1
|
Fellows AL, Chen CN, Xie C, Iyer N, Schmidt L, Yin X, Yates LA, Mayr M, Cowburn A, Zhao L, Wojciak-Stothard B. ARF6 as a Novel Activator of HIF-2α in Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2025; 72:380-392. [PMID: 39556110 PMCID: PMC12005040 DOI: 10.1165/rcmb.2024-0149oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/18/2024] [Indexed: 11/19/2024] Open
Abstract
ARF6 (ADP-ribosylation factor 6), a GTPase associated with cancer metastasis, is activated in the lung endothelium in pulmonary arterial hypertension (PAH). To identify ARF6-regulated pathways relevant to PAH, we performed a state-of-the-art proteomic analysis of human pulmonary artery endothelial cells (HPAECs) overexpressing the wild-type, constitutively active, fast-cycling, and dominant-negative mutants of ARF6. The analysis revealed a novel link of ARF6 with HIF (hypoxia-inducible factor), in addition to endocytotic vesicle trafficking, cell proliferation, angiogenesis, oxidative stress, and lipid metabolism. Active ARF6 markedly increased expression and activity of HIF-2, critical in PAH, with HIF-1 relatively unaffected. Hypoxic ARF6 activation was a prerequisite for HIF-2 activation and HIF-dependent gene expression in HPAECs, PAH blood-derived late-outgrowth endothelial colony-forming cells, and hypoxic mouse lungs in vivo. A novel ARF6 inhibitor, chlortetracycline (CTC), reduced hypoxia-induced HIF-2 activation, proliferation, and angiogenesis in HPAECs and reduced HIF-2 expression in lung and heart tissues of hypoxic mice. PAH endothelial colony-forming cells showed elevated expression and activity of ARF6 and HIF2, which was attenuated by CTC, and oral CTC attenuated development of pulmonary hypertension in chronically hypoxic mice. We identify EGFR (epidermal growth factor receptor) as a direct interactor of ARF6 and EGFR signaling as a crucial mechanism linking ARF6 and HIF activation. In conclusion, we are the first to demonstrate a key role of ARF6 in the regulation of HIF-2α activation in vitro and in vivo and show that HIF-2α, a master regulator of vascular remodeling in PAH, can be targeted by a clinically approved antibiotic CTC.
Collapse
Affiliation(s)
| | | | | | | | - Lukas Schmidt
- King’s British Heart Foundation Centre, King’s College London, London, United Kingdom; and
| | | | - Luke A. Yates
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | | | | | - Lan Zhao
- National Heart and Lung Institute and
| | | |
Collapse
|
2
|
Arjamaa O. Hypoxia in myocardial infarction and natriuretic peptides. Open Heart 2025; 12:e003130. [PMID: 40122569 PMCID: PMC11934622 DOI: 10.1136/openhrt-2024-003130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Mechanical stress on the heart is commonly considered the sole stimulus explaining the synthesis and release of circulating natriuretic peptides and their derivatives. While one of the most critical paradigms in cardiology is that mechanical load increases oxygen consumption, clinical studies on these peptides have neglected the relationship between mechanical stress and oxygen metabolism. At the cellular level, cardiac myocytes have a ubiquitous oxygen-sensing pathway mediated by a nuclear transcription factor, the hypoxia-inducible factor (HIF). Published studies indicate that the human myocardium starts expressing HIF during infarction. In myocardial cell cultures, natriuretic peptides are synthesised and released under hypoxic conditions through immediate and sufficient actions of HIF. CONCLUSION Myocardial oxygen metabolism directly regulates the plasma levels of natriuretic peptides in heart diseases. The function of oxygen gradients should be correlated with circulating natriuretic peptides to achieve better sensitivity in plasma measurements of natriuretic peptides in myocardial infarction.
