1
|
Discussion on Repolarization Reserve between Patients with Coronary Heart Disease and Normal Controls. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7944969. [PMID: 36035296 PMCID: PMC9410869 DOI: 10.1155/2022/7944969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Objective To investigate the repolarization reserve of normal controls (NCs) and patients with coronary heart disease (CHD). Methods From January 1st, 2010 to December 31st, 2018, 200 age- and gender-matched inpatients in the Second Hospital of Shanxi Medical University and Heji Hospital Affiliated to Changzhi Medical College were selected for treadmill exercise test (TET), including 67 patients in the myocardial ischemia group, 66 patients in the suspected myocardial ischemia group, and 67 patients in the normal control group. Coronary angiography (CAG) was performed on 49 of 133 patients in the myocardial ischemia group and the suspected myocardial ischemia group, and 9 positives and 40 negatives were identified. The heart rate (HR) and QT interval of TET examiners before exercise, during exercise (90 beats/min, 120 beats/min, maximum HR), and in the recovery period (1 minute and 3 minutes after exercise) were reviewed, and QTc values were calculated after being corrected by BaZett's. Results The mean QTc values in NCs were all below 452 ms, before exercise, during exercise (90 beats/min, 120 beats/min and maximum HR), and during the recovery period (1 minute and 3 minutes after exercise). The comparison results of the RR interval between the two groups revealed P > 0.05, indicating no statistical significance. Significant differences were present when comparing the QT intervals when the HRs were 90 beats/minute and 120 beats/minute during exercise (P < 0.05). And comparing the QTc values, it was found that the QTc values during different exercise periods were statistically different between groups (P < 0.05). Conclusions NCs have good repolarization reserve. CAG can confirm true myocardial ischemia patients (i.e., patients with CHD) among myocardial ischemia and suspected myocardial ischemia patients screened by TET. Patients with positive CAG have poor repolarization reserve as QT interval represents ventricular repolarization adaptability.
Collapse
|
2
|
Su S, Sun J, Wang Y, Xu Y. Cardiac hERG K + Channel as Safety and Pharmacological Target. Handb Exp Pharmacol 2021; 267:139-166. [PMID: 33829343 DOI: 10.1007/164_2021_455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The human ether-á-go-go related gene (hERG, KCNH2) encodes the pore-forming subunit of the potassium channel responsible for a fast component of the cardiac delayed rectifier potassium current (IKr). Outward IKr is an important determinant of cardiac action potential (AP) repolarization and effectively controls the duration of the QT interval in humans. Dysfunction of hERG channel can cause severe ventricular arrhythmias and thus modulators of the channel, including hERG inhibitors and activators, continue to attract intense pharmacological interest. Certain inhibitors of hERG channel prolong the action potential duration (APD) and effective refractory period (ERP) to suppress premature ventricular contraction and are used as class III antiarrhythmic agents. However, a reduction of the hERG/IKr current has been recognized as a predominant mechanism responsible for the drug-induced delayed repolarization known as acquired long QT syndromes (LQTS), which is linked to an increased risk for "torsades de pointes" (TdP) ventricular arrhythmias and sudden cardiac death. Many drugs of different classes and structures have been identified to carry TdP risk. Hence, assessing hERG/IKr blockade of new drug candidates is mandatory in the drug development process according to the regulatory agencies. In contrast, several hERG channel activators have been shown to enhance IKr and shorten the APD and thus might have potential antiarrhythmic effects against pathological LQTS. However, these activators may also be proarrhythmic due to excessive shortening of APD and the ERP.
Collapse
Affiliation(s)
- Shi Su
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Jinglei Sun
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Yi Wang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China.
| |
Collapse
|
3
|
Baczkó I, Hornyik T, Brunner M, Koren G, Odening KE. Transgenic Rabbit Models in Proarrhythmia Research. Front Pharmacol 2020; 11:853. [PMID: 32581808 PMCID: PMC7291951 DOI: 10.3389/fphar.2020.00853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Drug-induced proarrhythmia constitutes a potentially lethal side effect of various drugs. Most often, this proarrhythmia is mechanistically linked to the drug's potential to interact with repolarizing cardiac ion channels causing a prolongation of the QT interval in the ECG. Despite sophisticated screening approaches during drug development, reliable prediction of proarrhythmia remains very challenging. Although drug-induced long-QT-related proarrhythmia is often favored by conditions or diseases that impair the individual's repolarization reserve, most cellular, tissue, and whole animal model systems used for drug safety screening are based on normal, healthy models. In recent years, several transgenic rabbit models for different types of long QT syndromes (LQTS) with differences in the extent of impairment in repolarization reserve have been generated. These might be useful for screening/prediction of a drug's potential for long-QT-related proarrhythmia, particularly as different repolarizing cardiac ion channels are impaired in the different models. In this review, we summarize the electrophysiological characteristics of the available transgenic LQTS rabbit models, and the pharmacological proof-of-principle studies that have been performed with these models—highlighting the advantages and disadvantages of LQTS models for proarrhythmia research. In the end, we give an outlook on potential future directions and novel models.
Collapse
Affiliation(s)
- István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Brunner
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland.,Institute of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Mora G. COVID-19 y arritmias: relación y riesgo. REVISTA COLOMBIANA DE CARDIOLOGÍA 2020. [PMCID: PMC7287475 DOI: 10.1016/j.rccar.2020.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
La pandemia por COVID-19 tiene relación con arritmias que ocurren a través de efectos directos en el miocardio o de efectos indirectos por los tratamientos que podrÃan ser útiles para detener al virus. Esta revisión muestra el mal pronóstico que confiere el antecedente de arritmias o el desarrollo de estas durante el curso de la enfermedad por COVID-19, el efecto proarrÃtmico de algunos tratamientos y las medidas de prevención y tratamiento en caso de presentar arritmias.
