1
|
Theodorakis N, Feretzakis G, Kreouzi M, Anagnostou D, Hitas C, Verykios VS, Nikolaou M. GH Therapy in Chronic Heart Failure: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J Clin Endocrinol Metab 2025; 110:e1252-e1260. [PMID: 39566897 PMCID: PMC11913100 DOI: 10.1210/clinem/dgae814] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
CONTEXT Guideline-directed medical therapy of heart failure (HF) primarily targets neurohormonal activation. However, GH has emerged as a potential treatment for the multiple hormonal deficiency syndrome, which is associated with worse outcomes in HF. OBJECTIVE This study evaluates the efficacy and safety of GH therapy in HF. DATA SOURCES A systematic search was conducted in PubMed, Cochrane Library, and ClinicalTrials.gov, according to PRISMA guidelines. STUDY SELECTION Randomized, placebo-controlled trials studying GH therapy in adult HF patients were included. Of the 1184 initially identified records, 17 studies (1.4%) met the inclusion criteria. DATA EXTRACTION Two independent authors conducted the search, with any disagreements resolved by a third author. Study quality was assessed using predefined criteria, including randomization, blinding, and the presence of a placebo group. DATA SYNTHESIS A random-effects model was applied due to heterogeneity across studies. GH therapy significantly improved left ventricular ejection fraction (+3.34%; 95% CI, 1.09-5.59; P = .0037), peak oxygen consumption (+2.84 mL/kg/min; 95% CI, 1.32-4.36; P = .0002), and New York Heart Association class (-0.44; 95% CI, -0.08 to -0.81; P = .023). GH therapy also reduced the composite of death, worsening HF or ventricular tachycardia by 41% (RR = .59; 95% CI, 0.39-0.90; P = .013). Subgroup analyses indicated that patients with ischemic cardiomyopathy, baseline ejection fraction ≥30%, and longer treatment duration experienced greater benefits. CONCLUSION GH therapy demonstrated improvements in cardiac function, exercise capacity, and HF symptoms, along with a statistically significant trend toward improvements in hard endpoints. Event-driven trials are needed to validate these findings.
Collapse
Affiliation(s)
- Nikolaos Theodorakis
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, Melissia 15127, Greece
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
- School of Science and Technology, Hellenic Open University, Patras 26335, Greece
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, Patras 26335, Greece
| | - Magdalini Kreouzi
- Department of Internal Medicine & 65+ Clinic, Sismanogleio-Amalia Fleming General Hospital, Melissia 15127, Greece
| | - Dimitrios Anagnostou
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, Melissia 15127, Greece
| | - Christos Hitas
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, Melissia 15127, Greece
| | - Vassilios S Verykios
- School of Science and Technology, Hellenic Open University, Patras 26335, Greece
| | - Maria Nikolaou
- Department of Cardiology & Heart Failure Outpatient Clinic, Sismanogleio-Amalia Fleming General Hospital, Melissia 15127, Greece
| |
Collapse
|
2
|
Karsdal M, Cox TR, Parker AL, Willumsen N, Sand JMB, Jenkins G, Hansen HH, Oldenburger A, Geillinger-Kaestle KE, Larsen AT, Black D, Genovese F, Eckersley A, Heinz A, Nyström A, Holm Nielsen S, Bennink L, Johannsson L, Bay-Jensen AC, Orange DE, Friedman S, Røpke M, Fiore V, Schuppan D, Rieder F, Simona B, Borthwick L, Skarsfeldt M, Wennbo H, Thakker P, Stoffel R, Clarke GW, Kalluri R, Ruane D, Zannad F, Mortensen JH, Sinkeviciute D, Sundberg F, Coseno M, Thudium C, Croft AP, Khanna D, Cooreman M, Broermann A, Leeming DJ, Mobasheri A, Ricard-Blum S. Advances in Extracellular Matrix-Associated Diagnostics and Therapeutics. J Clin Med 2025; 14:1856. [PMID: 40142664 PMCID: PMC11943371 DOI: 10.3390/jcm14061856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 03/28/2025] Open
Abstract
The extracellular matrix (ECM) is the common denominator of more than 50 chronic diseases. Some of these chronic pathologies lead to enhanced tissue formation and deposition, whereas others are associated with increased tissue degradation, and some exhibit a combination of both, leading to severe tissue alterations. To develop effective therapies for diseases affecting the lung, liver, kidney, skin, intestine, musculoskeletal system, heart, and solid tumors, we need to modulate the ECM's composition to restore its organization and function. Across diverse organ diseases, there are common denominators and distinguishing factors in this fibroinflammatory axis, which may be used to foster new insights into drug development across disease indications. The 2nd Extracellular Matrix Pharmacology Congress took place in Copenhagen, Denmark, from 17 to 19 June 2024 and was hosted by the International Society of Extracellular Matrix Pharmacology. The event was attended by 450 participants from 35 countries, among whom were prominent scientists who brought together state-of-the-art research on organ diseases and asked important questions to facilitate drug development. We highlight key aspects of the ECM in the liver, kidney, skin, intestine, musculoskeletal system, lungs, and solid tumors to advance our understanding of the ECM and its central targets in drug development. We also highlight key advances in the tools and technology that enable this drug development, thereby supporting the ECM.