Collapse
Affiliation(s)
- Olli Arjamaa
- University of Turku Biodiversity Unit, Turku, Finland
| |
Collapse
|
3
|
Kyriakopoulou E, van Kampen SJ, Wehrens M, Han SJ, de Ruiter H, Monshouwer-Kloots J, Marshall E, Brodehl A, van der Kraak P, te Riele AS, van Aarnhem EE, van Laake LW, Tsui H, Boogerd CJ, van Rooij E. EPAS1 induction drives myocardial degeneration in desmoplakin-cardiomyopathy. iScience 2025; 28:111895. [PMID: 40034852 PMCID: PMC11872638 DOI: 10.1016/j.isci.2025.111895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/24/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is frequently attributed to desmosomal mutations, such as those in the desmoplakin (DSP) gene. Patients with DSP-cardiomyopathy are predisposed to myocardial degeneration and arrhythmias. Despite advancements, the underlying molecular mechanisms remain incompletely understood, thus limiting therapeutic options. Here, we employed spatial transcriptomics on an explanted heart from a patient with a pathogenic DSP variant. Our transcriptional analysis revealed endothelial PAS domain-containing protein 1 (EPAS1) as a potential regulator of mitochondrial homeostasis in stressed cardiomyocytes. Elevated EPAS1 levels were associated with mitochondrial dysfunction and hypoxic stress in both human-relevant in vitro ACM models and additional explanted hearts with genetic cardiomyopathy. Collectively, cardiomyocytes bearing pathogenic DSP variants exhibit mitochondrial dysfunction, increased apoptosis, and impaired contractility, which are linked to the increased EPAS1 levels. These findings implicate EPAS1 as a key regulator of myocardial degeneration in DSP-cardiomyopathy, which expand to other forms of ACM.
Collapse
Affiliation(s)
- Eirini Kyriakopoulou
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sebastiaan J. van Kampen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Martijn Wehrens
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Su Ji Han
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hesther de Ruiter
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jantine Monshouwer-Kloots
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Emma Marshall
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andreas Brodehl
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Petra van der Kraak
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anneline S.J.M. te Riele
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Egidius E.H.L. van Aarnhem
- Division of Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Linda W. van Laake
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hoyee Tsui
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cornelis J. Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
4
|
Wang S, Xu Q, Liu W, Zhang N, Qi Y, Tang F, Ge R. Regulation of PHD2 by HIF-1α in Erythroid Cells: Insights into Erythropoiesis Under Hypoxia. Int J Mol Sci 2025; 26:762. [PMID: 39859474 PMCID: PMC11765976 DOI: 10.3390/ijms26020762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated. A hemin-induced K562 erythroid differentiation model was used to explore the effects of PHD2 knockdown under hypoxia. Erythroid differentiation was assessed by flow cytometry and immunofluorescence. HIF-1α's regulation of PHD2 was examined using luciferase assays and ChIP-seq. CRISPR/Cas9 was applied to knock out EGLN1 and HIF1A, and a fluorescent reporter system was developed to track PHD2 expression. PHD2 knockdown enhanced erythroid differentiation, evident by increased CD71 and CD235a expression. Reporter assays and ChIP-seq identified an HIF-1α binding site in the EGLN1 5' UTR, confirming HIF-1α as a regulator of PHD2 expression. The fluorescent reporter system provided real-time monitoring of endogenous PHD2 expression, showing that HIF-1α significantly modulates PHD2 levels under hypoxic conditions. PHD2 influences erythropoiesis under hypoxia, with HIF-1α regulating its expression. This feedback loop between HIF-1α and PHD2 sheds light on mechanisms driving erythroid differentiation under low-oxygen conditions.
