1
|
Zhang Z, Hu K, Fang Z, Wang S, Chen J, Yin D, Zhang C, Ma G. Acacetin reduces endoplasmic reticulum stress through the P-eNOS/PERK signaling pathway to attenuate MGO-induced vascular endothelial cell dysfunction. FEBS Open Bio 2025; 15:793-809. [PMID: 39927486 PMCID: PMC12051029 DOI: 10.1002/2211-5463.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Diabetic macrovascular disease is one of the most morbid and deadly complications of diabetes. Endothelial dysfunction plays a key role in diabetic macrovascular complications and endothelial cell apoptosis is one of the key indicators of endothelial dysfunction. Methylglyoxal (MGO), a highly reactive dicarbonyl compound generated during glycolysis, is related to the pathogenesis of cardiovascular diseases and may also promote endothelial dysfunction. Acacetin (ACA) is a naturally occurring flavonoid that can inhibit apoptosis, oxidative stress and inflammation to slow the progression of coronary heart disease; however, its effects on endothelial dysfunction are unknown. The present study investigated whether ACA may ameliorate MGO-induced endothelial dysfunction in human umbilical vein endothelial cells. The results revealed that the viability and apoptosis of human umbilical vein endothelial cells induced by MGO decreased after ACA treatment, which was reflected in the expression levels of the apoptosis-related proteins b-cell lymphoma 2 (Bcl-2)-associated death, Bcl-2-associated x protein and Bcl-2. Additionally, ACA downregulated the expression of key protein markers of MGO-induced endoplasmic reticulum stress, physical evidence recovery kit, eukaryotic initiation factor 2 alpha, activating transcription factor 4 and C/EBP homologous protein, with which calcium inward currents may be closely related. ACA significantly downregulated the MGO-induced expression of the cytosolic calcium channel proteins stromal interaction molecule 1, transient receptor potential canonical 1, ORAI calcium release-activated calcium modulator 1, transient receptor potential vanilloid 1 and 4, and the trans-endoplasmic reticulum membrane protein, transmembrane and coiled-coil domains 1. Finally, ACA increased the expression of phosphorylated endothelial nitric oxide synthase (Ser1177), thus increasing the expression of nitric oxide in endothelial cells. Overall, acacetin could reduce endoplasmic reticulum stress through the phosphorylated-endothelial nitric oxide/physical evidence recovery kit signaling pathway to attenuate MGO-induced vascular endothelial cell dysfunction. These findings may hold potential for the use of acacetin in diabetic macrovascular complications.
Collapse
Affiliation(s)
- Zhen Zhang
- School of PharmacyAnhui University of Chinese MedicineHefeiAnhuiChina
| | - Kaien Hu
- School of PharmacyAnhui University of Chinese MedicineHefeiAnhuiChina
| | - Zhaohui Fang
- Department of EndocrineThe First Hospital Affiliated to Anhui University of Chinese MedicineHefeiAnhuiChina
| | - Sihai Wang
- Department of EndocrineThe First Hospital Affiliated to Anhui University of Chinese MedicineHefeiAnhuiChina
| | - Jie Chen
- School of PharmacyAnhui University of Chinese MedicineHefeiAnhuiChina
| | - Dengke Yin
- School of PharmacyAnhui University of Chinese MedicineHefeiAnhuiChina
| | - Caiyun Zhang
- School of PharmacyAnhui University of Chinese MedicineHefeiAnhuiChina
| | - Gefei Ma
- School of PharmacyAnhui University of Chinese MedicineHefeiAnhuiChina
- Anhui Qimen Institute of SnakebiteHuangshanChina
| |
Collapse
|
2
|
Li J, Li J, Sun Y, Fu Y, Tan X, Wang N, Lu Y, Wang B. Choline Metabolites, Genetic Susceptibility, and Incident Heart Failure. JACC. ADVANCES 2025; 4:101445. [PMID: 39791104 PMCID: PMC11714414 DOI: 10.1016/j.jacadv.2024.101445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 01/12/2025]
Abstract