Collapse
Affiliation(s)
- Morten Karsdal
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Thomas R. Cox
- Garvan Institute of Medical Research, Sydney 2010, Australia; (T.R.C.); (A.L.P.)
- School of Clinical Medicine, St Vincent’s Clinical Campus, UNSW Medicine & Health, UNSW, Sydney 2010, Australia
| | - Amelia L. Parker
- Garvan Institute of Medical Research, Sydney 2010, Australia; (T.R.C.); (A.L.P.)
- School of Clinical Medicine, St Vincent’s Clinical Campus, UNSW Medicine & Health, UNSW, Sydney 2010, Australia
| | - Nicholas Willumsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Jannie Marie Bülow Sand
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London SW7 2AZ, UK;
| | | | | | - Kerstin E. Geillinger-Kaestle
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany;
| | - Anna Thorsø Larsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | | | - Federica Genovese
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Alexander Eckersley
- Wellcome Centre for Cell Matrix Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK;
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center—University of Freiburg, 79106 Breisgau, Germany;
| | - Signe Holm Nielsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | | | | | - Anne-Christine Bay-Jensen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Dana E. Orange
- Hospital for Special Surgery, The Rockefeller University, New York, NY 10065, USA;
| | - Scott Friedman
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA;
| | | | - Vincent Fiore
- Boehringer Ingelheim, 55218 Ingelheim am Rhein, Germany;
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | | | - Lee Borthwick
- FibroFind Ltd., FibroFind Laboratories, Medical School, Newcastle upon Tyne NE2 4HH, UK;
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mark Skarsfeldt
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Haakan Wennbo
- Takeda, Translational Medicine Biomarkers Gastrointestinal & Global, Boston, MA 02110, USA; (H.W.); (P.T.)
| | - Paresh Thakker
- Takeda, Translational Medicine Biomarkers Gastrointestinal & Global, Boston, MA 02110, USA; (H.W.); (P.T.)
| | - Ruedi Stoffel
- Roche Diagnostics International Ltd., 6343 Rotkreuz, Switzerland;
| | - Graham W. Clarke
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden;
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College, London E1 9RT, UK
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Darren Ruane
- Janssen Immunology, Translational Sciences and Medicine, La Jolla, CA 92037, USA;
| | - Faiez Zannad
- Division of Heart Failure and Hypertension, and of the Inserm CIC, University of Lorraine, 54000 Metz, France;
| | - Joachim Høg Mortensen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Dovile Sinkeviciute
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Fred Sundberg
- Sengenics Corporation LLC, Wilmington, DE 19801, USA; (F.S.); (M.C.)
| | - Molly Coseno
- Sengenics Corporation LLC, Wilmington, DE 19801, USA; (F.S.); (M.C.)