Collapse
Affiliation(s)
- Shunjuan Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Qiying Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Wenjing Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Na Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Yuelin Qi
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| |
Collapse
|
5
|
Deng K, Hua Y, Gao Y, Zheng H, Jiang Y, Wang Y, Gao C, Ren T, Zhu Y. Thermosensitive Hydrogel with Programmable, Self-Regulated HIF-1α Stabilizer Release for Myocardial Infarction Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408013. [PMID: 39308185 DOI: 10.1002/advs.202408013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Indexed: 11/22/2024]
Abstract
HIF-1α (hypoxia induced factor-1α), a vital protective signal against hypoxia, has a short lifetime after myocardial infarction (MI). Increasing HIF-1α stability by inhibiting its hydroxylation with prolyl hydroxylases inhibitors such as DPCA (1,4-dihydrophenonthrolin-4-one-3-carboxylic acid) presents positive results. However, the optimal inhibitor administration profile for MI treatment is still unexplored. Here, injectable, thermosensitive hydrogels with programmable DPCA release are designed and synthesized. Hydrogel degradation and slow DPCA release are coupled to form a feedback loop by attaching pendant DPCA to polymer backbone, which serve as additional crosslinking points through π-π and hydrophobic interactions. Pendant carboxyl groups are added to the copolymer to accelerate DPCA release. Burst release in the acute phase for myocardial protection and extended near zero-order release across the inflammatory and fibrotic phases with different rates are achieved. All DPCA-releasing hydrogels upregulate HIF-1α, decrease apoptosis, promote angiogenesis, and stimulate cardiomyocyte proliferation, leading to preserved cardiac function and ventricular geometry. Faster hydrogel degradation induced by faster DPCA release results in a HIF-1α expression eight times of healthy control and better therapeutic effect in MI treatment. This research demonstrates the value of precise regulation of HIF-1α expression in treating MI and other relevant diseases and provides an implantable device-based modulation strategy.
Collapse
Affiliation(s)
- Kaicheng Deng
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuyan Hua
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Gao
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Houwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yangzi Jiang
- School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, Hong Kong, 999077, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China, Hong Kong, 999077, China
| | - Yaping Wang
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Changyou Gao
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tanchen Ren
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Yang Zhu
- State Key Laboratory of Transvascular Implantation Devices, Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
6
|
Qin X, Liu X, Guo C, Huang L, Xu Q. Medioresinol from Eucommiae cortex improves myocardial infarction-induced heart failure through activation of the PI3K/AKT/mTOR pathway: A network analysis and experimental study. PLoS One 2024; 19:e0311143. [PMID: 39331625 PMCID: PMC11433142 DOI: 10.1371/journal.pone.0311143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
OBJECTIVE This study aims to systematically analyze the potential active components of Eucommiae cortex in the treatment of post- myocardial infarction heart failure through network analysis and molecular docking methods. In vitro experiments were conducted to verify that medioresinol, a component of Eucommiae cortex, improves oxygen-glucose deprivation-induced cell failure through its anti-inflammatory and antioxidant capacities. METHODS Potential active components of Eucommiae cortex were screened using specific data. The targets of these components were predicted using Swiss Institute of Bioinformatics database and TargetNet, and key targets were identified by intersecting with the disease targets of myocardial infarction and heart failure. Protein-Protein Interaction analysis was performed on the key targets to screen for core targets. Genomics Institute of the Novartis Research Foundation and Human Protein Atlas were used to identify myocardial highly expressed targets. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses were conducted using the Database for Annotation, Visualization, and Integrated Discovery. Molecular docking was performed for the final components and target proteins. In vitro experiments were carried out using H9c2 cells subjected to oxygen and glucose deprivation conditions to validate the effects of the screened potential active components. RESULTS Network analysis revealed that Eucommiae cortex might exert its effects through the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), hypoxia-inducible factor 1, and Janus kinase/signal transducer and activator of transcription pathways, which are crucial for myocardial contraction, vascular tone regulation, inflammatory response, and oxidative stress. Molecular docking indicated stable binding of the selected compounds to PI3K, AKT, and mTOR. Medioresinol was selected for further study and shown to significantly improve oxidative stress and inflammatory response in myocardial ischemia-hypoxia model cells by activating the PI3K/AKT/mTOR pathway. CONCLUSION This study confirms the role of the PI3K/AKT/mTOR pathway in the cardiovascular protective effects of Eucommiae cortex and provides evidence at the cellular level. Medioresinol demonstrated potential therapeutic effects on myocardial infarction induced heart failure by reducing oxidative stress and inflammatory responses. These findings offer a theoretical basis for the application of Eucommiae cortex in the treatment of heart failure and support the development of new therapeutic drugs for cardiovascular diseases. Future research should further validate these effects in animal models and explore the overall efficacy of Eucommiae cortex.