Collapse
Affiliation(s)
- Guillermo Mora
- Universidad Nacional de Colombia, Bogotá, Colombia
- Fundación Santafé de Bogotá, Bogotá, Colombia
- Los Cobos Medical Center, Bogotá, Colombia
| |
Collapse
|
5
|
Hull CM, Genge CE, Hobbs Y, Rayani K, Lin E, Gunawan M, Shafaattalab S, Tibbits GF, Claydon TW. Investigating the utility of adult zebrafish ex vivo whole hearts to pharmacologically screen hERG channel activator compounds. Am J Physiol Regul Integr Comp Physiol 2019; 317:R921-R931. [PMID: 31664867 DOI: 10.1152/ajpregu.00190.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is significant interest in the potential utility of small-molecule activator compounds to mitigate cardiac arrhythmia caused by loss of function of hERG1a voltage-gated potassium channels. Zebrafish (Danio rerio) have been proposed as a cost-effective, high-throughput drug-screening model to identify compounds that cause hERG1a dysfunction. However, there are no reports on the effects of hERG1a activator compounds in zebrafish and consequently on the utility of the model to screen for potential gain-of-function therapeutics. Here, we examined the effects of hERG1a blocker and types 1 and 2 activator compounds on isolated zkcnh6a (zERG3) channels in the Xenopus oocyte expression system as well as action potentials recorded from ex vivo adult zebrafish whole hearts using optical mapping. Our functional data from isolated zkcnh6a channels show that under the conditions tested, these channels are blocked by hERG1a channel blockers (dofetilide and terfenadine), and activated by type 1 (RPR260243) and type 2 (NS1643, PD-118057) hERG1a activators with higher affinity than hKCNH2a channels (except NS1643), with differences accounted for by different biophysical properties in the two channels. In ex vivo zebrafish whole hearts, two of the three hERG1a activators examined caused abbreviation of the action potential duration (APD), whereas hERG1a blockers caused APD prolongation. These data represent, to our knowledge, the first pharmacological characterization of isolated zkcnh6a channels and the first assessment of hERG enhancing therapeutics in zebrafish. Our findings lead us to suggest that the zebrafish ex vivo whole heart model serves as a valuable tool in the screening of hKCNH2a blocker and activator compounds.
Collapse
Affiliation(s)
- Christina M Hull
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christine E Genge
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yuki Hobbs
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eric Lin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Marvin Gunawan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sanam Shafaattalab
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Glen F Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tom W Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
6
|
De Zio R, Gerbino A, Forleo C, Pepe M, Milano S, Favale S, Procino G, Svelto M, Carmosino M. Functional study of a KCNH2 mutant: Novel insights on the pathogenesis of the LQT2 syndrome. J Cell Mol Med 2019; 23:6331-6342. [PMID: 31361068 PMCID: PMC6714209 DOI: 10.1111/jcmm.14521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 12/29/2022] Open
Abstract
The K+ voltage-gated channel subfamily H member 2 (KCNH2) transports the rapid component of the cardiac delayed rectifying K+ current. The aim of this study was to characterize the biophysical properties of a C-terminus-truncated KCNH2 channel, G1006fs/49 causing long QT syndrome type II in heterozygous members of an Italian family. Mutant carriers underwent clinical workup, including 12-lead electrocardiogram, transthoracic echocardiography and 24-hour ECG recording. Electrophysiological experiments compared the biophysical properties of G1006fs/49 with those of KCNH2 both expressed either as homotetramers or as heterotetramers in HEK293 cells. Major findings of this work are as follows: (a) G1006fs/49 is functional at the plasma membrane even when co-expressed with KCNH2, (b) G1006fs/49 exerts a dominant-negative effect on KCNH2 conferring specific biophysical properties to the heterotetrameric channel such as a significant delay in the voltage-sensitive transition to the open state, faster kinetics of both inactivation and recovery from the inactivation and (c) the activation kinetics of the G1006fs/49 heterotetrameric channels is partially restored by a specific KCNH2 activator. The functional characterization of G1006fs/49 homo/heterotetramers provided crucial findings about the pathogenesis of LQTS type II in the mutant carriers, thus providing a new and potential pharmacological strategy.
Collapse
Affiliation(s)
- Roberta De Zio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Cinzia Forleo
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Martino Pepe
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stefano Favale
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Monica Carmosino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
7
|
El-Sherif N, Turitto G, Boutjdir M. Acquired Long QT Syndrome and Electrophysiology of Torsade de Pointes. Arrhythm Electrophysiol Rev 2019; 8:122-130. [PMID: 31114687 PMCID: PMC6528034 DOI: 10.15420/aer.2019.8.3] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Congenital long QT syndrome (LQTS) has been the most investigated cardiac ion channelopathy. Although congenital LQTS remains the domain of cardiologists, cardiac electrophysiologists and specialised centres, the much more frequently acquired LQTS is the domain of physicians and other members of healthcare teams required to make therapeutic decisions. This paper reviews the electrophysiological mechanisms of acquired LQTS, its ECG characteristics, clinical presentation, and management. The paper concludes with a comprehensive review of the electrophysiological mechanisms of torsade de pointes.