Background Little is known about the associations between choline metabolites (total choline, phosphatidylcholine, and glycine) and the incidence of heart failure (HF). Objectives The purpose of this study was to assess the associations of choline metabolites with incident HF and examine the effect modification by genetic susceptibility. Methods This prospective cohort study followed 245,072 participants from the UK Biobank from baseline (2006-2010) until March 30, 2023. Participants were free of cardiovascular diseases at baseline. Circulating choline metabolites were quantitated using nuclear magnetic resonance spectrometer. Cox proportional hazards models were fitted to assess the association of choline metabolites and genetics with incident HF. Two-sample Mendelian randomization analyses were implemented to confirm the findings in observational analysis. Results During a median follow-up of 14.1 years, 5,468 incident HF cases were documented. Total choline and phosphatidylcholine were positively associated with HF risk (HR: 1.08 [95% CI: 1.04-1.12] and HR: 1.08 [95% CI: 1.05-1.12], per one SD increase, respectively). Compared with the lowest quartile group, the HR for the highest quartile group was 1.23 (95% CI: 1.12-1.35) for total choline and 1.23 (95% CI: 1.12-1.34) for phosphatidylcholine. Glycine was inversely associated with HF risk (HR: 0.97 [95% CI: 0.94-0.99], per one SD increase). Participants with high polygenic risk score and high total choline or phosphatidylcholine had the highest risk of HF, whereas participants with low polygenic risk score and high glycine had the lowest risk. No statistically significant interactions were observed between choline metabolites and genetic susceptibility to HF. The Mendelian randomization analysis supported the potential causal associations of total choline (OR: 1.71 [95% CI: 1.01-1.35]) and glycine (OR: 0.93 [95% CI: 0.88-0.99]) with HF. Conclusions Circulating choline metabolites were associated with the risk of incident HF, independent of genetic susceptibility. Whether targeting the metabolic pathway of choline might be a potential strategy for improving heart health warrants further validation.
Collapse
Affiliation(s)
- Jie Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqi Fu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Tan
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Li X, Wu Y, Zhang M, Wang F, Yin H, Zhang Y, Zhao S, Ma J, Lv M, Lu C. A new peptide inhibitor of C1QBP exhibits potent anti-tumour activity against triple negative breast cancer by impairing mitochondrial function and suppressing homologous recombination repair. Clin Transl Med 2025; 15:e70162. [PMID: 39748215 PMCID: PMC11695203 DOI: 10.1002/ctm2.70162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
C1QBP exhibits heightened expression across a spectrum of tumours, thereby fostering their proliferation and metastasis, rendering it a pivotal therapeutic target. Nevertheless, to date, no pharmacological agents capable of directly targeting and inducing the degradation of C1QBP have been identified. In this study, we have unveiled a new peptide, PDBAG1, derived from the precursor protein GPD1, employing a peptidomics-based drug screening strategy. PDBAG1 has demonstrated substantial efficacy in suppressing triple-negative breast cancer (TNBC) both in vitro and in vivo. Its mechanism of action involves mitochondrial impairment and the inhibition of oxidative phosphorylation (OXPHOS), achieved through direct binding to C1QBP, thereby promoting its ubiquitin-dependent degradation. Concomitantly, due to metabolic adaptability, we have observed an up-regulation of glycolysis to compensate for OXPHOS inhibition. We observed an aberrant phenomenon wherein the hypoxia signalling pathway in tumour cells exhibited significant activation under normoxic conditions following PDBAG1 treatment. Through size-exclusion chromatography (SEC) and isothermal titration calorimetry (ITC) assays, we have validated that PDBAG1 is capable of binding C1QBP with a Kd value of 334 nM. Furthermore, PDBAG1 inhibits homologous recombination repair proteins and facilitates synergism with poly-ADP-ribose polymerase inhibitors in cancer therapy. This underscores that PDBAG1 ultimately induces insurmountable survival stress through multiple mechanisms while concurrently engendering therapeutic vulnerabilities specific to TNBC. KEY POINTS: The newly discovered peptide PDBAG1 is the first small molecule substance found to directly target and degrade C1QBP, demonstrating significant tumour inhibitory effects and therapeutic potential.