Collapse
Affiliation(s)
- Xueting Qin
- Nephrology, The Second People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Xuan Liu
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Can Guo
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Huang
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiyao Xu
- Nephrology, The Second People's Hospital of China Three Gorges University, Yichang, Hubei, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Li Y, Min X, Zhang X, Cao X, Kong Q, Mao Q, Cheng H, Gou L, Li Y, Li C, Liu L, Ding Z. HSPA12A promotes c-Myc lactylation-mediated proliferation of tubular epithelial cells to facilitate renal functional recovery from kidney ischemia/reperfusion injury. Cell Mol Life Sci 2024; 81:404. [PMID: 39277835 PMCID: PMC11402889 DOI: 10.1007/s00018-024-05427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Proliferation of renal tubular epithelial cells (TEC) is essential for restoring tubular integrity and thereby to support renal functional recovery from kidney ischemia/reperfusion (KI/R) injury. Activation of transcriptional factor c-Myc promotes TEC proliferation following KI/R; however, the mechanism regarding c-Myc activation in TEC is incompletely known. Heat shock protein A12A (HSPA12A) is an atypic member of HSP70 family. In this study, we found that KI/R decreased HSPA12A expression in mouse kidneys and TEC, while ablation of HSPA12A in mice impaired TEC proliferation and renal functional recovery following KI/R. Gain-of-functional studies demonstrated that HSPA12A promoted TEC proliferation upon hypoxia/reoxygenation (H/R) through directly interacting with c-Myc and enhancing its nuclear localization to upregulate expression of its target genes related to TEC proliferation. Notably, c-Myc was lactylated in TEC after H/R, and this lactylation was enhanced by HSPA12A overexpression. Importantly, inhibition of c-Myc lactylation attenuated the HSPA12A-induced increases of c-Myc nuclear localization, proliferation-related gene expression, and TEC proliferation. Further experiments revealed that HSPA12A promoted c-Myc lactylation via increasing the glycolysis-derived lactate generation in a Hif1α-dependent manner. The results unraveled a role of HSPA12A in promoting TEC proliferation and facilitating renal recovery following KI/R, and this role of HSPA12A was achieved through increasing lactylation-mediated c-Myc activation. Therefore, targeting HSPA12A in TEC might be a viable strategy to promote renal functional recovery from KI/R injury in patients.
Collapse
Affiliation(s)
- Yunfan Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinxu Min
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaofei Cao
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qiuyue Kong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qian Mao
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Cheng
- Department of Anesthesiology, The First Affiliated Hospital With Wannan Medical College, Wuhu, 241001, China
| | - Liming Gou
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Zhengnian Ding
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
8
|
Tsai YM, Lin YC, Chen CY, Chien HC, Chang H, Chiang MH. Leveraging Hypotension Prediction Index to Forecast LPS-Induced Acute Lung Injury and Inflammation in a Porcine Model: Exploring the Role of Hypoxia-Inducible Factor in Circulatory Shock. Biomedicines 2024; 12:1665. [PMID: 39200130 PMCID: PMC11351327 DOI: 10.3390/biomedicines12081665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a critical illness in critically unwell patients, characterized by refractory hypoxemia and shock. This study evaluates an early detection tool and investigates the relationship between hypoxia and circulatory shock in ARDS, to improve diagnostic precision and therapy customization. We used a porcine model, inducing ARDS with mechanical ventilation and intratracheal plus intravenous lipopolysaccharide (LPS) injection. Hemodynamic changes were monitored using an Acumen IQ sensor and a ForeSight Elite sensor connected to the HemoSphere platform. We evaluated tissue damage, inflammatory response, and hypoxia-inducible factor (HIF) alterations using enzyme-linked immunosorbent assay and immunohistochemistry. The results showed severe hypotension and increased heart rates post-LPS exposure, with a notable rise in the hypotension prediction index (HPI) during acute lung injury (p = 0.024). Tissue oxygen saturation dropped considerably in the right brain region. Interestingly, post-injury HIF-2α levels were lower at the end of the experiment. Our findings imply that the HPI can effectively predict ARDS-related hypotension. HIF expression levels may serve as possible markers of rapid ARDS progression. Further research should be conducted on the clinical value of this novel approach in critical care, as well as the relationship between the HIF pathway and ARDS-associated hypotension.