| | - Christian Thudium
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Adam P. Croft
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham, Birmingham B15 2TT, UK;
- Institute of Inflammation and Ageing, Queen Elizabeth Hospital, University of Birmingham, Birmingham B15 2TT, UK
| | - Dinesh Khanna
- Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Andre Broermann
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany;
| | - Diana Julie Leeming
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Ali Mobasheri
- Faculty of Medicine, University of Oulu, 90570 Oulu, Finland;
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
- Faculté de Médecine, Université de Liège, 4000 Liège, Belgium
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, ICBMS, University Lyon 1, 69622 Villeurbanne Cedex, France;
| |
Collapse
|
3
|
Granata R, Leone S, Zhang X, Gesmundo I, Steenblock C, Cai R, Sha W, Ghigo E, Hare JM, Bornstein SR, Schally AV. Growth hormone-releasing hormone and its analogues in health and disease. Nat Rev Endocrinol 2025; 21:180-195. [PMID: 39537825 DOI: 10.1038/s41574-024-01052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Growth hormone-releasing hormone (GHRH) and its ability to stimulate the production and release of growth hormone from the pituitary were discovered more than four decades ago. Since then, this hormone has been studied extensively and research into its functions is still ongoing. GHRH has multifaceted roles beyond the originally identified functions that encompass a variety of direct extrapituitary effects. In this Review, we illustrate the different biological activities of GHRH, covering the effects of GHRH agonists and antagonists in physiological and pathological contexts, along with the underlying mechanisms. GHRH and GHRH analogues have been implicated in cell growth, wound healing, cell death, inflammation, immune functions, mood disorders, feeding behaviour, neuroprotection, diabetes mellitus and obesity, as well as cardiovascular, lung and neurodegenerative diseases and some cancers. The positive effects observed in preclinical models in vitro and in vivo strongly support the potential use of GHRH agonists and antagonists as clinical therapeutics.
Collapse
Affiliation(s)
- Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Sheila Leone
- Department of Pharmacy, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Xianyang Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
| | - Iacopo Gesmundo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Renzhi Cai
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei Sha
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center., Miami, FL, USA
| | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrew V Schally
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center., Miami, FL, USA
| |
Collapse
|
4
|
Dulce RA, Hatzistergos KE, Kanashiro-Takeuchi RM, Takeuchi LM, Balkan W, Hare JM. Growth hormone-releasing hormone signaling and manifestations within the cardiovascular system. Rev Endocr Metab Disord 2025:10.1007/s11154-024-09939-0. [PMID: 39883351 DOI: 10.1007/s11154-024-09939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/31/2025]
Abstract
Growth hormone (GH)-releasing hormone (GHRH), a hypothalamic peptide initially characterized for its role in GH regulation, has gained increasing attention due to its GH-independent action on peripheral physiology, including that of the cardiovascular system. While its effects on the peripheral vasculature are still under investigation, GHRH and synthetic agonists have exhibited remarkable receptor-mediated cardioprotective properties in preclinical models. GHRH and its analogs enhance myocardial function by improving contractility, reducing oxidative stress, inflammation, and offsetting pathological remodeling. Studies performed in small and large animal models have demonstrated the efficacy of these compounds in diverse cardiomyopathies, suggesting their potential as promising therapeutic agents. However, the clinical translation of GHRH synthetic analogs still faces challenges related to the route of administration and potential side effects mainly associated with activation of the GH/IGF-I axis. Despite these hurdles, the compelling evidence supporting their role in cardiac repair makes GHRH analogs attractive candidates for clinical testing in the treatment of various cardiac diseases.
Collapse
Affiliation(s)
- Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA
| | - Konstantinos E Hatzistergos
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Rosemeire M Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA.
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
5
|
Zhang H, Gao Y, Zhang M, Yuan Z, Chen Y, Wang A, Liu X, Ji S, Jin J, Liang J, Liu Y. Schaftoside improves HFpEF through regulation the autophagy-lysosome pathway by allosterically targeting CaMKII-δ. Redox Biol 2024; 78:103424. [PMID: 39608246 PMCID: PMC11629582 DOI: 10.1016/j.redox.2024.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) presents a significant challenge to global healthcare systems due to its complex presentation. HFpEF presents with a normal or near-normal left ventricular ejection fraction, cardiac diastolic dysfunction, and a metabolic profile characterized by impaired inflammation and oxidative stress. There have been few valuable drug targets reported for HFpEF to date. Here, we discovered that schaftoside, an active component from licorice, has a significant protective effect on the cardiac remodeling induced by continuous infusion of angiotensin II (AngII), which leads to the HFpEF phenotype. Mechanistically, schaftoside has demonstrated the ability to ameliorate lysosomal dysfunction in both in vitro and in vivo models, thereby activating autophagy. Bioinformatic analyses based on proteome and phosphoproteome suggested that Ca2+/calmodulin-dependent protein kinase II (CaMKII) was a potential target for schaftoside. It was confirmed that schaftoside allosterically mediated CaMKII-δ conformation via targeting a unique active pocket near the ATP-binding site to inhibit protein phosphorylation and regulate the lysosomal autophagy pathway. Therefore, schaftoside represents the first small molecule identified to inhibit CaMKII-δ activity through allosteric inhibition, providing a novel candidate for alleviating cardiac metabolic imbalance in HFpEF.