Collapse
Affiliation(s)
- Xingxing Li
- Department of BreastWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| | - Yue Wu
- The State Key Laboratory of Pharmaceutical BiotechnologyDivision of ImmunologyMedical SchoolNanjing UniversityNanjingChina
| | - Min Zhang
- Department of BreastWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| | - Fengliang Wang
- Department of BreastWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| | - Hong Yin
- Department of BreastWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| | - Yanrong Zhang
- Nanjing Women and Children's Healthcare InstituteWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| | - Shuli Zhao
- General Clinical Research CenterNanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jiehua Ma
- Nanjing Women and Children's Healthcare InstituteWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| | - Mingming Lv
- Department of BreastWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
- Nanjing Women and Children's Healthcare InstituteWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| | - Cheng Lu
- Department of BreastWomen's Hospital of Nanjing Medical UniversityNanjing Women and Children's Healthcare HospitalNanjingChina
| |
Collapse
|
4
|
Luo X, Zhang S, Wang L, Li J. Pathological roles of mitochondrial dysfunction in endothelial cells during the cerebral no-reflow phenomenon: A review. Medicine (Baltimore) 2024; 103:e40951. [PMID: 39705421 PMCID: PMC11666140 DOI: 10.1097/md.0000000000040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/22/2024] Open
Abstract
Emergency intravascular interventional therapy is the most effective approach to rapidly restore blood flow and manage occlusion of major blood vessels during the initial phase of acute ischemic stroke. Nevertheless, several patients continue to experience ineffective reperfusion or cerebral no-reflow phenomenon, that is, hypoperfusion of cerebral blood supply after treatment. This is primarily attributed to downstream microcirculation disturbance. As integral components of the cerebral microvascular structure, endothelial cells (ECs) attach importance to regulating microcirculatory blood flow. Unlike neurons and microglia, ECs harbor a relatively low abundance of mitochondria, acting as key sensors of environmental and cellular stress in regulating the viability, structural integrity, and function of ECs rather than generating energy. Mitochondria dysfunction including increased mitochondrial reactive oxygen species levels and disturbed mitochondrial dynamics causes endothelial injury, further causing microcirculation disturbance involved in the cerebral no-reflow phenomenon. Therefore, this review aims to discuss the role of mitochondrial changes in regulating the role of ECs and cerebral microcirculation blood flow during I/R injury. The outcomes of the review will provide promising potential therapeutic targets for future prevention and effective improvement of the cerebral no-reflow phenomenon.