Collapse
Affiliation(s)
- Nabil El-Sherif
- SUNY Downstate Medical CenterNY, US
- VA NY Harbor Healthcare SystemNY, US
| | - Gioia Turitto
- Weill Cornell Medical College, NewYork-Presbyterian Brooklyn Methodist HospitalNY, US
| | - Mohamed Boutjdir
- SUNY Downstate Medical CenterNY, US
- VA NY Harbor Healthcare SystemNY, US
- NYU School of MedicineNew York NY, US
| |
Collapse
|
8
|
Kanaporis G, Kalik ZM, Blatter LA. Action potential shortening rescues atrial calcium alternans. J Physiol 2018; 597:723-740. [PMID: 30412286 DOI: 10.1113/jp277188] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Cardiac alternans refers to a beat-to-beat alternation in contraction, action potential (AP) morphology and Ca2+ transient (CaT) amplitude, and represents a risk factor for cardiac arrhythmia, including atrial fibrillation. We developed strategies to pharmacologically manipulate the AP waveform with the goal to reduce or eliminate the occurrence of CaT and contraction alternans in atrial tissue. With combined patch-clamp and intracellular Ca2+ measurements we investigated the effect of specific ion channel inhibitors and activators on alternans. In single rabbit atrial myocytes, suppression of Ca2+ -activated Cl- channels eliminated AP duration alternans, but prolonged the AP and failed to eliminate CaT alternans. In contrast, activation of K+ currents (IKs and IKr ) shortened the AP and eliminated both AP duration and CaT alternans. As demonstrated also at the whole heart level, activation of K+ conductances represents a promising strategy to suppress alternans, and thus reducing a risk factor for atrial fibrillation. ABSTRACT At the cellular level alternans is observed as beat-to-beat alternations in contraction, action potential (AP) morphology and magnitude of the Ca2+ transient (CaT). Alternans is a well-established risk factor for cardiac arrhythmia, including atrial fibrillation. This study investigates whether pharmacological manipulation of AP morphology is a viable strategy to reduce the risk of arrhythmogenic CaT alternans. Pacing-induced AP and CaT alternans were studied in rabbit atrial myocytes using combined Ca2+ imaging and electrophysiological measurements. Increased AP duration (APD) and beat-to-beat alternations in AP morphology lowered the pacing frequency threshold and increased the degree of CaT alternans. Inhibition of Ca2+ -activated Cl- channels reduced beat-to-beat AP alternations, but prolonged APD and failed to suppress CaT alternans. In contrast, AP shortening induced by activators of two K+ channels (ML277 for Kv7.1 and NS1643 for Kv11.1) abolished both APD and CaT alternans in field-stimulated and current-clamped myocytes. K+ channel activators had no effect on the degree of Ca2+ alternans in AP voltage-clamped cells, confirming that suppression of Ca2+ alternans was caused by the changes in AP morphology. Finally, activation of Kv11.1 channel significantly attenuated or even abolished atrial T-wave alternans in isolated Langendorff perfused hearts. In summary, AP shortening suppressed or completely eliminated both CaT and APD alternans in single atrial myocytes and atrial T-wave alternans at the whole heart level. Therefore, we suggest that AP shortening is a potential intervention to avert development of alternans with important ramifications for arrhythmia prevention and therapy.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Zane M Kalik
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Lothar A Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
9
|
El-Sherif N, Turitto G, Boutjdir M. Acquired long QT syndrome and torsade de pointes. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2018; 41:414-421. [PMID: 29405316 DOI: 10.1111/pace.13296] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/13/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023]
Abstract
Since its initial description by Jervell and Lange-Nielsen in 1957, the congenital long QT syndrome (LQTS) has been the most investigated cardiac ion channelopathy. Although congenital LQTS continues to remain the domain of cardiologists, cardiac electrophysiologists, and specialized centers, the by far more frequent acquired drug-induced LQTS is the domain of all physicians and other members of the health care team who are required to make therapeutic decisions. This report will review the electrophysiological mechanisms of LQTS and torsade de pointes, electrocardiographic characteristics of acquired LQTS, its clinical presentation, management, and future directions in the field.
Collapse
Affiliation(s)
- Nabil El-Sherif
- Downstate Medical Center, State University of New York, New York, NY, USA.,VA NY Harbor Healthcare System, New York, NY, USA
| | - Gioia Turitto
- New York-Presbyterian Brooklyn Methodist Hospital, New York, NY, USA
| | - Mohamed Boutjdir
- Downstate Medical Center, State University of New York, New York, NY, USA.,VA NY Harbor Healthcare System, New York, NY, USA.,NYU School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Huo J, Guo X, Lu Q, Qiang H, Liu P, Bai L, Huang CLH, Zhang Y, Ma A. NS1643 enhances ionic currents in a G604S-WT hERG co-expression system associated with long QT syndrome 2. Clin Exp Pharmacol Physiol 2017; 44:1125-1133. [PMID: 28741726 DOI: 10.1111/1440-1681.12820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Affiliation(s)
- JianHua Huo
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | - Xueyan Guo
- Shaanxi Provincial People's Hospital; Xi'an Shaanxi China
| | - Qun Lu
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | - Hua Qiang
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | - Ping Liu
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | - Ling Bai
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| | | | - Yanmin Zhang
- Department of Pediatric Cardiology; Childrens Research Institute; affiliate children's hospital of Xi'an Jiaotong University; Xi'an Shaanxi China
| | - Aiqun Ma
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an Shaanxi China
| |
Collapse
|
11
|
Sale H, Roy S, Warrier J, Thangathirupathy S, Vadari Y, Gopal SK, Krishnamurthy P, Ramarao M. Modulation of K v 11.1 (hERG) channels by 5-(((1H-indazol-5-yl)oxy)methyl)-N-(4-(trifluoromethoxy)phenyl)pyrimidin-2-amine (ITP-2), a novel small molecule activator. Br J Pharmacol 2017; 174:2484-2500. [PMID: 28500657 DOI: 10.1111/bph.13859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Activators of Kv 11.1 (hERG) channels have potential utility in the treatment of acquired and congenital long QT (LQT) syndrome. Here, we describe a new hERG channel activator, 5-(((1H-indazol-5-yl)oxy)methyl)-N-(4-(trifluoromethoxy)phenyl)pyrimidin-2-amine (ITP-2), with a chemical structure distinct from previously reported compounds. EXPERIMENTAL APPROACH Conventional electrophysiological methods were used to assess the effects of ITP-2 on hERG1a and hERG1a/1b channels expressed heterologously in HEK-293 cells. KEY RESULTS ITP-2 selectively increased test pulse currents (EC50 1.0 μM) and decreased tail currents. ITP-2 activated hERG1a homomeric channels primarily by causing large depolarizing shifts in the midpoint of voltage-dependent inactivation and hyperpolarizing shifts in the voltage-dependence of activation. In addition, ITP-2 slowed rates of inactivation and made recovery from inactivation faster. hERG1a/1b heteromeric channels showed reduced sensitivity to ITP-2 and their inactivation properties were differentially modulated. Effects on midpoint of voltage-dependent inactivation and rates of inactivation were less pronounced for hERG1a/1b channels. Effects on voltage-dependent activation and activation kinetics were not different from hERG1a channels. Interestingly, hERG1b channels were inhibited by ITP-2. Inactivation-impairing mutations abolished activation by ITP-2 and led to inhibition of hERG channels. ITP-2 exerted agonistic effect from extracellular side of the membrane and could activate one of the arrhythmia-associated trafficking-deficient LQT2 mutants. CONCLUSIONS AND IMPLICATIONS ITP-2 may serve as another novel lead molecule for designing robust activators of hERG channels. hERG1a/1b gating kinetics were differentially modulated by ITP-2 leading to altered sensitivity. ITP-2 is capable of activating an LQT2 mutant and may be potentially useful in the development of LQT2 therapeutics.
