocytochemistry and immunoblotting revealed SGLT2 to be expressed in human smooth muscle (SMC) and endothelial cells (EC) as well as in murine femoral arteries. In vitro, empagliflozin reduced serum-induced proliferation and migration of human diabetic and non-diabetic SMCs in a dose-dependent manner. In contrast, empagliflozin significantly increased the cell count and migration capacity of human diabetic ECs, but not of human non-diabetic ECs. In vivo, application of empagliflozin resulted in a reduced number of proliferating neointimal cells in response to femoral artery wire-injury in C57BL/6J mice and prevented neointima formation. Comparable effects were observed in a streptozocin-induced diabetic model of apolipoprotein E–/– mice. Conclusive to the in vitro-results, re-endothelialization was not significantly affected in C57BL/6 mice, but improved in diabetic mice after treatment with empagliflozin assessed by Evan’s Blue staining 3 days after electric denudation of the carotid artery. Ribonucleic acid (RNA) sequencing (RNA-seq) of human SMCs identified the vasoactive peptide apelin to be decisively regulated in response to empagliflozin treatment. Recombinant apelin mimicked the in vitro-effects of empagliflozin in ECs and SMCs.ConclusionEmpagliflozin significantly reduces serum-induced proliferation and migration of SMCs in vitro and prevents neointima formation in vivo, while augmenting EC proliferation in vitro and re-endothelialization in vivo after vascular injury. These data document the functional impact of empagliflozin on vascular human SMCs and ECs and vascular remodeling in mice for the first time.
Collapse
Affiliation(s)
- Jochen Dutzmann
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- *Correspondence: Jochen Dutzmann,
| | - Lena Marie Bode
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Katrin Kalies
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Laura Korte
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Kai Knöpp
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Mirja Sirisko
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Claudia Pilowski
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Susanne Koch
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heiko Schenk
- Department of Nephrology and Hypertension, Hannover Medical School, Hanover, Germany
| | - Jan-Marcus Daniel
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hanover, Germany
| | - Daniel G. Sedding
- Mid-German Heart Center, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
13
|
Zhang M, Urabe G, Ozer HG, Xie X, Webb A, Shirasu T, Li J, Han R, Kent KC, Wang B, Guo LW. Angioplasty induces epigenomic remodeling in injured arteries. Life Sci Alliance 2022; 5:e202101114. [PMID: 35169042 PMCID: PMC8860099 DOI: 10.26508/lsa.202101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Neointimal hyperplasia/proliferation (IH) is the primary etiology of vascular stenosis. Epigenomic studies concerning IH have been largely confined to in vitro models, and IH-underlying epigenetic mechanisms remain poorly understood. This study integrates information from in vivo epigenomic mapping, conditional knockout, gene transfer and pharmacology in rodent models of IH. The data from injured (IH-prone) rat arteries revealed a surge of genome-wide occupancy by histone-3 lysine-27 trimethylation (H3K27me3), a gene-repression mark. This was unexpected in the traditional view of prevailing post-injury gene activation rather than repression. Further analysis illustrated a shift of H3K27me3 enrichment to anti-proliferative genes, from pro-proliferative genes where gene-activation mark H3K27ac(acetylation) accumulated instead. H3K27ac and its reader BRD4 (bromodomain protein) co-enriched at Ezh2; conditional BRD4 knockout in injured mouse arteries reduced H3K27me3 and its writer EZH2, which positively regulated another pro-IH chromatin modulator UHRF1. Thus, results uncover injury-induced loci-specific H3K27me3 redistribution in the epigenomic landscape entailing BRD4→EZH2→UHRF1 hierarchical regulations. Given that these players are pharmaceutical targets, further research may help improve treatments of IH.
Collapse
Affiliation(s)
- Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Go Urabe
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Xiujie Xie
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Amy Webb
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Takuro Shirasu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Renzhi Han
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
14
|
Yan J, Fan YJ, Bao H, Li YG, Zhang SM, Yao QP, Huo YL, Jiang ZL, Qi YX, Han Y. Platelet-derived microvesicles regulate vascular smooth muscle cell energy metabolism via PRKAA after intimal injury. J Cell Sci 2022; 135:275043. [PMID: 35297486 DOI: 10.1242/jcs.259364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Vascular intimal injury initiates various cardiovascular disease processes. Exposure to subendothelial collagen can cause platelet activation, leading to platelet-derived microvesicles (aPMVs) secretion. In addition, vascular smooth muscle cells (VSMCs) exposed to large amounts of aPMVs undergo abnormal energy metabolism, they proliferate excessively and migrate after the loss of endothelium, eventually contributing to neointimal hyperplasia. However, the roles of aPMVs in VSMC energy metabolism are still unknown. Carotid artery intimal injury model indicated platelets adhered to injured blood vessels. In vitro, p-Pka content was increased in aPMVs. aPMVs significantly changed VSMC glycolysis and oxidative phosphorylation, and promoted VSMC migration and proliferation by upregulating p-PRKAA/p-FoxO1. Compound C, an inhibitor of PRKAA, effectively reversed the cell function and energy metabolism triggered by aPMVs in vitro and neointimal formation in vivo. Our data show that aPMVs can affect VSMC energy metabolism through the Pka/PRKAA/FoxO1 signaling pathway and ultimately affect VSMC function, indicating that VSMC metabolic phenotype shifted by aPMVs can be considered a potential target for the inhibition of hyperplasia and providing a new perspective for regulating the abnormal activity of VSMCs after injury.