Collapse
Affiliation(s)
- Yuan-Ming Tsai
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114201, Taiwan;
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114201, Taiwan; (C.-Y.C.); (H.-C.C.)
| | - Yu-Chieh Lin
- Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325208, Taiwan;
| | - Chih-Yuan Chen
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114201, Taiwan; (C.-Y.C.); (H.-C.C.)
| | - Hung-Che Chien
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114201, Taiwan; (C.-Y.C.); (H.-C.C.)
| | - Hung Chang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114201, Taiwan;
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114201, Taiwan; (C.-Y.C.); (H.-C.C.)
| | - Ming-Hsien Chiang
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114201, Taiwan
- Department of Nutritional Science, College of Human Ecology, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
9
|
Yu W, Kong Q, Jiang S, Li Y, Wang Z, Mao Q, Zhang X, Liu Q, Zhang P, Li Y, Li C, Ding Z, Liu L. HSPA12A maintains aerobic glycolytic homeostasis and Histone3 lactylation in cardiomyocytes to attenuate myocardial ischemia/reperfusion injury. JCI Insight 2024; 9:e169125. [PMID: 38421727 PMCID: PMC11128201 DOI: 10.1172/jci.insight.169125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Myocardial ischemia/reperfusion (MI/R) injury is a major cause of adverse outcomes of revascularization following myocardial infarction. Anaerobic glycolysis during myocardial ischemia is well studied, but the role of aerobic glycolysis during the early phase of reperfusion is incompletely understood. Lactylation of Histone H3 (H3) is an epigenetic indicator of the glycolytic switch. Heat shock protein A12A (HSPA12A) is an atypic member of the HSP70 family. In the present study, we report that, during reperfusion following myocardial ischemia, HSPA12A was downregulated and aerobic glycolytic flux was decreased in cardiomyocytes. Notably, HSPA12A KO in mice exacerbated MI/R-induced aerobic glycolysis decrease, cardiomyocyte death, and cardiac dysfunction. Gain- and loss-of-function studies demonstrated that HSPA12A was required to support cardiomyocyte survival upon hypoxia/reoxygenation (H/R) challenge and that its protective effects were mediated by maintaining aerobic glycolytic homeostasis for H3 lactylation. Further analyses revealed that HSPA12A increased Smurf1-mediated Hif1α protein stability, thus increasing glycolytic gene expression to maintain appropriate aerobic glycolytic activity to sustain H3 lactylation during reperfusion and, ultimately, improving cardiomyocyte survival to attenuate MI/R injury.