Collapse
Affiliation(s)
- Harinath Sale
- Disease Sciences and Technology, Biocon Bristol-Myers Squibb Research and Development Center, Syngene International Limited, Bangalore, India
| | - Samrat Roy
- Disease Sciences and Technology, Biocon Bristol-Myers Squibb Research and Development Center, Syngene International Limited, Bangalore, India
| | - Jayakumar Warrier
- Medicinal Chemistry, Biocon Bristol Myers-Squibb Research and Development Center, Syngene International Limited, Bangalore, India
| | - Srinivasan Thangathirupathy
- Medicinal Chemistry, Biocon Bristol Myers-Squibb Research and Development Center, Syngene International Limited, Bangalore, India
| | - Yoganand Vadari
- Disease Sciences and Technology, Biocon Bristol-Myers Squibb Research and Development Center, Syngene International Limited, Bangalore, India
| | - Shruthi K Gopal
- Disease Sciences and Technology, Biocon Bristol-Myers Squibb Research and Development Center, Syngene International Limited, Bangalore, India
| | - Prasad Krishnamurthy
- Disease Sciences and Technology, Biocon Bristol-Myers Squibb Research and Development Center, Syngene International Limited, Bangalore, India
| | - Manjunath Ramarao
- Disease Sciences and Technology, Biocon Bristol-Myers Squibb Research and Development Center, Syngene International Limited, Bangalore, India
| |
Collapse
|
12
|
Gentile S. hERG1 potassium channel in cancer cells: a tool to reprogram immortality. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:649-655. [PMID: 27649700 DOI: 10.1007/s00249-016-1169-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/21/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
It has been well established that changes in ion fluxes across cellular membranes as a function of time is fundamental in maintaining cellular homeostasis of every living cell. Consequently, dysregulation of ion channels activity is a critical event in pathological conditions of several tissues, including cancer. Nevertheless, the role of ion channels in cancer biology is still not well understood and very little is known about the possible therapeutic opportunities offered by the use of the vast collection of drugs that target ion channels. In this review, we focus on the recent advances in understanding the role of the voltage-gated hERG1 potassium channel in cancer and on the effects of pharmacologic manipulation of the hERG1 in cancer cells aiming to provide insights into the biochemical signaling and cellular processes that are altered by using these drugs.
Collapse
|
13
|
Lang CN, Koren G, Odening KE. Transgenic rabbit models to investigate the cardiac ion channel disease long QT syndrome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:142-56. [PMID: 27210307 DOI: 10.1016/j.pbiomolbio.2016.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/01/2016] [Indexed: 12/13/2022]
Abstract
Long QT syndrome (LQTS) is a rare inherited channelopathy caused mainly by different mutations in genes encoding for cardiac K(+) or Na(+) channels, but can also be caused by commonly used ion-channel-blocking and QT-prolonging drugs, thus affecting a much larger population. To develop novel diagnostic and therapeutic strategies to improve the clinical management of these patients, a thorough understanding of the pathophysiological mechanisms of arrhythmogenesis and potential pharmacological targets is needed. Drug-induced and genetic animal models of various species have been generated and have been instrumental for identifying pro-arrhythmic triggers and important characteristics of the arrhythmogenic substrate in LQTS. However, due to species differences in features of cardiac electrical function, these different models do not entirely recapitulate all aspects of the human disease. In this review, we summarize advantages and shortcomings of different drug-induced and genetically mediated LQTS animal models - focusing on mouse and rabbit models since these represent the most commonly used small animal models for LQTS that can be subjected to genetic manipulation. In particular, we highlight the different aspects of arrhythmogenic mechanisms, pro-arrhythmic triggering factors, anti-arrhythmic agents, and electro-mechanical dysfunction investigated in transgenic LQTS rabbit models and their translational application for the clinical management of LQTS patients in detail. Transgenic LQTS rabbits have been instrumental to increase our understanding of the role of spatial and temporal dispersion of repolarization to provide an arrhythmogenic substrate, genotype-differences in the mechanisms for early afterdepolarization formation and arrhythmia maintenance, mechanisms of hormonal modification of arrhythmogenesis and regional heterogeneities in electro-mechanical dysfunction in LQTS.
Collapse
Affiliation(s)
- C N Lang
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - G Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - K E Odening
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
14
|
Thomas SHL, Behr ER. Pharmacological treatment of acquired QT prolongation and torsades de pointes. Br J Clin Pharmacol 2015; 81:420-7. [PMID: 26183037 DOI: 10.1111/bcp.12726] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/21/2022] Open
Abstract
Torsades de pointes (TdP) is a characteristic polymorphic ventricular arrhythmia associated with delayed ventricular repolarization as evidenced on the surface electrocardiogram by QT interval prolongation. It typically occurs in self-limiting bursts, causing dizziness and syncope, but may occasionally progress to ventricular fibrillation and sudden death. Acquired long QT syndromes are mainly caused by cardiac disease, electrolyte abnormalities or exposure to drugs that block rectifying potassium channels, especially IKr. Management of TdP or marked QT prolongation includes removal or correction of precipitants, including discontinuation of culprit drugs and institution of cardiac monitoring. Electrolyte abnormalities and hypoxia should be corrected, with potassium concentrations maintained in the high normal range. Immediate treatment of TdP is by intravenous administration of magnesium sulphate, terminating prolonged episodes using electrical cardioversion. In refractory cases of recurrent TdP, the arrhythmia can be suppressed by increasing the underlying heart rate using isoproterenol (isoprenaline) or transvenous pacing. Other interventions are rarely needed, but there are case reports of successful use of lidocaine or phenytoin. Anti-arrhythmic drugs that prolong ventricular repolarization should be avoided. Some episodes of TdP could be avoided by careful prescribing of QT prolonging drugs, including an individualized assessment of risks and benefits before use, performing baseline and periodic electrocardiograms and measurement of electrolytes, especially during acute illnesses, using the lowest effective dose for the shortest possible time and avoiding potential drug interactions. These steps are particularly important in those with underlying repolarization abnormalities and those who have previously experienced drug-induced TdP.
