1
|
Liu X, Wang K, Si T, Zhang X, Cosci F, Gao K, Wang H. The role of 15 mA and 77.5 Hz transcranial alternating current stimulation in blood pressure regulation: A post hoc analysis of a randomized controlled trial. J Affect Disord 2025; 374:91-98. [PMID: 39798713 DOI: 10.1016/j.jad.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) at 77.5 Hz and 15 mA, targeting the forehead and mastoid areas, has proven efficacious in patients with major depressive disorder (MDD) by simultaneously stimulating multiple brain nuclei and regions, many of which are critical for blood pressure regulation. This post hoc analysis aimed to assess the potential blood pressure-lowering effects of 77.5 Hz, 15 mA tACS in first-episode drug-naive MDD patients with normotension. METHODS Data from a previous randomized controlled trial (RCT) involving first-episode drug-naive MDD patients were analyzed. Participants underwent 20 sessions of either active tACS or sham stimulation. Vital signs, including systolic blood pressure (SBP) and diastolic blood pressure (DBP), were measured at baseline, after treatment (Week 4), and at follow-up (Week 8). Multivariate linear regression and Generalized Estimating Equations (GEE) models were used to evaluate the effects of the treatment on blood pressure. RESULTS Totally 68 participants were analysis (33 in the sham group and 35 in the active group). By Week 4, the active tACS group exhibited a significant reduction in both SBP and DBP compared to the sham group (coefficient - 2.04, 95 % CI -3.01 to -1.07, p < 0.001 on SBP, and coefficient - 1.92, 95 % CI -2.69 to -1.18, p < 0.001 on DBP). CONCLUSIONS tACS at 77.5 Hz and 15 mA can effectively reduce SBP and DBP in first-episode drug-naive depressive individuals with normotension, with greater reductions observed in those with higher baseline levels.
Collapse
Affiliation(s)
- Xiaolei Liu
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing Psychosomatic Disease Consultation Center, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China; Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing Psychosomatic Disease Consultation Center, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China; Department of Neurology, Beijing Puren Hospital, Beijing, China
| | - Tianmei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Fiammetta Cosci
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Keming Gao
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Hongxing Wang
- Division of Neuropsychiatry and Psychosomatics, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing Psychosomatic Disease Consultation Center, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
2
|
Lu TL, Liutkevičienė R, Rovite V, Gao ZH, Wu SN. Evaluation of Small-Molecule Candidates as Modulators of M-Type K + Currents: Impacts on Current Amplitude, Gating, and Voltage-Dependent Hysteresis. Int J Mol Sci 2025; 26:1504. [PMID: 40003973 PMCID: PMC11855363 DOI: 10.3390/ijms26041504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The core subunits of the KV7.2, KV7.3, and KV7.5 channels, encoded by the KCNQ2, KCNQ3, and KCNQ5 genes, are expressed across various cell types and play a key role in generating the M-type K+ current (IK(M)). This current is characterized by an activation threshold at low voltages and displays slow activation and deactivation kinetics. Variations in the amplitude and gating kinetics of IK(M) can significantly influence membrane excitability. Notably, IK(M) demonstrates distinct voltage-dependent hysteresis when subjected to prolonged isosceles-triangular ramp pulses. In this review, we explore various small-molecule modulators that can either inhibit or enhance the amplitude of IK(M), along with their perturbations on its gating kinetics and voltage-dependent hysteresis. The inhibitors of IK(M) highlighted here include bisoprolol, brivaracetam, cannabidiol, nalbuphine, phenobarbital, and remdesivir. Conversely, compounds such as flupirtine, kynurenic acid, naringenin, QO-58, and solifenacin have been shown to enhance IK(M). These modulators show potential as pharmacological or therapeutic strategies for treating certain disorders linked to gain-of-function or loss-of-function mutations in M-type K+ (KV7x or KCNQx) channels.