Collapse
Affiliation(s)
- Wansu Yu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, and
| | - Qiuyue Kong
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Surong Jiang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, and
| | - Yunfan Li
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaohe Wang
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Mao
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, and
| | - Qianhui Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, and
| | - Pengjun Zhang
- Department of Nuclear Medicine, Nanjing First Hospital of Nanjing Medical University, Nanjing, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| | - Chuanfu Li
- Departments of Surgery, East Tennessee State University, Johnson City, Tennessee, USA
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, and
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| |
Collapse
|
10
|
Rojas BL, Vazquez-Rivera E, Partch CL, Bradfield CA. Dimerization Rules of Mammalian PAS Proteins. J Mol Biol 2024; 436:168406. [PMID: 38109992 PMCID: PMC10922841 DOI: 10.1016/j.jmb.2023.168406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
The PAS (PER, ARNT, SIM) protein family plays a vital role in mammalian biology and human disease. This analysis arose from an interest in the signaling mechanics by the Ah receptor (AHR) and the Ah receptor nuclear translocator (ARNT). After more than fifty years by studying this and related mammalian sensor systems, describing the role of PAS domains in signal transduction is still challenging. In this perspective, we attempt to interpret recent studies of mammalian PAS protein structure and consider how this new insight might explain how these domains are employed in human signal transduction with an eye towards developing strategies to target and engineer these molecules for a new generation of therapeutics. Our approach is to integrate our understanding of PAS protein history, cell biology, and molecular biology with recent structural discoveries to help explain the mechanics of mammalian PAS protein signaling. As a learning set, we focus on sequences and crystal structures of mammalian PAS protein dimers that can be visualized using readily available software.
Collapse
Affiliation(s)
- Brenda L Rojas
- Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, USA
| | | | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, USA
| | - Christopher A Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin at Madison, USA; McArdle Laboratory for Cancer Research. University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
11
|
Hailiwu R, Zeng H, Zhan M, Pan T, Yang H, Li P. Salvianolic acid A diminishes LDHA-driven aerobic glycolysis to restrain myofibroblasts activation and cardiac fibrosis via blocking Akt/GSK-3β/HIF-1α axis. Phytother Res 2023; 37:4540-4556. [PMID: 37337901 DOI: 10.1002/ptr.7925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Myofibroblasts activation intensively contributes to cardiac fibrosis with undefined mechanism. Salvianolic acid A (SAA) is a phenolic component derived from Salvia miltiorrhiza with antifibrotic potency. This study aimed to interrogate the inhibitory effects and underlying mechanism of SAA on myofibroblasts activation and cardiac fibrosis. Antifibrotic effects of SAA were evaluated in mouse myocardial infarction (MI) model and in vitro myofibroblasts activation model. Metabolic regulatory effects and mechanism of SAA were determined using bioenergetic analysis and cross-validated by multiple metabolic inhibitors and siRNA or plasmid targeting Ldha. Finally, Akt/GSK-3β-related upstream regulatory mechanisms were investigated by immunoblot, q-PCR, and cross-validated by specific inhibitors. SAA inhibited cardiac fibroblasts-to-myofibroblasts transition, suppressed collage matrix proteins expression, and effectively attenuated MI-induced collagen deposition and cardiac fibrosis. SAA attenuated myofibroblasts activation and cardiac fibrosis by inhibiting LDHA-driven abnormal aerobic glycolysis. Mechanistically, SAA inhibited Akt/GSK-3β axis and downregulated HIF-1α expression by promoting its degradation via a noncanonical route, and therefore restrained HIF-1α-triggered Ldha gene expression. SAA is an effective component for treating cardiac fibrosis by diminishing LDHA-driven glycolysis during myofibroblasts activation. Targeting metabolism of myofibroblasts might occupy a potential therapeutic strategy for cardiac fibrosis.