Collapse
Affiliation(s)
- Simon H L Thomas
- Medical Toxicology Centre, Wolfson Building, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH.,National Poisons Information Service Newcastle Unit, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP
| | - Elijah R Behr
- Cardiovascular Research Centre, St George's University of London, London, SW17 0RE, UK
| |
Collapse
|
15
|
Yu Z, van Veldhoven JPD, 't Hart IME, Kopf AH, Heitman LH, IJzerman AP. Synthesis and biological evaluation of negative allosteric modulators of the Kv11.1(hERG) channel. Eur J Med Chem 2015; 106:50-9. [PMID: 26519929 DOI: 10.1016/j.ejmech.2015.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 01/13/2023]
Abstract
We synthesized and evaluated a series of compounds for their allosteric modulation at the Kv11.1 (hERG) channel. Most compounds were negative allosteric modulators of [(3)H]dofetilide binding to the channel, in particular 7f, 7h-j and 7p. Compounds 7f and 7p were the most potent negative allosteric modulators amongst all ligands, significantly increasing the dissociation rate of dofetilide in the radioligand kinetic binding assay, while remarkably reducing the affinities of dofetilide and astemizole in a competitive displacement assay. Additionally, both 7f and 7p displayed peculiar displacement characteristics with Hill coefficients significantly distinct from unity as shown by e.g., dofetilide, further indicative of their allosteric effects on dofetilide binding. Our findings in this investigation yielded several promising negative allosteric modulators for future functional and clinical research with respect to their antiarrhythmic propensities, either alone or in combination with known Kv11.1 blockers.
Collapse
Affiliation(s)
- Zhiyi Yu
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Jacobus P D van Veldhoven
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Ingrid M E 't Hart
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Adrian H Kopf
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
16
|
Zhang KP, Yang BF, Li BX. Translational toxicology and rescue strategies of the hERG channel dysfunction: biochemical and molecular mechanistic aspects. Acta Pharmacol Sin 2014; 35:1473-84. [PMID: 25418379 PMCID: PMC4261120 DOI: 10.1038/aps.2014.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/20/2014] [Indexed: 01/08/2023]
Abstract
The human ether-à-go-go related gene (hERG) potassium channel is an obligatory anti-target for drug development on account of its essential role in cardiac repolarization and its close association with arrhythmia. Diverse drugs have been removed from the market owing to their inhibitory activity on the hERG channel and their contribution to acquired long QT syndrome (LQTS). Moreover, mutations that cause hERG channel dysfunction may induce congenital LQTS. Recently, an increasing number of biochemical and molecular mechanisms underlying hERG-associated LQTS have been reported. In fact, numerous potential biochemical and molecular rescue strategies are hidden within the biogenesis and regulating network. So far, rescue strategies of hERG channel dysfunction and LQTS mainly include activators, blockers, and molecules that interfere with specific links and other mechanisms. The aim of this review is to discuss the rescue strategies based on hERG channel toxicology from the biochemical and molecular perspectives.
Collapse
Affiliation(s)
- Kai-ping Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, China
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China (Key Laboratory of Cardiovascular Research, Ministry of Education), China
| | - Bao-feng Yang
- Department of Pharmacology, Harbin Medical University, Harbin, China
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China (Key Laboratory of Cardiovascular Research, Ministry of Education), China
| | - Bao-xin Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China (Key Laboratory of Cardiovascular Research, Ministry of Education), China
| |
Collapse
|
17
|
Li P, Chen X, Zhang Q, Zheng Y, Jiang H, Yang H, Gao Z. The human ether-a-go-go-related gene activator NS1643 enhances epilepsy-associated KCNQ channels. J Pharmacol Exp Ther 2014; 351:596-604. [PMID: 25232191 DOI: 10.1124/jpet.114.217703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human ether-a-go-go-related gene (hERG) and KCNQ channels are two classes of voltage-gated potassium channels. Specific mutations have been identified that are causal for type II long QT (LQT2) syndrome, neonatal epilepsy, and benign familial neonatal convulsions. Increasing evidence from clinical studies suggests that LQT2 and epilepsy coexist in some patients. Therefore, an integral approach to investigating and treating the two diseases is likely more effective. In the current study, we found that NS1643 [1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea], a previously reported hERG activator, is also an activator of KCNQ channels. It potentiates the neuronal KCNQ2, KCNQ4, and KCNQ2/Q3 channels, but not the cardiac KCNQ1. The effects of NS1643 on the KCNQ2 channel include left shifting of voltage for reaching 50% of the maximum conductance and slowing of deactivation. Analysis of the dose-response curve of NS1643 revealed an EC50 value of 2.44 ± 0.25 μM. A hydrophobic phenylalanine (F137) located at the middle region of the voltage-sensing domain was identified as critical for NS1643 activity on KCNQ2. When testing NS1643 effects in rescuing LQT2 hERG mutants and the KCNQ2 BFNC mutants, we found it is particularly efficacious in some cases. Considering the substantial relationship between LQT2 and epilepsy, these findings reveal that NS1643 is a useful compound to elucidate the causal connection of LQT2 and epilepsy. More generally, this may provide a strategy in the development of therapeutics for LQT2 and epilepsy.