Collapse
Affiliation(s)
- Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung 406040, Taiwan;
| | - Rasa Liutkevičienė
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania;
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre (BMC), LV-1067 Riga, Latvia;
| | - Zi-Han Gao
- Institute of Basic Medical Sciences, College of Medical, National Cheng Kung University, Tainan City 701401, Taiwan;
| | - Sheng-Nan Wu
- Institute of Basic Medical Sciences, College of Medical, National Cheng Kung University, Tainan City 701401, Taiwan;
- Department of Research and Education, An Nan Hospital, China Medical University, Tainan City 709204, Taiwan
- School of Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
3
|
Xia M, Wang T, Wang Y, Hu T, Chen D, Wang B. A neural perspective on the treatment of hypertension: the neurological network excitation and inhibition (E/I) imbalance in hypertension. Front Cardiovasc Med 2024; 11:1436059. [PMID: 39323755 PMCID: PMC11422145 DOI: 10.3389/fcvm.2024.1436059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Despite the increasing number of anti-hypertensive drugs have been developed and used in the clinical setting, persistent deficiencies persist, including issues such as lifelong dosage, combination therapy. Notwithstanding receiving the treatment under enduring these deficiencies, approximately 4 in 5 patients still fail to achieve reliable blood pressure (BP) control. The application of neuromodulation in the context of hypertension presents a pioneering strategy for addressing this condition, con-currently implying a potential central nervous mechanism underlying hypertension onset. We hypothesize that neurological networks, an essential component of maintaining appropriate neurological function, are involved in hypertension. Drawing on both peer-reviewed research and our laboratory investigations, we endeavor to investigate the underlying neural mechanisms involved in hypertension by identifying a close relationship between its onset of hypertension and an excitation and inhibition (E/I) imbalance. In addition to the involvement of excitatory glutamatergic and GABAergic inhibitory system, the pathogenesis of hypertension is also associated with Voltage-gated sodium channels (VGSCs, Nav)-mediated E/I balance. The overloading of glutamate or enhancement of glutamate receptors may be attributed to the E/I imbalance, ultimately triggering hypertension. GABA loss and GABA receptor dysfunction have also proven to be involved. Furthermore, we have identified that abnormalities in sodium channel expression and function alter neural excitability, thereby disturbing E/I balance and potentially serving as a mechanism underlying hypertension. These insights are expected to furnish potential strategies for the advancement of innovative anti-hypertensive therapies and a meaningful reference for the exploration of central nervous system (CNS) targets of anti-hypertensives.
Collapse
Affiliation(s)
- Min Xia
- Department of Anesthesiology, General Hospital of The Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Tianyu Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Yizhu Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Tingting Hu
- Department of Anesthesiology, General Hospital of The Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Defang Chen
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Nakanishi Y, Izumi M, Matsushita H, Koyama Y, Diez D, Takamatsu H, Koyama S, Nishide M, Naito M, Mizuno Y, Yamaguchi Y, Mae T, Noda Y, Nakaya K, Nojima S, Sugihara F, Okuzaki D, Ikawa M, Shimada S, Kang S, Kumanogoh A. Semaphorin 6D tunes amygdalar circuits for emotional, metabolic, and inflammatory outputs. Neuron 2024; 112:2955-2972.e9. [PMID: 39002542 DOI: 10.1016/j.neuron.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/20/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Regulated neural-metabolic-inflammatory responses are essential for maintaining physiological homeostasis. However, the molecular machinery that coordinates neural, metabolic, and inflammatory responses is largely unknown. Here, we show that semaphorin 6D (SEMA6D) coordinates anxiogenic, metabolic, and inflammatory outputs from the amygdala by maintaining synaptic homeostasis. Using genome-wide approaches, we identify SEMA6D as a pleiotropic gene for both psychiatric and metabolic traits in human. Sema6d deficiency increases anxiety in mice. When fed a high-fat diet, Sema6d-/- mice display attenuated obesity and enhanced myelopoiesis compared with control mice due to higher sympathetic activity via the β3-adrenergic receptor. Genetic manipulation and spatial and single-nucleus transcriptomics reveal that SEMA6D in amygdalar interneurons is responsible for regulating anxiogenic and autonomic responses. Mechanistically, SEMA6D is required for synaptic maturation and γ-aminobutyric acid transmission. These results demonstrate that SEMA6D is important for the normal functioning of the neural circuits in the amygdala, coupling emotional, metabolic, and inflammatory responses.