Collapse
Affiliation(s)
- Haiying Zhang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou, 571199, China; Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou, 571199, China
| | - Yanan Gao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou, 571199, China; Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou, 571199, China
| | - Min Zhang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou, 571199, China; Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou, 571199, China
| | - Zhexin Yuan
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Yu Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Aiping Wang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Xinxing Liu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Shunchang Ji
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Jianfeng Jin
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, 571199, China
| | - Jingwei Liang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou, 571199, China; Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou, 571199, China.
| | - Yan Liu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China; International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Haikou, 571199, China; Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou, 571199, China.
| |
Collapse
|
6
|
Schally AV, Cai R, Zhang X, Sha W, Wangpaichitr M. The development of growth hormone-releasing hormone analogs: Therapeutic advances in cancer, regenerative medicine, and metabolic disorders. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09929-2. [PMID: 39592529 DOI: 10.1007/s11154-024-09929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Growth Hormone-Releasing Hormone (GHRH) and its analogs have gained significant attention for their therapeutic potential across various domains, including oncology, regenerative medicine, and metabolic disorders. Originally recognized for its role in regulating growth hormone (GH) secretion, GHRH has since been discovered to exert broader physiological effects beyond the pituitary gland, with GHRH receptors identified in multiple extrahypothalamic tissues, including tumor cells. This review explores the development of both GHRH agonists and antagonists, focusing on their mechanisms of action, therapeutic applications, and future potential. GHRH agonists have shown promise in promoting tissue regeneration, improving cardiac function, and enhancing islet survival in diabetes. Meanwhile, GHRH antagonists, particularly those in the MIA and AVR series, demonstrate potent antitumor activity by inhibiting cancer cell proliferation and downregulating growth factor pathways, while also exhibiting anti-inflammatory properties. Preclinical studies in models of lung, prostate, breast, and gastrointestinal cancers indicate that GHRH analogs could offer a novel therapeutic approach with minimal toxicity. Additionally, GHRH antagonists are being investigated for their potential in treating neurodegenerative diseases and inflammatory conditions. This review highlights the versatility of GHRH analogs as a promising class of therapeutic agents, poised to impact multiple fields of medicine.
Collapse
Affiliation(s)
- Andrew V Schally
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- South FL VA Foundation for Research and Education, Miami, FL, USA
| | - Renzhi Cai
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xianyang Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
| | - Wei Sha
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Medhi Wangpaichitr
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, Miami, FL, USA.
- Department of Surgery, Division of Thoracic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- South FL VA Foundation for Research and Education, Miami, FL, USA.
| |
Collapse
|
7
|
Yu H, Peng H. Effects of GHRH and its analogues on the Vascular System. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09932-7. [PMID: 39570567 DOI: 10.1007/s11154-024-09932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Growth hormone-releasing hormone (GHRH) is a crucial endocrine hormone that exerts its biological effects by binding to specific receptors on the cell surface, known as GHRH receptors (GHRH-R). This binding activates downstream signaling pathways. In addition to promoting growth hormone secretion by the pituitary gland, GHRH also functions to maintain multisystem homeostasis by interacting with peripheral tissues that express GHRH-R. Due to the multiple roles of GHRH in body development and tissue repair, a variety of GHRH analogue peptides have been synthesized. Based on their effects on GHRH-R, these GHRH analogues can be classified as GHRH-R agonists and antagonists. Recently, the interaction of GHRH and its analogues with blood vessels, such as promoting angiogenesis and inhibiting vascular calcification (VC), has gained significant attention. This article reviews the effects of GHRH and its analogues on blood vessels.