Collapse
Affiliation(s)
- Xia Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaotao Zhang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Longbing Wang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinglun Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Tu P, Pan Y, Wang L, Li B, Sun X, Liang Z, Liu M, Zhao Z, Wu C, Wang J, Wang Z, Song Y, Zhang Y, Ma Y, Guo Y. CD62E- and ROS-Responsive ETS Improves Cartilage Repair by Inhibiting Endothelial Cell Activation through OPA1-Mediated Mitochondrial Homeostasis. Biomater Res 2024; 28:0006. [PMID: 38439927 PMCID: PMC10911934 DOI: 10.34133/bmr.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024] Open
Abstract
Background: In the environment of cartilage injury, the activation of vascular endothelial cell (VEC), marked with excessive CD62E and reactive oxygen species (ROS), can affect the formation of hyaluronic cartilage. Therefore, we developed a CD62E- and ROS-responsive drug delivery system using E-selectin binding peptide, Thioketal, and silk fibroin (ETS) to achieve targeted delivery and controlled release of Clematis triterpenoid saponins (CS) against activated VEC, and thus promote cartilage regeneration. Methods: We prepared and characterized ETS/CS and verified their CD62E- and ROS-responsive properties in vitro. We investigated the effect and underlying mechanism of ETS/CS on inhibiting VEC activation and promoting chondrogenic differentiation of bone marrow stromal cells (BMSCs). We also analyzed the effect of ETS/CS on suppressing the activated VEC-macrophage inflammatory cascade in vitro. Additionally, we constructed a rat knee cartilage defect model and administered ETS/CS combined with BMSC-containing hydrogels. We detected the cartilage differentiation, the level of VEC activation and macrophage in the new tissue, and synovial tissue. Results: ETS/CS was able to interact with VEC and inhibit VEC activation through the carried CS. Coculture experiments verified ETS/CS promoted chondrogenic differentiation of BMSCs by inhibiting the activated VEC-induced inflammatory cascade of macrophages via OPA1-mediated mitochondrial homeostasis. In the rat knee cartilage defect model, ETS/CS reduced VEC activation, migration, angiogenesis in new tissues, inhibited macrophage infiltration and inflammation, promoted chondrogenic differentiation of BMSCs in the defective areas. Conclusions: CD62E- and ROS-responsive ETS/CS promoted cartilage repair by inhibiting VEC activation and macrophage inflammation and promoting BMSC chondrogenesis. Therefore, it is a promising therapeutic strategy to promote articular cartilage repair.
Collapse
Affiliation(s)
- Pengcheng Tu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Lining Wang
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Bin Li
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xiaoxian Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Zhongqing Liang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education,
Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Acupuncture and Tuina, School of Health and Rehabilitation,
Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu, China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Zitong Zhao
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Chengjie Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Jianwei Wang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| | - Zhifang Wang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, P.R. China
| | - Yu Song
- Zhangjiagang First People’s Hospital Affiliated to Soochow University, Zhangjiagang 215638, P.R. China
| | - Yafeng Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| | - Yong Ma
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| | - Yang Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology,
Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease,
Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214072, P.R. China
| |
Collapse
|
6
|
Zhang W, Zhang Y, Xia Y, Feng G, Wang Y, Wei C, Tang A, Song K, Qiu R, Wu Y, Jin S. Choline induced cardiac dysfunction by inhibiting the production of endogenous hydrogen sulfide in spontaneously hypertensive rats. Physiol Res 2023; 72:719-730. [PMID: 38215059 PMCID: PMC10805251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/07/2023] [Indexed: 01/14/2024] Open
Abstract
To investigate the exact effects of dietary choline on hypertensive heart disease (HHD) and explore the potential mechanisms, male spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were randomly divided into five groups as follows: WKY group, WKY + Choline group, SHR group, SHR + Choline group, and SHR + Choline + NaHS group. In choline treatment groups, rats were fed with 1.3% (w/v) choline in the drinking water for 3 months. The rats in the SHR + Choline + NaHS group were intraperitoneally injected with NaHS (100 micromol/kg/day, a hydrogen sulfide (H2S) donor) for 3 months. After 3 months, left ventricular ejection fraction (LVEF) and fractional shortening (LVFS), the indicators of cardiac function measured by echocardiography, were increased significantly in SHR as compared to WKY, although there was no significant difference in collagen volumes and Bax/Bcl-2 ratio between the two groups, indicating the early stage of cardiac hypertrophy. There was a significant decrease in LVEF and LVFS and an increase in collagen volumes and Bax/Bcl-2 ratio in SHR fed with choline, meanwhile, plasma H2S levels were significantly decreased significantly in SHR fed with choline accompanying by the decrease of cystathionine-gamma-lyase (CSE) activity. Three months of NaHS significantly increased plasma H2S levels, ameliorated cardiac dysfunction and inhibited cardiac fibrosis and apoptosis in SHR fed with choline. In conclusion, choline aggravated cardiac dysfunction in HHD through inhibiting the production of endogenous H2S, which was reversed by supplementation of exogenous H2S donor.