Collapse
Affiliation(s)
- Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan; Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| | - Mayuko Izumi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan; Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| | - Hiroaki Matsushita
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Discovery Pharmacology Department, Research Division, Chugai Pharmaceutical Co. Ltd., Kanagawa 247-8530, Japan
| | - Yoshihisa Koyama
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan; Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Diego Diez
- Quantitative Immunology Research Unit, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan
| | - Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan
| | - Yumiko Mizuno
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan
| | - Yuta Yamaguchi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan
| | - Tomoki Mae
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yu Noda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kamon Nakaya
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Fuminori Sugihara
- Laboratory of Biofunctional Imaging, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan; Laboratory of Human Immunology (Single Cell Genomics), WPI-IFReC, Osaka University, Osaka 565-0871, Japan; Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, RIMD, Osaka University, Osaka 565-0871, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka 565-0871, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Sujin Kang
- Laboratory of Immune Regulation, WPI-IFReC, Osaka University, Osaka 565-0871, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan.
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Department of Immunopathology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Li J, Peng C, He K, Wang Y, Lai X. The central mechanisms of electroacupuncture at LR3 in the treatment of spontaneous hypertension: a PET and mRNA transcriptome study. Front Cardiovasc Med 2024; 11:1358426. [PMID: 39234603 PMCID: PMC11371727 DOI: 10.3389/fcvm.2024.1358426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Objective To reveal the efficacy and potential mechanisms of electroacupuncture (EA) in treating hypertension. Methods Male spontaneously hypertensive rats (SHRs) were randomly assigned to the SHR group, EA group, and Sham-EA group, with Wistar-Kyoto rats (WKY) as the normal control group. SHRs in the EA group received electroacupuncture at the bilateral Taichong (LR3) acupoints for 7 consecutive days. Evaluation of systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and heart rate (HR) was conducted. Positron emission tomography-computed tomography (PET-CT) was employed to explore the active brain regions associated with acupuncture-induced blood pressure reduction. Furthermore, mRNA expression profiling was analyzed in the active brain regions to identify differentially expressed genes, and quantitative polymerase chain reaction (qPCR) was used to validate the mRNA expression of differentially expressed genes in the active brain region. Results EA reduced elevated SBP, DBP, MAP and HR in SHR. PET-CT revealed that EA decreased glucose metabolism in the hypothalamus. Genomic analysis suggested that, compared to the SHR group, the differentially expressed genes in the hypothalamus of the EA group included Nr4a1, Sirt1, Trh, GPR88, Cck, and Th. EA downregulated the mRNA expression of Th, Trh, Gpr88, and Nr4a1, while upregulating the expression of Sirt1 and Cck at the mRNA level. Conclusion EA may exert a unique antihypertensive effect in the hypothalamus of SHR, involving the modulation of sympathetic nerve activity, neuroinflammation, and oxidative stress response.
Collapse
Affiliation(s)
- Jing Li
- Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Clinical School of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chong Peng
- Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Hepatobiliary Disease, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kejie He
- Department of Acupuncture and Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yumei Wang
- Department of Rehabilitation, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, Guangdong, China
| | - Xinsheng Lai
- Clinical School of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Chapp AD, Shan Z, Chen QH. Acetic Acid: An Underestimated Metabolite in Ethanol-Induced Changes in Regulating Cardiovascular Function. Antioxidants (Basel) 2024; 13:139. [PMID: 38397737 PMCID: PMC10886048 DOI: 10.3390/antiox13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Acetic acid is a bioactive short-chain fatty acid produced in large quantities from ethanol metabolism. In this review, we describe how acetic acid/acetate generates oxidative stress, alters the function of pre-sympathetic neurons, and can potentially influence cardiovascular function in both humans and rodents after ethanol consumption. Our recent findings from in vivo and in vitro studies support the notion that administration of acetic acid/acetate generates oxidative stress and increases sympathetic outflow, leading to alterations in arterial blood pressure. Real-time investigation of how ethanol and acetic acid/acetate modulate neural control of cardiovascular function can be conducted by microinjecting compounds into autonomic control centers of the brain and measuring changes in peripheral sympathetic nerve activity and blood pressure in response to these compounds.