Collapse
Affiliation(s)
- Ping Li
- CAS Key Laboratory of Receptor Research (P.L., X.C., Y.Z., Z.G.), and State Key Laboratory of Drug Research (Q.Z., H.J., H.Y.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xueqin Chen
- CAS Key Laboratory of Receptor Research (P.L., X.C., Y.Z., Z.G.), and State Key Laboratory of Drug Research (Q.Z., H.J., H.Y.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiansen Zhang
- CAS Key Laboratory of Receptor Research (P.L., X.C., Y.Z., Z.G.), and State Key Laboratory of Drug Research (Q.Z., H.J., H.Y.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yueming Zheng
- CAS Key Laboratory of Receptor Research (P.L., X.C., Y.Z., Z.G.), and State Key Laboratory of Drug Research (Q.Z., H.J., H.Y.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hualiang Jiang
- CAS Key Laboratory of Receptor Research (P.L., X.C., Y.Z., Z.G.), and State Key Laboratory of Drug Research (Q.Z., H.J., H.Y.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huaiyu Yang
- CAS Key Laboratory of Receptor Research (P.L., X.C., Y.Z., Z.G.), and State Key Laboratory of Drug Research (Q.Z., H.J., H.Y.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhaobing Gao
- CAS Key Laboratory of Receptor Research (P.L., X.C., Y.Z., Z.G.), and State Key Laboratory of Drug Research (Q.Z., H.J., H.Y.), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
VARKEVISSER ROSANNE, VOS MARCA, BEEKMAN JETD, TIELAND RALPHG, VAN DER HEYDEN MARCELA. AV-Block and Conduction Slowing Prevail Over TdP Arrhythmias in the Methoxamine-Sensitized Pro-Arrhythmic Rabbit Model. J Cardiovasc Electrophysiol 2014; 26:82-9. [DOI: 10.1111/jce.12533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 11/27/2022]
Affiliation(s)
- ROSANNE VARKEVISSER
- Department of Medical Physiology; Division Heart & Lungs University Medical Center Utrecht; Utrecht The Netherlands
| | - MARC A. VOS
- Department of Medical Physiology; Division Heart & Lungs University Medical Center Utrecht; Utrecht The Netherlands
| | - JET D. BEEKMAN
- Department of Medical Physiology; Division Heart & Lungs University Medical Center Utrecht; Utrecht The Netherlands
| | - RALPH G. TIELAND
- Department of Medical Physiology; Division Heart & Lungs University Medical Center Utrecht; Utrecht The Netherlands
| | - MARCEL A. VAN DER HEYDEN
- Department of Medical Physiology; Division Heart & Lungs University Medical Center Utrecht; Utrecht The Netherlands
| |
Collapse
|
19
|
Li J, Maguy A, Duverger JE, Vigneault P, Comtois P, Shi Y, Tardif JC, Thomas D, Nattel S. Induced KCNQ1 autoimmunity accelerates cardiac repolarization in rabbits: potential significance in arrhythmogenesis and antiarrhythmic therapy. Heart Rhythm 2014; 11:2092-100. [PMID: 25087487 DOI: 10.1016/j.hrthm.2014.07.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Autoantibodies directed against various cardiac receptors have been implicated in cardiomyopathy and heart rhythm disturbances. In a previous study among patients with dilated cardiomyopathy, autoantibodies targeting the cardiac voltage-gated KCNQ1 K(+) channel were associated with shortened corrected QT intervals (QTc). However, the electrophysiologic actions of KCNQ1 autoimmunity have not been assessed experimentally in a direct fashion. OBJECTIVE The purpose of this study was to investigate the cardiac electrophysiologic effects of KCNQ1 autoantibody production induced by vaccination in a rabbit model. METHODS Rabbits were immunized with KCNQ1 channel peptide. ECG recordings were obtained during a 1-month follow-up period. Rabbits then underwent in vivo electrophysiologic study, after which cardiomyocytes were isolated for analysis of slow delayed rectifier current (IKs) and action potential properties via patch-clamp. RESULTS KCNQ1-immunized rabbits exhibited shortening of QTc compared to sham-immunized controls. Reduced ventricular effective refractory periods and increased susceptibility to ventricular tachyarrhythmia induction were noted in KCNQ1-immunized rabbits upon programmed ventricular stimulation. Action potential durations were shortened in cardiomyocytes isolated from KCNQ1-immunized rabbits compared to the sham group. IKs step and tail current densities were enhanced after KCNQ1 immunization. Functional and structural changes of the heart were not observed. The potential therapeutic significance of KCNQ1 immunization was then explored in a dofetilide-induced long QT rabbit model. KCNQ1 immunization prevented dofetilide-induced QTc prolongation and attenuated long QT-related arrhythmias. CONCLUSION Induction of KCNQ1 autoimmunity accelerates cardiac repolarization and increases susceptibility to ventricular tachyarrhythmia induction through IKs enhancement. On the other hand, vaccination against KCNQ1 ameliorates drug-induced QTc prolongation and might be useful therapeutically to enhance repolarization reserve in long QT syndrome.
Collapse
Affiliation(s)
- Jin Li
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada; Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Ange Maguy
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - James Elber Duverger
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada; Institute of Biomedical Engineering and Department of Physiology, University of Montreal; Montreal, Quebec, Canada
| | - Patrick Vigneault
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Philippe Comtois
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada; Institute of Biomedical Engineering and Department of Physiology, University of Montreal; Montreal, Quebec, Canada
| | - Yanfen Shi
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Jean-Claude Tardif
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada
| | - Dierk Thomas
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
20
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
21
|
Voulgari C, Pagoni S, Tesfaye S, Tentolouris N. The spatial QRS-T angle: implications in clinical practice. Curr Cardiol Rev 2014; 9:197-210. [PMID: 23909632 PMCID: PMC3780345 DOI: 10.2174/1573403x113099990031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 03/19/2013] [Indexed: 12/14/2022] Open
Abstract
The ventricular gradient (VG) as a concept was conceived in the 1930s and its calculation yielded information that was not otherwise obtainable. The VG was not utilized by clinicians at large because it was not easy to understand and its computation time-consuming. The contemporary spatial QRS-T angle is based on the concept of the VG and defined as its mathematical and physiological integral. Its current major clinical use is to assess the cardiac primary repolarization abnormalities in 3-dimensional spatial vectorial plans which are normally untraced in the presence of secondary electrophysiological activity in a 2-dimensional routine electrocardiogram (ECG). Currently the calculation of the spatial QRS-T angle can be easily computed on the basis of a classical ECG and contributes to localization of arrhythmogenic areas in the heart by assessing overall and local heterogeneity of the myocardial ventricular action potention duration. Recent population-based studies suggest that the spatial QRS-T angle is a dominant ECG predictor of future cardiovascular events and death and it is superior to more conventional ECG parameters. Its assessment warrants consideration for intensified primary and secondary cardiovascular prevention efforts and should be included in everyday clinical practice. This review addresses the nature and diagnostic potential of the spatial QRS-T angle. The main focus is its role in ECG assessment of dispersion of repolarization, a key factor in arrythmogeneity.