Collapse
Affiliation(s)
- Hong Yu
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| | - Huan Peng
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
8
|
Zhang Z, Wang Y, Chen X, Wu C, Zhou J, Chen Y, Liu X, Tang X. The aging heart in focus: The advanced understanding of heart failure with preserved ejection fraction. Ageing Res Rev 2024; 101:102542. [PMID: 39396676 DOI: 10.1016/j.arr.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for 50 % of heart failure (HF) cases, making it the most common type of HF, and its prevalence continues to increase in the aging society. HFpEF is a systemic syndrome resulting from many risk factors, such as aging, metabolic syndrome, and hypertension, and its clinical features are highly heterogeneous in different populations. HFpEF syndrome involves the dysfunction of multiple organs, including the heart, lung, muscle, and vascular system. The heart shows dysfunction of various cells, including cardiomyocytes, endothelial cells, fibroblasts, adipocytes, and immune cells. The complex etiology and pathobiology limit experimental research on HFpEF in animal models, delaying a comprehensive understanding of the mechanisms and making treatment difficult. Recently, many scientists and cardiologists have attempted to improve the clinical outcomes of HFpEF. Recent advances in clinically related animal models and systemic pathology studies have improved our understanding of HFpEF, and clinical trials involving sodium-glucose cotransporter 2 inhibitors have significantly enhanced our confidence in treating HFpEF. This review provides an updated comprehensive discussion of the etiology and pathobiology, molecular and cellular mechanisms, preclinical animal models, and therapeutic trials in animals and patients to enhance our understanding of HFpEF and improve clinical outcomes.
Collapse
Affiliation(s)
- Zhewei Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China; Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yu Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiangqi Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chuan Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China
| | - Jingyue Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China
| | - Yan Chen
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaojing Liu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China.
| |
Collapse
|
9
|
Zhang Z, Sun M, Jiang W, Yu L, Zhang C, Ma H. Myocardial Metabolic Reprogramming in HFpEF. J Cardiovasc Transl Res 2024; 17:121-132. [PMID: 37650988 DOI: 10.1007/s12265-023-10433-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Heart failure (HF) caused by structural or functional cardiac abnormalities is a significant cause of morbidity and mortality worldwide. While HF with reduced ejection fraction (HErEF) is well understood, more than half of patients have HF with preserved ejection fraction (HFpEF). Currently, the treatment for HFpEF primarily focuses on symptom alleviation, lacking specific drugs. The stressed heart undergoes metabolic switches in substrate preference, which is a compensatory process involved in cardiac pathological remodeling. Although metabolic reprogramming in HF has gained attention in recent years, its role in HFpEF still requires further elucidation. In this review, we present a summary of cardiac mitochondrial dysfunction and cardiac metabolic reprogramming in HFpEF. Additionally, we emphasize potential therapeutic approaches that target metabolic reprogramming for the treatment of HFpEF.
Collapse
Affiliation(s)
- Zihui Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Mingchu Sun
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Wenhua Jiang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chan Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China.
| | - Heng Ma
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China.
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
10
|
Gao S, Liu XP, Li TT, Chen L, Feng YP, Wang YK, Yin YJ, Little PJ, Wu XQ, Xu SW, Jiang XD. Animal models of heart failure with preserved ejection fraction (HFpEF): from metabolic pathobiology to drug discovery. Acta Pharmacol Sin 2024; 45:23-35. [PMID: 37644131 PMCID: PMC10770177 DOI: 10.1038/s41401-023-01152-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is currently a preeminent challenge for cardiovascular medicine. It has a poor prognosis, increasing mortality, and is escalating in prevalence worldwide. Despite accounting for over 50% of all HF patients, the mechanistic underpinnings driving HFpEF are poorly understood, thus impeding the discovery and development of mechanism-based therapies. HFpEF is a disease syndrome driven by diverse comorbidities, including hypertension, diabetes and obesity, pulmonary hypertension, aging, and atrial fibrillation. There is a lack of high-fidelity animal models that faithfully recapitulate the HFpEF phenotype, owing primarily to the disease heterogeneity, which has hampered our understanding of the complex pathophysiology of HFpEF. This review provides an updated overview of the currently available animal models of HFpEF and discusses their characteristics from the perspective of energy metabolism. Interventional strategies for efficiently utilizing energy substrates in preclinical HFpEF models are also discussed.