Collapse
Affiliation(s)
- Andrew D. Chapp
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhiying Shan
- Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI 49931, USA;
| | - Qing-Hui Chen
- Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI 49931, USA;
| |
Collapse
|
7
|
Wang W, Sun JC, Ye P, Tan X, Gao Y, Duan W, Wang YK, Wang WZ. miR-22-3p in the rostral ventrolateral medulla promotes hypertension through inhibiting β-arrestin-1. J Physiol 2024; 602:317-332. [PMID: 38152023 DOI: 10.1113/jp283960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that β-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension. The purpose of this study was to determine the role of miR-22-3p in β-arrestin-1-mediated central cardiovascular regulation in hypertension. It was observed that miR-22-3p was upregulated in the RVLM of SHRs compared with normotensive Wistar-Kyoto (WKY) rats, and it was subsequently confirmed to target the β-arrestin-1 gene using a dual-luciferase reporter assay. miR-22-3p was downregulated in the RVLM using adeno-associated virus with 'tough decoys', which caused a significant increase of β-arrestin-1 expression and decrease of noradrenaline and blood pressure (BP) in SHRs. However, upregulation of miR-22-3p using lentivirus in the RVLM of WKY rats significantly increased BP. In in vitro PC12 cells, enhanced oxidative stress activity induced by angiotensin II was counteracted by pretreatment with miR-22-3p inhibitor, and this effect could be abolished by β-arrestin-1 gene knockdown. Furthermore, microglia exhaustion significantly diminished miR-22-3p expression, and enhanced β-arrestin-1 expression in the RVLM of SHRs. Activation of BV2 cells in vitro evoked a significant increase of miR-22-3p expression, and this BV2 cell culture medium was also able to facilitate miR-22-3p expression in PC12 cells. Collectively, our findings support a critical role for microglia-derived miR-22-3p in inhibiting β-arrestin-1 in the RVLM, which is involved in central cardiovascular regulation in hypertension. KEY POINTS: Impairment of β-arrestin-1 function in the rostral ventrolateral medulla (RVLM) has been reported to be associated with the development of sympathetic overactivity in hypertension. However, little is known about the potential mechanisms of β-arrestin-1 dysfunction in hypertension. miR-22-3p is implicated in multiple biological processes, but the role of miR-22-3p in central regulation of cardiovascular activity in hypertension remains unknown. We predicted that miR-22-3p could directly bind to the β-arrestin-1 gene (Arrb1), and this hypothesis was confirmed by using a dual-luciferase reporter assay. Inhibition of β-arrestin-1 by miR-22-3p was further verified in both in vivo and in vitro experiments. Furthermore, our results suggested miR-22-3p as a risk factor for oxidative stress in the RVLM, thus contributing to sympatho-excitation and hypertension. Our present study provides evidence that microglia-derived miR-22-3p may underlie the pathogenesis and progression of neuronal hypertension by inhibiting β-arrestin-1 in the RVLM.