Collapse
Affiliation(s)
- Christina Voulgari
- First Department of Propaudeutic Internal Medicine, “Laiko” General Hospital, Athens University Medical School, Greece.
| | | | | | | |
Collapse
|
22
|
|
23
|
González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K(+) channels: function-structural overview. Compr Physiol 2013; 2:2087-149. [PMID: 23723034 DOI: 10.1002/cphy.c110047] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Potassium channels are particularly important in determining the shape and duration of the action potential, controlling the membrane potential, modulating hormone secretion, epithelial function and, in the case of those K(+) channels activated by Ca(2+), damping excitatory signals. The multiplicity of roles played by K(+) channels is only possible to their mammoth diversity that includes at present 70 K(+) channels encoding genes in mammals. Today, thanks to the use of cloning, mutagenesis, and the more recent structural studies using x-ray crystallography, we are in a unique position to understand the origins of the enormous diversity of this superfamily of ion channels, the roles they play in different cell types, and the relations that exist between structure and function. With the exception of two-pore K(+) channels that are dimers, voltage-dependent K(+) channels are tetrameric assemblies and share an extremely well conserved pore region, in which the ion-selectivity filter resides. In the present overview, we discuss in the function, localization, and the relations between function and structure of the five different subfamilies of K(+) channels: (a) inward rectifiers, Kir; (b) four transmembrane segments-2 pores, K2P; (c) voltage-gated, Kv; (d) the Slo family; and (e) Ca(2+)-activated SK family, SKCa.
Collapse
Affiliation(s)
- Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | |
Collapse
|
24
|
Sanguinetti MC. HERG1 channel agonists and cardiac arrhythmia. Curr Opin Pharmacol 2013; 15:22-7. [PMID: 24721650 DOI: 10.1016/j.coph.2013.11.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 01/25/2023]
Abstract
Type 1 human ether-a-go-go-related gene (hERG1) potassium channels are a key determinant of normal repolarization of cardiac action potentials. Loss of function mutations in hERG1 channels cause inherited long QT syndrome and increased risk of cardiac arrhythmia and sudden death. Many common medications that block hERG1 channels as an unintended side effect also increase arrhythmic risk. Routine preclinical screening for hERG1 block led to the discovery of agonists that shorten action potential duration and QT interval. Agonists have the potential to be used as pharmacotherapy for long QT syndrome, but can also be proarrhythmic. Recent studies have elucidated multiple mechanisms of action for these compounds and the structural basis for their binding to the pore domain of the hERG1 channel.
Collapse
Affiliation(s)
- Michael C Sanguinetti
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research & Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
25
|
Meng J, Shi C, Li L, Du Y, Xu Y. Compound ICA-105574 prevents arrhythmias induced by cardiac delayed repolarization. Eur J Pharmacol 2013; 718:87-97. [PMID: 24041920 DOI: 10.1016/j.ejphar.2013.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/27/2013] [Accepted: 09/04/2013] [Indexed: 01/14/2023]
Abstract
Impaired ventricular repolarization can lead to long QT syndrome (LQT), a proarrhythmic disease with high risk of developing lethal ventricular tachyarrhythmias. The compound ICA-105574 is a recently developed hERG activator and it enhances IKr current with very high potency by removing the channel inactivation. The present study was designed to investigate antiarrhythmic properties of ICA-105574. For comparison, the effects of another compound NS1643 was in-parallel assessed, which also acts primarily to attenuate channel inactivation with moderate potency. We found that both ICA-105574 and NS1643 concentration-dependently shortened action potential duration (APD) in ventricular myocytes, and QT/QTc intervals in isolated guinea-pig hearts. ICA-105574, but not NS1643, completely prevented ventricular arrhythmias in intact guinea-pig hearts caused by IKr and IKs inhibitors, although both ICA-105574 and NS1643 could reverse the drug-induced prolongation of APD in ventricular myocytes. Reversing prolongation of QT/QTc intervals and antagonizing the increases in transmural dispersion of repolarization and instability of the QT interval induced by IKr and IKs inhibitors contributed to antiarrhythmic effect of ICA-105574. Meanwhile, ICA-105574 at higher concentrations showed a potential proarrhythmic risk in normal hearts. Our results suggest that ICA-105574 has more efficient antiarrhythmic activity than NS1643. However, its potential proarrhythmic risk implies that benefits and risks should be seriously taken into consideration for further developing this type of hERG activators.
Collapse
Affiliation(s)
- Jing Meng
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education; The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Hebei Province, Shijiazhuang 050017, China; Department of Pharmaceutical Chemistry, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | |
Collapse
|
26
|
Lansu K, Gentile S. Potassium channel activation inhibits proliferation of breast cancer cells by activating a senescence program. Cell Death Dis 2013; 4:e652. [PMID: 23744352 PMCID: PMC3698542 DOI: 10.1038/cddis.2013.174] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traditionally the hERG1 potassium channel has been known to have a fundamental role in membrane excitability of several mammalian cells including cardiac myocytes. hERG1 has recently been found to be expressed in non-excitable cancer cells of different histogenesis, but the role of this channel in cancer biology is unknown. Results form recent studies on the effect hERG1 inhibition in some breast cancer cells are controversial as it can lead to apoptosis or protect against cell death. Nevertheless, these data suggest that the hERG1 channel could have an important role in cancer biology. Here we report the effects of hyperstimulation of hERG1 channel in human mammary gland adenocarcinoma-derived cells. Application of the hERG1 activator, the diphenylurea derivative NS1643, inhibits cell proliferation irreversibly. This event is accompanied by a preferential arrest of the cell cycle in G0/G1 phase without the occurrence of apoptotic events. Consequently, cells responded to NS1643 by developing a senescence-like phenotype associated with increased protein levels of the tumor suppressors p21 and p16(INK4a) and by a positive β-galactosidase assay. These data suggest that prolonged stimulation of the hERG1 potassium channel may activate a senescence program and offers a compelling opportunity to develop a potential antiproliferative cancer therapy.