Collapse
Affiliation(s)
- Renaguli Hailiwu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meiling Zhan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Halder SK, Milner R. Spinal Cord Blood Vessels in Aged Mice Show Greater Levels of Hypoxia-Induced Vascular Disruption and Microglial Activation. Int J Mol Sci 2023; 24:11235. [PMID: 37510999 PMCID: PMC10378993 DOI: 10.3390/ijms241411235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In response to chronic mild hypoxia (CMH, 8% O2), spinal cord blood vessels launch a robust angiogenic response that is associated with transient disruption of the blood-spinal cord barrier (BSCB) which, in turn, triggers a microglial vasculo-protective response. Because hypoxia occurs in many age-related conditions, the goal of this study was to define how aging influences these responses by comparing events in young (8-10 weeks) and aged (20 months) mice. This revealed that aged mice had much greater (3-4-fold) levels of hypoxic-induced BSCB disruption than young mice and that, while the early stage of the angiogenic response in aged mice was no different to young mice, the maturation of newly formed vessels was significantly delayed. Interestingly, microglia in the spinal cords of aged mice were much more activated than young mice, even under normoxic conditions, and this was further enhanced by CMH, though, surprisingly, this resulted in reduced microglial clustering around leaky blood vessels and diminished vasculo-protection. Vascular disruption was associated with loss of myelin in spinal cord white matter (WM) in both young and aged mice. Furthermore, it was notable that the spinal cord of aged mice contained a lower density of Olig2+ oligodendroglial cells even under normoxic conditions and that CMH significantly reduced the density of Olig2+ cells in spinal cord WM of the aged, but not the young, mice. These results demonstrate that spinal cord blood vessels of aged mice are much more vulnerable to the damaging effects of hypoxia than young mice, in part due to the reduced vasculo-protection conferred by chronically activated microglial cells. These observations may have implications for the pathogenesis and/or treatment of spinal cord diseases such as amyotrophic lateral sclerosis (ALS) and suggest that an improvement in microglial function could offer therapeutic potential for treating these age-related conditions.
Collapse
Affiliation(s)
| | - Richard Milner
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA 92121, USA;
| |
Collapse
|
13
|
Körbelin J, Klein J, Matuszcak C, Runge J, Harbaum L, Klose H, Hennigs JK. Transcription factors in the pathogenesis of pulmonary arterial hypertension-Current knowledge and therapeutic potential. Front Cardiovasc Med 2023; 9:1036096. [PMID: 36684555 PMCID: PMC9853303 DOI: 10.3389/fcvm.2022.1036096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by elevated pulmonary vascular resistance and pulmonary artery pressure. Mortality remains high in severe cases despite significant advances in management and pharmacotherapy. Since currently approved PAH therapies are unable to significantly reverse pathological vessel remodeling, novel disease-modifying, targeted therapeutics are needed. Pathogenetically, PAH is characterized by vessel wall cell dysfunction with consecutive remodeling of the pulmonary vasculature and the right heart. Transcription factors (TFs) regulate the process of transcribing DNA into RNA and, in the pulmonary circulation, control the response of pulmonary vascular cells to macro- and microenvironmental stimuli. Often, TFs form complex protein interaction networks with other TFs or co-factors to allow for fine-tuning of gene expression. Therefore, identification of the underlying molecular mechanisms of TF (dys-)function is essential to develop tailored modulation strategies in PAH. This current review provides a compendium-style overview of TFs and TF complexes associated with PAH pathogenesis and highlights their potential as targets for vasculoregenerative or reverse remodeling therapies.
Collapse
Affiliation(s)
- Jakob Körbelin
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Jakob Körbelin,
| | - Julius Klein
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Matuszcak
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Runge
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Harbaum
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Klose
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan K. Hennigs
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Jan K. Hennigs,
| |
Collapse
|
14
|
Di Fusco SA, Colivicchi F. Interview with Nobel Laureate Gregg Semenza: an inspiring story for young researchers. Eur Heart J 2023; 44:5-6. [PMID: 36303413 DOI: 10.1093/eurheartj/ehac591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Unit, San Filippo Neri Hospital, ASL Rome 1, Rome, Italy
| |
Collapse
|
15
|
Blei F. Update August 2022. Lymphat Res Biol 2022; 20:443-464. [PMID: 35993922 DOI: 10.1089/lrb.2022.29127.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|