Collapse
Affiliation(s)
- Wen Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jia-Cen Sun
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Peng Ye
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yuan Gao
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Duan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
8
|
Sheng ZF, Zhang H, Phaup JG, Zheng P, Kang X, Liu Z, Chang HM, Yeh ETH, Johnson AK, Pan HL, Li DP. Corticotropin-releasing hormone neurons in the central nucleus of amygdala are required for chronic stress-induced hypertension. Cardiovasc Res 2023; 119:1751-1762. [PMID: 37041718 PMCID: PMC10325697 DOI: 10.1093/cvr/cvad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/30/2022] [Accepted: 04/08/2023] [Indexed: 04/13/2023] Open
Abstract
AIMS Chronic stress is a well-known risk factor for the development of hypertension. However, the underlying mechanisms remain unclear. Corticotropin-releasing hormone (CRH) neurons in the central nucleus of the amygdala (CeA) are involved in the autonomic responses to chronic stress. Here, we determined the role of CeA-CRH neurons in chronic stress-induced hypertension. METHODS AND RESULTS Borderline hypertensive rats (BHRs) and Wistar-Kyoto (WKY) rats were subjected to chronic unpredictable stress (CUS). Firing activity and M-currents of CeA-CRH neurons were assessed, and a CRH-Cre-directed chemogenetic approach was used to suppress CeA-CRH neurons. CUS induced a sustained elevation of arterial blood pressure (ABP) and heart rate (HR) in BHRs, while in WKY rats, CUS-induced increases in ABP and HR quickly returned to baseline levels after CUS ended. CeA-CRH neurons displayed significantly higher firing activities in CUS-treated BHRs than unstressed BHRs. Selectively suppressing CeA-CRH neurons by chemogenetic approach attenuated CUS-induced hypertension and decreased elevated sympathetic outflow in CUS-treated BHRs. Also, CUS significantly decreased protein and mRNA levels of Kv7.2 and Kv7.3 channels in the CeA of BHRs. M-currents in CeA-CRH neurons were significantly decreased in CUS-treated BHRs compared with unstressed BHRs. Blocking Kv7 channel with its blocker XE-991 increased the excitability of CeA-CRH neurons in unstressed BHRs but not in CUS-treated BHRs. Microinjection of XE-991 into the CeA increased sympathetic outflow and ABP in unstressed BHRs but not in CUS-treated BHRs. CONCLUSIONS CeA-CRH neurons are required for chronic stress-induced sustained hypertension. The hyperactivity of CeA-CRH neurons may be due to impaired Kv7 channel activity, which represents a new mechanism involved in chronic stress-induced hypertension.
Collapse
Affiliation(s)
- Zhao-Fu Sheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Hua Zhang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Jeffery G Phaup
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - PeiRu Zheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - XunLei Kang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Zhenguo Liu
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Hui-Ming Chang
- Department of Pharmacology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Toxicology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Edward T H Yeh
- Department of Pharmacology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Toxicology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, The University of Iowa, G60 Psychological and Brain Sciences Building, Iowa City, IA 52242, USA
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| |
Collapse
|
9
|
Chapp AD, Collins AR, Driscoll KM, Behnke JE, Shan Z, Zhang L, Chen QH. Ethanol Metabolite, Acetate, Increases Excitability of the Central Nucleus of Amygdala Neurons through Activation of NMDA Receptors. ACS Chem Neurosci 2023; 14:1278-1290. [PMID: 36957993 PMCID: PMC11163875 DOI: 10.1021/acschemneuro.2c00784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
The central nucleus of the amygdala (CeA) is a key brain region involved in emotional and stressor responses due to its many projections to autonomic regulatory centers. It is also a primary site of action from ethanol consumption. However, the influence of active metabolites of ethanol such as acetate on the CeA neural circuitry has yet to be elucidated. Here, we investigated the effect of acetate on CeA neurons with the axon projecting to the rostral ventrolateral medulla (CeA-RVLM), as well as quantified cytosolic calcium responses in primary neuronal cultures. Whole-cell patch-clamp recordings in brain slices containing autonomic CeA-RVLM neurons revealed a dose-dependent increase in neuronal excitability in response to acetate. N-Methyl-d-aspartate receptor (NMDAR) antagonists suppressed the acetate-induced increase in CeA-RVLM neuronal excitability and memantine suppressed the direct activation of NMDAR-dependent inward currents by acetate in brain slices. We observed that acetate increased cytosolic Ca2+ in a time-dependent manner in primary neuronal cell cultures. The acetate enhancement of calcium signaling was abolished by memantine. Computational modeling of acetic acid at NMDAR/NR1 glutamatergic and glycinergic sites suggests potential active site interactions. These findings suggest that within the CeA, acetate is excitatory at least partially through activation of NMDAR, which may underlie the impact of ethanol consumption on autonomic circuitry.