Collapse
Affiliation(s)
- Si Gao
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Xue-Ping Liu
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Ting-Ting Li
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Li Chen
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yi-Ping Feng
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yu-Kun Wang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yan-Jun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu, 233000, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
| | - Xiao-Qian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Suo-Wen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Xu-Dong Jiang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China.
| |
Collapse
|
11
|
Jasińska-Stroschein M. Searching for Effective Treatments in HFpEF: Implications for Modeling the Disease in Rodents. Pharmaceuticals (Basel) 2023; 16:1449. [PMID: 37895920 PMCID: PMC10610318 DOI: 10.3390/ph16101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND While the prevalence of heart failure with preserved ejection fraction (HFpEF) has increased over the last two decades, there still remains a lack of effective treatment. A key therapeutic challenge is posed by the absence of animal models that accurately replicate the complexities of HFpEF. The present review summarizes the effects of a wide spectrum of therapeutic agents on HF. METHODS Two online databases were searched for studies; in total, 194 experimental protocols were analyzed following the PRISMA protocol. RESULTS A diverse range of models has been proposed for studying therapeutic interventions for HFpEF, with most being based on pressure overload and systemic hypertension. They have been used to evaluate more than 150 different substances including ARNIs, ARBs, HMGR inhibitors, SGLT-2 inhibitors and incretins. Existing preclinical studies have primarily focused on LV diastolic performance, and this has been significantly improved by a wide spectrum of candidate therapeutic agents. Few experiments have investigated the normalization of pulmonary congestion, exercise capacity, animal mortality, or certain molecular hallmarks of heart disease. CONCLUSIONS The development of comprehensive preclinical HFpEF models, with multi-organ system phenotyping and physiologic stress-based functional testing, is needed for more successful translation of preclinical research to clinical trials.
Collapse
|
12
|
Tah S, Valderrama M, Afzal M, Iqbal J, Farooq A, Lak MA, Gostomczyk K, Jami E, Kumar M, Sundaram A, Sharifa M, Arain M. Heart Failure With Preserved Ejection Fraction: An Evolving Understanding. Cureus 2023; 15:e46152. [PMID: 37900404 PMCID: PMC10613100 DOI: 10.7759/cureus.46152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a clinical syndrome in which patients have signs and symptoms of HF due to high left ventricular (LV) filling pressure despite normal or near normal LV ejection fraction. It is more common than HF with reduced ejection fraction (HFrEF), and its diagnosis and treatment are more challenging than HFrEF. Although hypertension is the primary risk factor, coronary artery disease and other comorbidities, such as atrial fibrillation (AF), diabetes, chronic kidney disease (CKD), and obesity, also play an essential role in its formation. This review summarizes current knowledge about HFpEF, its pathophysiology, clinical presentation, diagnostic challenges, current treatments, and promising novel treatments. It is essential to continue to be updated on the latest treatments for HFpEF so that patients always receive the most therapeutic treatments. The use of GnRH agonists in the management of HFpEF, infusion of Apo a-I nanoparticle, low-level transcutaneous vagal stimulation (LLTS), and estrogen only in post-menopausal women are promising strategies to prevent diastolic dysfunction and HFpEF; however, there is still no proven curative treatment for HFpEF yet.