Collapse
Affiliation(s)
- Jing Yan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Jing Fan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Guang Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shou-Min Zhang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Long Huo
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Chen J, Liu Z, Ma L, Gao S, Fu H, Wang C, Lu A, Wang B, Gu X. Targeting Epigenetics and Non-coding RNAs in Myocardial Infarction: From Mechanisms to Therapeutics. Front Genet 2022; 12:780649. [PMID: 34987550 PMCID: PMC8721121 DOI: 10.3389/fgene.2021.780649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) is a complicated pathology triggered by numerous environmental and genetic factors. Understanding the effect of epigenetic regulation mechanisms on the cardiovascular disease would advance the field and promote prophylactic methods targeting epigenetic mechanisms. Genetic screening guides individualised MI therapies and surveillance. The present review reported the latest development on the epigenetic regulation of MI in terms of DNA methylation, histone modifications, and microRNA-dependent MI mechanisms and the novel therapies based on epigenetics.
Collapse
Affiliation(s)
- Jinhong Chen
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Zhichao Liu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Li Ma
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Shengwei Gao
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Huanjie Fu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Can Wang
- Acupuncture Department, The First Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Anmin Lu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Baohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Xufang Gu
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| |
Collapse
|
16
|
LncRNA HSPA7 in human atherosclerotic plaques sponges miR-223 and promotes the proinflammatory vascular smooth muscle cell transition. Exp Mol Med 2021; 53:1842-1849. [PMID: 34857901 PMCID: PMC8741916 DOI: 10.1038/s12276-021-00706-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Although there are many genetic loci in noncoding regions associated with vascular disease, studies on long noncoding RNAs (lncRNAs) discovered from human plaques that affect atherosclerosis have been highly limited. We aimed to identify and functionally validate a lncRNA using human atherosclerotic plaques. Human aortic samples were obtained from patients who underwent aortic surgery, and tissues were classified according to atherosclerotic plaques. RNA was extracted and analyzed for differentially expressed lncRNAs in plaques. Human aortic smooth muscle cells (HASMCs) were stimulated with oxidized low-density lipoprotein (oxLDL) to evaluate the effect of the identified lncRNA on the inflammatory transition of the cells. Among 380 RNAs differentially expressed between the plaque and control tissues, lncRNA HSPA7 was selected and confirmed to show upregulated expression upon oxLDL treatment. HSPA7 knockdown inhibited the migration of HASMCs and the secretion and expression of IL-1β and IL-6; however, HSPA7 knockdown recovered the oxLDL-induced reduction in the expression of contractile markers. Although miR-223 inhibition promoted the activity of Nf-κB and the secretion of inflammatory proteins such as IL-1β and IL-6, HSPA7 knockdown diminished these effects. The effects of miR-223 inhibition and HSPA7 knockdown were also found in THP-1 cell-derived macrophages. The impact of HSPA7 on miR-223 was mediated in an AGO2-dependent manner. HSPA7 is differentially increased in human atheroma and promotes the inflammatory transition of vascular smooth muscle cells by sponging miR-223. For the first time, this study elucidated the molecular mechanism of action of HSPA7, a lncRNA of previously unknown function, in humans. A long non-coding RNA (lncRNA) called HSPA7 promotes the development of atherosclerosis, plaque in arteries. Many atherosclerosis-related genetic loci are in noncoding regions of genome, but there has been an incomplete understanding of them. Sang-Hak Lee at Yonsei University College of Medicine, Seoul, South Korea, and co-workers set out to identify a lncRNA involved in atherosclerosis and investigate its mode of action. Comparison of aortic tissues allowed them to identify lncRNAs more abundant in atherosclerotic tissue but less in healthy tissue. Of the 380 lncRNAs identified, only HSPA7 reliably increased when aortic cells were treated with a trigger of atherosclerosis. Inhibiting HSPA7 restored normal function in vascular cells, decreasing migration and inflammation. Further investigation showed that HSPA7 blocks the activity of miR-223, a microRNA that suppresses inflammation. These results identify a potential therapeutic target for atherosclerosis.