Collapse
Affiliation(s)
- Andrew D Chapp
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, SDC, 1400 Townsend Drive, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
- Department of Neuroscience, University of Minnesota, Twin Cities, 321 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Andréa R Collins
- Department of Psychiatry, University of California, San Francisco, Fresno, California 93701, United States
| | - Kyle M Driscoll
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Jessica E Behnke
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, SDC, 1400 Townsend Drive, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, SDC, 1400 Townsend Drive, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20852, United States
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, SDC, 1400 Townsend Drive, Houghton, Michigan 49931, United States
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
10
|
Emerging mechanisms involving brain Kv7 channel in the pathogenesis of hypertension. Biochem Pharmacol 2022; 206:115318. [PMID: 36283445 DOI: 10.1016/j.bcp.2022.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Hypertension is a prevalent health problem inducing many organ damages. The pathogenesis of hypertension involves a complex integration of different organ systems including the brain. The elevated sympathetic nerve activity is closely related to the etiology of hypertension. Ion channels are critical regulators of neuronal excitability. Several mechanisms have been proposed to contribute to hypothalamic-driven elevated sympathetic activity, including altered ion channel function. Recent findings indicate one of the voltage-gated potassium channels, Kv7 channels (M channels), plays a vital role in regulating cardiovascular-related neurons activity, and the expression of Kv7 channels is downregulated in hypertension. This review highlights recent findings that the Kv7 channels in the brain, blood vessels, and kidneys are emerging targets involved in the pathogenesis of hypertension, suggesting new therapeutic targets for treating drug-resistant, neurogenic hypertension.
Collapse
|
11
|
Ying Y, Gong L, Tao X, Ding J, Chen N, Yao Y, Liu J, Chen C, Zhu T, Jiang P. Genetic Knockout of TRPM2 Increases Neuronal Excitability of Hippocampal Neurons by Inhibiting Kv7 Channel in Epilepsy. Mol Neurobiol 2022; 59:6918-6933. [PMID: 36053438 DOI: 10.1007/s12035-022-02993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Epilepsy is a chronic brain disease that makes serious cognitive and motor retardation. Ion channels affect the occurrence of epilepsy in various ways, but the mechanisms have not yet been fully elucidated. Transient receptor potential melastain2 (TRPM2) ion channel is a non-selective cationic channel that can permeate Ca2+ and critical for epilepsy. Here, TRPM2 gene knockout mice were used to generate a chronic kindling epilepsy model by PTZ administration in mice. We found that TRPM2 knockout mice were more susceptible to epilepsy than WT mice. Furthermore, the neuronal excitability in the hippocampal CA1 region of TRPM2 knockout mice was significantly increased. Compared with WT group, there were no significant differences in the input resistance and after hyperpolarization of CA1 neurons in TRPM2 knockout mice. Firing adaptation rate of hippocampal CA1 pyramidal neurons of TRPM2 knockout mice was lower than that of WT mice. We also found that activation of Kv7 channel by retigabine reduced the firing frequency of action potential in the hippocampal pyramidal neurons of TRPM2 knockout mice. However, inhibiting Kv7 channel increased the firing frequency of action potential in hippocampal pyramidal neurons of WT mice. The data suggest that activation of Kv7 channel can effectively reduce epileptic seizures in TRPM2 knockout mice. We conclude that genetic knockout of TRPM2 in hippocampal CA1 pyramidal neurons may increase neuronal excitability by inhibiting Kv7 channel, affecting the susceptibility to epilepsy. These findings may provide a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Yingchao Ying
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lifen Gong
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaohan Tao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Junchao Ding
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Pediatrics, Yiwu Maternal and Child Health Care Hospital, Yiwu, China
| | - Nannan Chen
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yinping Yao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Pediatrics, Shaoxing People's Hospital, Shaoxing, China
| | - Jiajing Liu
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chen Chen
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Peifang Jiang
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
12
|