Collapse
Affiliation(s)
- Sunanda Tah
- Surgery, Beckley Appalachian Regional Healthcare (ARH) Hospital, Beckley, USA
- Surgery, Saint James School of Medicine, Arnos Vale, VCT
| | | | - Maham Afzal
- Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | | | - Aisha Farooq
- Internal Medicine, Dr. Ruth Pfau Hospital, Karachi, PAK
| | | | - Karol Gostomczyk
- Medicine, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, POL
| | - Elhama Jami
- Internal Medicine, Herat Regional Hospital, Herat, AFG
| | | | | | | | - Mustafa Arain
- Internal Medicine, Civil Hospital Karachi, Karachi, PAK
| |
Collapse
|
13
|
Kanashiro-Takeuchi RM, Takeuchi LM, Dulce RA, Kazmierczak K, Balkan W, Cai R, Sha W, Schally AV, Hare JM. Efficacy of a growth hormone-releasing hormone agonist in a murine model of cardiometabolic heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 324:H739-H750. [PMID: 36897749 PMCID: PMC10151038 DOI: 10.1152/ajpheart.00601.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) represents a major unmet medical need owing to its diverse pathophysiology and lack of effective therapies. Potent synthetic, agonists (MR-356 and MR-409) of growth hormone-releasing hormone (GHRH) improve the phenotype of models of HF with reduced ejection fraction (HFrEF) and in cardiorenal models of HFpEF. Endogenous GHRH exhibits a broad range of regulatory influences in the cardiovascular (CV) system and aging and plays a role in several cardiometabolic conditions including obesity and diabetes. Whether agonists of GHRH can improve the phenotype of cardiometabolic HFpEF remains untested and unknown. Here we tested the hypothesis that MR-356 can mitigate/reverse the cardiometabolic HFpEF phenotype. C57BL6N mice received a high-fat diet (HFD) plus the nitric oxide synthase inhibitor (l-NAME) for 9 wk. After 5 wk of HFD + l-NAME regimen, animals were randomized to receive daily injections of MR-356 or placebo during a 4-wk period. Control animals received no HFD + l-NAME or agonist treatment. Our results showed the unique potential of MR-356 to treat several HFpEF-like features including cardiac hypertrophy, fibrosis, capillary rarefaction, and pulmonary congestion. MR-356 improved cardiac performance by improving diastolic function, global longitudinal strain (GLS), and exercise capacity. Importantly, the increased expression of cardiac pro-brain natriuretic peptide (pro-BNP), inducible nitric oxide synthase (iNOS), and vascular endothelial growth factor-A (VEGF-A) was restored to normal levels suggesting that MR-356 reduced myocardial stress associated with metabolic inflammation in HFpEF. Thus, agonists of GHRH may be an effective therapeutic strategy for the treatment of cardiometabolic HFpEF phenotype.NEW & NOTEWORTHY This randomized study used rigorous hemodynamic tools to test the efficacy of a synthetic GHRH agonist to improve cardiac performance in a cardiometabolic HFpEF. Daily injection of the GHRH agonist, MR-356, reduced the HFpEF-like effects as evidenced by improved diastolic dysfunction, reduced cardiac hypertrophy, fibrosis, and pulmonary congestion. Notably, end-diastolic pressure and end-diastolic pressure-volume relationship were reset to control levels. Moreover, treatment with MR-356 increased exercise capacity and reduced myocardial stress associated with metabolic inflammation in HFpEF.
Collapse
Affiliation(s)
- Rosemeire M Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Renzhi Cai
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida, United States
| | - Wei Sha
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Andrew V Schally
- Division of Oncology, Department of Medicine and Endocrinology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida, United States
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
14
|
Thum T, Lam CSP. Accelerating developments in heart failure. Cardiovasc Res 2023; 118:3401-3402. [PMID: 36583729 DOI: 10.1093/cvr/cvac185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany.,REBIRTH Center for Translational Regenerative Therapies, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs Str. 1, 30625 Hannover, Germany
| | - Carolyn S P Lam
- National Heart Centre Singapore, 5 Hospital Dr, Singapore 169609.,Duke-National University of Singapore Medical School, 8 College Rd., Singapore 169857
| |
Collapse
|
15
|
Ren HL, Cai R, Xue R, Zhang Y, Xu Q, Zhang X, Cai R, Sha W, Schally AV, Zhou MS. Growth hormone-releasing hormone agonist attenuates vascular calcification in diabetic db/db mice. Front Cardiovasc Med 2023; 10:1102525. [PMID: 36742073 PMCID: PMC9889365 DOI: 10.3389/fcvm.2023.1102525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Introduction Vascular calcification (VC) is an independent risk factor for cardiovascular diseases. VC increases mortality of all-causes. VC is one of most common cardiovascular complications in type II diabetes. So far, no therapy has been proven to be effective in treatment of clinical VC. The present study investigated the therapeutic effects of MR409, an agonistic analog of growth hormone-releasing hormone (GHRH-A), on VC in diabetic db/db mice. Method and result Diabetic mice were injected with MR409 subcutaneously every day for 8 weeks. Long-term treatment with MR409 improved serum lipid profile and endothelium-dependent relaxation to acetylcholine, and reduced vascular structural injury in diabetic mice without affecting serum growth hormone level. Echocardiography showed that calcium plaques present in heart valve of diabetic mice disappeared in diabetic mice after treatment with MR409. MR409 inhibited vascular calcium deposition associated with a marked reduction in the expressions of osteogenic-regulated alkaline phosphatase (ALP) and transcription osteogenic marker gene Runx2 in diabetic mice. MR409 also inhibited vascular reactive oxygen species (ROS) generation and upregulated the expressions of anti-calcifying protein Klotho in diabetic mice. Discussion Our results demonstrate that GHRH-A MR409 can effectively attenuate VC and heart valve calcification, and protect against endothelial dysfunction and vascular injury in diabetic mice without significantly affecting pituitary-growth hormone axis. The mechanisms may involve upregulation of anti-calcifying protein Klotho and reduction in vascular ROS and the expression of redox sensitive osteogenic genes Runx2 and ALP. GHRH-A may represent a new pharmacological strategy for treatment of VC and diabetics associated cardiovascular complications.