Collapse
Affiliation(s)
- W Zhang
- Department of Physiology, Hebei Medical University, Hebei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang W, Dong E, Zhang J, Zhang Y. CaMKII, 'jack of all trades' in inflammation during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 184:48-60. [PMID: 37813179 DOI: 10.1016/j.yjmcc.2023.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Myocardial infarction and revascularization cause cardiac ischemia/reperfusion (I/R) injury featuring cardiomyocyte death and inflammation. The Ca2+/calmodulin dependent protein kinase II (CaMKII) family are serine/ threonine protein kinases that are involved in I/R injury. CaMKII exists in four different isoforms, α, β, γ, and δ. In the heart, CaMKII-δ is the predominant isoform,with multiple splicing variants, such as δB, δC and δ9. During I/R, elevated intracellular Ca2+ concentrations and reactive oxygen species activate CaMKII. In this review, we summarized the regulation and function of CaMKII in multiple cell types including cardiomyocytes, endothelial cells, and macrophages during I/R. We conclude that CaMKII mediates inflammation in the microenvironment of the myocardium, resulting in cell dysfunction, elevated inflammation, and cell death. However, different CaMKII-δ variants exhibit distinct or even opposite functions. Therefore, reagents/approaches that selectively target specific CaMKII isoforms and variants are needed for evaluating and counteracting the exact role of CaMKII in I/R injury and developing effective treatments against I/R injury.
Collapse
Affiliation(s)
- Wenjia Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Erdan Dong
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Junxia Zhang
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China.
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
8
|
Lan Y, Zeng W, Wang Y, Dong X, Shen X, Gu Y, Zhang W, Lu H. Opsin 3 mediates UVA-induced keratinocyte supranuclear melanin cap formation. Commun Biol 2023; 6:238. [PMID: 36869204 PMCID: PMC9984416 DOI: 10.1038/s42003-023-04621-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Solar ultraviolet (UV) radiation-induced DNA damage is a major risk factor for skin cancer development. UV-induced redistribution of melanin near keratinocyte nuclei leads to the formation of a supranuclear cap, which acts as a natural sunscreen and protects DNA by absorbing and scattering UV radiation. However, the mechanism underlying the intracellular movement of melanin in nuclear capping is poorly understood. In this study, we found that OPN3 is an important photoreceptor in human epidermal keratinocytes and is critical for UVA-mediated supranuclear cap formation. OPN3 mediates supranuclear cap formation via the calcium-dependent G protein-coupled receptor signaling pathway and ultimately upregulates Dync1i1 and DCTN1 expression in human epidermal keratinocytes via activating calcium/CaMKII, CREB, and Akt signal transduction. Together, these results clarify the role of OPN3 in regulating melanin cap formation in human epidermal keratinocytes, greatly expanding our understanding of the phototransduction mechanisms involved in physiological function in skin keratinocytes.
Collapse
Affiliation(s)
- Yinghua Lan
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Wen Zeng
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Yu Wang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Xian Dong
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Xiaoping Shen
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Yangguang Gu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Wei Zhang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China
| | - Hongguang Lu
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, Guizhou, P.R. China.
| |
Collapse
|
9
|
Li Z, Wang L, Ren Y, Huang Y, Liu W, Lv Z, Qian L, Yu Y, Xiong Y. Arginase: shedding light on the mechanisms and opportunities in cardiovascular diseases. Cell Death Dis 2022; 8:413. [PMID: 36209203 PMCID: PMC9547100 DOI: 10.1038/s41420-022-01200-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Arginase, a binuclear manganese metalloenzyme in the urea, catalyzes the hydrolysis of L-arginine to urea and L-ornithine. Both isoforms, arginase 1 and arginase 2 perform significant roles in the regulation of cellular functions in cardiovascular system, such as senescence, apoptosis, proliferation, inflammation, and autophagy, via a variety of mechanisms, including regulating L-arginine metabolism and activating multiple signal pathways. Furthermore, abnormal arginase activity contributes to the initiation and progression of a variety of CVDs. Therefore, targeting arginase may be a novel and promising approach for CVDs treatment. In this review, we give a comprehensive overview of the physiological and biological roles of arginase in a variety of CVDs, revealing the underlying mechanisms of arginase mediating vascular and cardiac function, as well as shedding light on the novel and promising therapeutic approaches for CVDs therapy in individuals.