Qi J, Fu LY, Liu KL, Li RJ, Qiao JA, Yu XJ, Yu JY, Li Y, Feng ZP, Yi QY, Jia H, Gao HL, Tan H, Kang YM. Resveratrol in the Hypothalamic Paraventricular Nucleus Attenuates Hypertension by Regulation of ROS and Neurotransmitters. Nutrients 2022; 14:nu14194177. [PMID: 36235829 PMCID: PMC9573276 DOI: 10.3390/nu14194177] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The hypothalamic paraventricular nucleus (PVN) is an important nucleus in the brain that plays a key role in regulating sympathetic nerve activity (SNA) and blood pressure. Silent mating-type information regulation 2 homolog-1 (sirtuin1, SIRT1) not only protects cardiovascular function but also reduces inflammation and oxidative stress in the periphery. However, its role in the central regulation of hypertension remains unknown. It is hypothesized that SIRT1 activation by resveratrol may reduce SNA and lower blood pressure through the regulation of intracellular reactive oxygen species (ROS) and neurotransmitters in the PVN. METHODS The two-kidney one-clip (2K1C) method was used to induce renovascular hypertension in male Sprague-Dawley rats. Then, bilaterally injections of vehicle (artificial cerebrospinal fluid, aCSF, 0.4 μL) or resveratrol (a SIRT1 agonist, 160 μmol/L, 0.4 μL) into rat PVN were performed for four weeks. RESULTS PVN SIRT1 expression was lower in the hypertension group than the sham surgery (SHAM) group. Activated SIRT1 within the PVN lowered systolic blood pressure and plasma norepinephrine (NE) levels. It was found that PVN of 2K1C animals injected with resveratrol exhibited increased expression of SIRT1, copper-zinc superoxide dismutase (SOD1), and glutamic acid decarboxylase (GAD67), as well as decreased activity of nuclear factor-kappa B (NF-κB) p65 and NAD(P)H oxidase (NOX), particularly NOX4. Treatment with resveratrol also decreased expression of ROS and tyrosine hydroxylase (TH). CONCLUSION Resveratrol within the PVN attenuates hypertension via the SIRT1/NF-κB pathway to decrease ROS and restore the balance of excitatory and inhibitory neurotransmitters.
Collapse
Affiliation(s)
- Jie Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Rui-Juan Li
- Department of Infectious Diseases, The Second Affiliated Hospital, Air Force Military Medical University, Xi’an 710038, China
| | - Jin-An Qiao
- Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an 710002, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Jia-Yue Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Ying Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Zhi-Peng Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Qiu-Yue Yi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Hong Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Hong Tan
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Correspondence: (H.T.); (Y.-M.K.); Tel./Fax: +86-2982657677 (Y.-M.K.)
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
- Correspondence: (H.T.); (Y.-M.K.); Tel./Fax: +86-2982657677 (Y.-M.K.)
| |
Collapse
|
13
|
Wu CL, Fu P, Cho HY, Chuang TH, Wu SN. Evidence for Dual Activation of IK(M) and IK(Ca) Caused by QO-58 (5-(2,6-Dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-pyrazolol[1,5-a]pyrimidin-7-one). Int J Mol Sci 2022; 23:7042. [PMID: 35806047 PMCID: PMC9266432 DOI: 10.3390/ijms23137042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
QO-58 (5-(2,6-dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-pyrazolol[1,5-a]pyrimidin-7-one) has been regarded to be an activator of KV7 channels with analgesic properties. However, whether and how the presence of this compound can result in any modifications of other types of membrane ion channels in native cells are not thoroughly investigated. In this study, we investigated its perturbations on M-type K+ current (IK(M)), Ca2+-activated K+ current (IK(Ca)), large-conductance Ca2+-activated K+ (BKCa) channels, and erg-mediated K+ current (IK(erg)) identified from pituitary tumor (GH3) cells. Addition of QO-58 can increase the amplitude of IK(M) and IK(Ca) in a concentration-dependent fashion, with effective EC50 of 3.1 and 4.2 μM, respectively. This compound could shift the activation curve of IK(M) toward a leftward direction with being void of changes in the gating charge. The strength in voltage-dependent hysteresis (Vhys) of IK(M) evoked by upright triangular ramp pulse (Vramp) was enhanced by adding QO-58. The probabilities of M-type K+ (KM) channels that will be open increased upon the exposure to QO-58, although no modification in single-channel conductance was seen. Furthermore, GH3-cell exposure to QO-58 effectively increased the amplitude of IK(Ca) as well as enhanced the activity of BKCa channels. Under inside-out configuration, QO-58, applied at the cytosolic leaflet of the channel, activated BKCa-channel activity, and its increase could be attenuated by further addition of verruculogen, but not by linopirdine (10 μM). The application of QO-58 could lead to a leftward shift in the activation curve of BKCa channels with neither change in the gating charge nor in single-channel conductance. Moreover, cell exposure of QO-58 (10 μM) resulted in a minor suppression of IK(erg) amplitude in response to membrane hyperpolarization. The docking results also revealed that there are possible interactions of the QO-58 molecule with the KCNQ or KCa1.1 channel. Overall, dual activation of IK(M) and IK(Ca) caused by the presence of QO-58 eventually may have high impacts on the functional activity (e.g., anti-nociceptive effect) residing in electrically excitable cells. Care must be exercised when interpreting data generated with QO-58 as it is not entirely KCNQ/KV7 selective.