Collapse
Affiliation(s)
- Hao-Lin Ren
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ruiping Cai
- Science and Research Center, Shenyang Medical College, Shenyang, China,Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Ruize Xue
- Science and Research Center, Shenyang Medical College, Shenyang, China,Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Yaoxia Zhang
- Science and Research Center, Shenyang Medical College, Shenyang, China,Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Qian Xu
- Science and Research Center, Shenyang Medical College, Shenyang, China,Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Xianyang Zhang
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, United States
| | - RenZhi Cai
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, United States,Miami Veterans Affairs Medical Center, South Florida VA Foundation for Research and Education, Miami, FL, United States
| | - Wei Sha
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, United States
| | - Andrew V. Schally
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, United States,Miami Veterans Affairs Medical Center, South Florida VA Foundation for Research and Education, Miami, FL, United States,Divisions of Medical/Oncology and Endocrinology, Department of Pathology, Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ming-Sheng Zhou
- Science and Research Center, Shenyang Medical College, Shenyang, China,Department of Physiology, Shenyang Medical College, Shenyang, China,*Correspondence: Ming-Sheng Zhou,
| |
Collapse
|
16
|
Kanashiro-Takeuchi RM, Kazmierczak K, Liang J, Takeuchi LM, Sitbon YH, Szczesna-Cordary D. Hydroxychloroquine Mitigates Dilated Cardiomyopathy Phenotype in Transgenic D94A Mice. Int J Mol Sci 2022; 23:ijms232415589. [PMID: 36555229 PMCID: PMC9779604 DOI: 10.3390/ijms232415589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
In this study, we aimed to investigate whether short-term and low-dose treatment with hydroxychloroquine (HCQ), an antimalarial drug, can modulate heart function in a preclinical model of dilated cardiomyopathy (DCM) expressing the D94A mutation in cardiac myosin regulatory light chain (RLC) compared with healthy non-transgenic (NTg) littermates. Increased interest in HCQ came with the COVID-19 pandemic, but the risk of cardiotoxic side effects of HCQ raised concerns, especially in patients with an underlying heart condition, e.g., cardiomyopathy. Effects of HCQ treatment vs. placebo (H2O), administered in Tg-D94A vs. NTg mice over one month, were studied by echocardiography and muscle contractile mechanics. Global longitudinal strain analysis showed the HCQ-mediated improvement in heart performance in DCM mice. At the molecular level, HCQ promoted the switch from myosin's super-relaxed (SRX) to disordered relaxed (DRX) state in DCM-D94A hearts. This result indicated more myosin cross-bridges exiting a hypocontractile SRX-OFF state and assuming the DRX-ON state, thus potentially enhancing myosin motor function in DCM mice. This bottom-up investigation of the pharmacological use of HCQ at the level of myosin molecules, muscle fibers, and whole hearts provides novel insights into mechanisms by which HCQ therapy mitigates some abnormal phenotypes in DCM-D94A mice and causes no harm in healthy NTg hearts.
Collapse
Affiliation(s)
- Rosemeire M Kanashiro-Takeuchi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|