Collapse
Affiliation(s)
- Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Liwei Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenxuan Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Ziwei Lv
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China.
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Zhou J, Lu Y, Li Z, Wang Z, Kong W, Zhao J. Sphingosylphosphorylcholine ameliorates doxorubicin-induced cardiotoxicity in zebrafish and H9c2 cells by reducing excessive mitophagy and mitochondrial dysfunction. Toxicol Appl Pharmacol 2022; 452:116207. [PMID: 35995203 DOI: 10.1016/j.taap.2022.116207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
Doxorubicin (DOX, C27H29NO11), is an anthracycline tumor chemotherapy drug, which has significant side effects on many organs including the heart. In recent years, mitochondrial dysfunction caused by DOX was identified as an important reason for cardiotoxic injury. Sphingosylphosphorylcholine (SPC) is essential for mitochondrial homeostasis in our previous report, however, its role in DOX-caused cardiomyopathy has remained elusive. Herein, DOX treated zebrafish embryos (90 μM) and adult fish (2.5 μM/g) were used to simulate DOX-induced cardiotoxic damage. Histopathological and ultrastructural observations showed that SPC (2.5 μM) significantly ameliorated DOX-induced pericardial edema, myocardial vacuolization and apoptosis. Furthermore, SPC (2.5 μM) can significantly inhibit DOX-induced apoptosis and promote cell proliferation in DOX treated H9c2 cells (1 μM), which is dependent on the restoration of mitochondrial homeostasis, including restored mitochondrial membrane potential, mitochondrial superoxide and ATP levels. We finally confirmed that SPC restored mitochondrial homeostasis through ameliorating DOX-induced excessive mitophagy. Mechanistically, SPC reduced calmodulin (CaM) levels and thus inhibiting Parkin activation and Parkin-dependent mitophagy. These results suggest that reducing the cardiotoxicity of chemotherapeutic drugs by targeting SPC may be a new solution to rescue chemotherapy injury.
Collapse
Affiliation(s)
- Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Yao Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Zhiliang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Zhaohui Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Weihua Kong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
11
|
Zhu S, Gu H, Peng C, Xia F, Cao H, Cui H. Regulation of Glucose, Fatty Acid and Amino Acid Metabolism by Ubiquitination and SUMOylation for Cancer Progression. Front Cell Dev Biol 2022; 10:849625. [PMID: 35392171 PMCID: PMC8981989 DOI: 10.3389/fcell.2022.849625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination and SUMOylation, which are posttranslational modifications, play prominent roles in regulating both protein expression and function in cells, as well as various cellular signal transduction pathways. Metabolic reprogramming often occurs in various diseases, especially cancer, which has become a new entry point for understanding cancer mechanisms and developing treatment methods. Ubiquitination or SUMOylation of protein substrates determines the fate of modified proteins. Through accurate and timely degradation and stabilization of the substrate, ubiquitination and SUMOylation widely control various crucial pathways and different proteins involved in cancer metabolic reprogramming. An understanding of the regulatory mechanisms of ubiquitination and SUMOylation of cell proteins may help us elucidate the molecular mechanism underlying cancer development and provide an important theory for new treatments. In this review, we summarize the processes of ubiquitination and SUMOylation and discuss how ubiquitination and SUMOylation affect cancer metabolism by regulating the key enzymes in the metabolic pathway, including glucose, lipid and amino acid metabolism, to finally reshape cancer metabolism.
Collapse
Affiliation(s)
- Shunqin Zhu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongyu Gu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Fanwei Xia
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Huan Cao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Hongjuan Cui,
| |
Collapse
|