Collapse
Affiliation(s)
- Chao-Liang Wu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Poyuan Fu
- Department of Ophthalmology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
| | - Tzu-Hsien Chuang
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (H.-Y.C.); (T.-H.C.)
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| |
Collapse
|
14
|
Nagai M, Kato M, Keigo D. Anxiety and hypertension in the COVID-19 era: how is the central autonomic network linked? Hypertens Res 2022; 45:922-923. [PMID: 35181765 PMCID: PMC8855028 DOI: 10.1038/s41440-022-00864-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan.
| | - Masaya Kato
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Dote Keigo
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| |
Collapse
|
15
|
Boyle CA, Hu B, Quaintance KL, Lei S. Involvement of TRPC5 channels, inwardly rectifying K + channels, PLCβ and PIP 2 in vasopressin-mediated excitation of medial central amygdala neurons. J Physiol 2021; 599:3101-3119. [PMID: 33871877 DOI: 10.1113/jp281260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Activation of V1a vasopressin receptors facilitates neuronal excitability in the medial nucleus of central amygdala (CeM) V1a receptor activation excites about 80% CeM neurons by opening a cationic conductance and about 20% CeM neurons by suppressing an inwardly rectifying K+ (Kir) channel The cationic conductance activated by V1a receptors is identified as TRPC5 channels PLCβ-mediated depletion of PIP2 is involved in V1a receptor-elicited excitation of CeM neurons Intracellular Ca2+ release and PKC are unnecessary for V1a receptor-mediated excitation of CeM neurons ABSTRACT: Arginine vasopressin (AVP) serves as a hormone in the periphery to modulate water homeostasis and a neuromodulator in the brain to regulate a diverse range of functions including anxiety, social behaviour, cognitive activities and nociception. The amygdala is an essential brain region involved in modulating defensive and appetitive behaviours, pain and alcohol use disorders. Whereas activation of V1a receptors in the medial nucleus of the central amygdala (CeM) increases neuronal excitability, the involved ionic and signalling mechanisms have not been determined. We found that activation of V1a receptors in the CeM facilitated neuronal excitability predominantly by opening TRPC5 channels, although AVP excited about one fifth of the CeM neurons via suppressing an inwardly rectifying K+ (Kir) channel. G proteins and phospholipase Cβ (PLCβ) were required for AVP-elicited excitation of CeM neurons, whereas intracellular Ca2+ release and the activity of protein kinase C were unnecessary. Prevention of the depletion of phosphatidylinositol 4,5-bisphosphate (PIP2 ) blocked AVP-induced excitation of CeM neurons, suggesting that PLCβ-mediated depletion of PIP2 is involved in AVP-mediated excitation of CeM neurons. Our results may provide a cellular and molecular mechanism to explain the anxiogenic effects of AVP in the amygdala.
Collapse
Affiliation(s)
- Cody A Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Kati L Quaintance
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|