Collapse
|
17
|
Yang X, Yang Y, Guo J, Meng Y, Li M, Yang P, Liu X, Aung LHH, Yu T, Li Y. Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1136-1160. [PMID: 33664994 PMCID: PMC7896131 DOI: 10.1016/j.omtn.2021.01.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronary artery disease (CAD) is one of the most common causes of death worldwide. The introduction of percutaneous revascularization has revolutionized the therapy of patients with CAD. Despite the advent of drug-eluting stents, restenosis remains the main challenge in treating patients with CAD. In-stent restenosis (ISR) indicates the reduction in lumen diameter after percutaneous coronary intervention, in which the vessel's lumen re-narrowing is attributed to the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) and dysregulation of endothelial cells (ECs). Increasing evidence has demonstrated that epigenetics is involved in the occurrence and progression of ISR. In this review, we provide the latest and comprehensive analysis of three separate but related epigenetic mechanisms regulating ISR, namely, DNA methylation, histone modification, and non-coding RNAs. Initially, we discuss the mechanism of restenosis. Furthermore, we discuss the biological mechanism underlying the diverse epigenetic modifications modulating gene expression and functions of VSMCs, as well as ECs in ISR. Finally, we discuss potential therapeutic targets of the small molecule inhibitors of cardiovascular epigenetic factors. A more detailed understanding of epigenetic regulation is essential for elucidating this complex biological process, which will assist in developing and improving ISR therapy.
Collapse
Affiliation(s)
- Xi Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Xin Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| |
Collapse
|
18
|
Wang Q, Ozer HG, Wang B, Zhang M, Urabe G, Huang Y, Kent KC, Guo LW. A hierarchical and collaborative BRD4/CEBPD partnership governs vascular smooth muscle cell inflammation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:54-66. [PMID: 33768129 PMCID: PMC7966960 DOI: 10.1016/j.omtm.2021.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Bromodomain protein BRD4 reads histone acetylation (H3K27ac), an epigenomic mark of transcription enhancers. CCAAT enhancer binding protein delta (CEBPD) is a transcription factor typically studied in metabolism. While both are potent effectors and potential therapeutic targets, their relationship was previously unknown. Here we investigated their interplay in vascular smooth muscle cell (SMC) inflammation. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) revealed H3K27ac/BRD4 enrichment at Cebpd in injured rat carotid arteries. While genomic deletion of BRD4-associated enhancer in SMCs in vitro decreased Cebpd transcripts, BRD4 gene silencing also diminished Cebpd mRNA and protein, indicative of a BRD4 control over CEBPD expression. Bromodomain-1, but not bromodomain-2, accounted for this BRD4 function. Moreover, endogenous BRD4 protein co-immunoprecipitated with CEBPD, and both proteins co-immunoprecipitated the Cebpd promoter and enhancer DNA fragments. These co-immunoprecipitations (coIPs) were all abolished by the BRD4-bromodomain blocker JQ1, suggesting a BRD4/CEBPD /promoter/enhancer complex. While BRD4 and CEBPD were both upregulated upon tumor necrosis factor alpha (TNF-α) stimulation of SMC inflammation (increased interleukin [IL]-1b, IL-6, and MCP-1), they mediated this stimulation via preferentially elevated expression of platelet-derived growth factor receptor alpha (PDGFRα, versus PDGFRβ), as indicated by loss- and gain-of-function experiments. Taken together, our study unravels a hierarchical yet collaborative BRD4/CEBPD relationship, a previously unrecognized mechanism that prompts SMC inflammation and may underlie other pathophysiological processes as well.
Collapse
Affiliation(s)
- Qingwei Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Go Urabe
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
19
|
Anti-Diabetic Atherosclerosis by Inhibiting High Glucose-Induced Vascular Smooth Muscle Cell Proliferation via Pin1/BRD4 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4196482. [PMID: 32774672 PMCID: PMC7396119 DOI: 10.1155/2020/4196482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/29/2020] [Indexed: 12/04/2022]
Abstract
Methods Diabetic Apoe-/- mice induced by streptozotocin were treated with vehicle, the Pin1 inhibitor juglone, or the BRD4 inhibitor JQ1 for 3 weeks. VSMCs were pretreated with juglone, JQ1, or vehicle for 45 min, and then exposed to high glucose for 48 h. Hematoxylin–eosin staining was performed to assess atherosclerotic plaques of the thoracic aorta. Western blotting was used to detect expression levels of Pin1, BRD4, cyclin D1, and matrix metalloproteinase-9 (MMP-9) in the thoracic aorta and VSMCs. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assay were used to measure proliferation and migration of VSMCs. Results Juglone and JQ1 significantly improved atherosclerosis of diabetic Apoe-/- mice and reduced high glucose-induced VSMC proliferation and migration. Cyclin D1 and MMP-9 levels in the thoracic aorta were lower in diabetic Apoe-/- mice treated with juglone and JQ1 compared with vehicle-treated diabetic Apoe-/- mice. Additionally, BRD4 protein expression in high glucose-induced VSMCs was inhibited by juglone and JQ1. Upregulation of Pin1 expression by transduction of the Pin1 plasmid vector promoted BRD4 expression induced by high glucose, and stimulated proliferation and migration of VSMCs. Conclusions Inhibition of Pin1/BRD4 pathway may improve diabetic atherosclerosis by inhibiting proliferation and migration of VSMCs.
Collapse
|