Collapse
Affiliation(s)
- K Lansu
- Molecular Pharmacology and Therapeutics, Loyola University, Chicago, IL, USA
| | | |
Collapse
|
27
|
Bilet A, Bauer CK. Effects of the small molecule HERG activator NS1643 on Kv11.3 channels. PLoS One 2012; 7:e50886. [PMID: 23226420 PMCID: PMC3511382 DOI: 10.1371/journal.pone.0050886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 10/26/2012] [Indexed: 01/15/2023] Open
Abstract
NS1643 is one of the small molecule HERG (Kv11.1) channel activators and has also been found to increase erg2 (Kv11.2) currents. We now investigated whether NS1643 is also able to act as an activator of Kv11.3 (erg3) channels expressed in CHO cells. Activation of rat Kv11.3 current occurred in a dose-dependent manner and maximal current increasing effects were obtained with 10 µM NS1643. At this concentration, steady-state outward current increased by about 80% and the current increase was associated with a significant shift in the voltage dependence of activation to more negative potentials by about 15 mV. In addition, activation kinetics were accelerated, whereas deactivation was slowed. There was no significant effect on the kinetics of inactivation and recovery from inactivation. The strong current-activating agonistic effect of NS1643 did not result from a shift in the voltage dependence of Kv11.3 channel inactivation and was independent from external Na+ or Ca2+. At the higher concentration of 20 µM, NS1643 induced clearly less current increase. The left shift in the voltage dependence of activation reversed and the voltage sensitivity of activation dramatically decreased along with a slowing of Kv11.3 channel activation. These data show that, in comparison to other Kv11 family members, NS1643 exerts distinct effects on Kv11.3 channels with especially pronounced partial antagonistic effects at higher concentration.
Collapse
Affiliation(s)
- Arne Bilet
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Christiane K. Bauer
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- * E-mail:
| |
Collapse
|
28
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
29
|
Abstract
Transgenic rabbits expressing pore mutants of K(V)7.1 display a long QT syndrome 1 (LQT1) phenotype. Recently, NS1643 has been described to increase I(Kr).We hypothesized that NS1643 would shorten the action potential duration (APD(90)) in LQT1 rabbits. Transgenic LQT1 rabbits were compared with littermate control (LMC) rabbits. In vivo electrocardiogram studies in sedated animals were performed at baseline and during 45 minutes of intravenous infusion of NS1643 or vehicle in a crossover design. Ex vivo monophasic action potentials were recorded from Langendorff-perfused hearts at baseline and during 45-minute perfusion with NS1643. Left ventricular refractory periods were assessed before and after NS1643 infusion. Genotype differences in APD accommodation were also addressed. In vivo NS1643 shortened the QTc significantly in LQT1 compared with vehicle. In Langendorff experiments, NS1643 significantly shortened the APD(90) in LQT1 and LMC [32.0 ± 4.3 milliseconds (ms); 21.0 ± 5.0 ms] and left ventricular refractory periods (23.7 ± 8.3; 22.6 ± 9.9 ms). NS1643 significantly decreased dp/dt (LQT1: 49% ± 3%; LMC: 63% ± 4%) and increased the incidence of arrhythmia. The time course of APD adaptation was impaired in LQT1 rabbits and unaffected by I(Kr) augmentation. In conclusion, K(V)11.1 channel activation shortens the cardiac APD in a rabbit model of inherited LQT1, but it comes with the risk of excessive shortening of APD.
Collapse
|
30
|
Schuster AM, Glassmeier G, Bauer CK. Strong activation of ether-à-go-go-related gene 1 K+ channel isoforms by NS1643 in human embryonic kidney 293 and Chinese hamster ovary cells. Mol Pharmacol 2011; 80:930-42. [PMID: 21856740 DOI: 10.1124/mol.111.071621] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Two different mechanisms leading to increased current have been described for the small-molecule human ether-à-go-go-related gene (herg) activator NS1643 [1,3-bis-(2-hydroxy-5-trifluoromethylphenyl)-urea]. On herg1a channels expressed in Xenopus laevis oocytes, it mainly acts via attenuation of inactivation and for rat (r) erg1b channels expressed in human embryonic kidney (HEK)-293 cells, it strongly shifts the activation curve to the left. We now investigated the NS1643 effects on erg1b channels in more detail and performed comparative experiments with rat and human erg1a in different expression systems. Significant differences were observed between expression systems, but not between the rat and human isoform. In HEK-293 or Chinese hamster ovary (CHO) cells, activation of rat erg1b channels occurred in a dose-dependent manner with a maximum current increase of 300% obtained with 10 μM NS1643. In contrast, the NS1643-induced strong leftward shift in the voltage dependence of activation further increased with higher drug concentration, needed more time to develop, and exhibited use dependence. Coexpression of KCNE1 or KCNE2 did not attenuate this NS1643 effect on erg1 channel activation and did thus not mimic the lower drug potency on this parameter observed in oocytes. NS1643 (10 μM) slowed erg1b channel deactivation and recovery from inactivation without significant changes in activation and inactivation kinetics. With the exception of accelerated activation, NS1643 affected erg1a channels similarly, but the effect was less pronounced than in erg1b or erg1a/1b channels. It is noteworthy that rerg1b and herg1a inactivation estimated from fully activated current voltage relationships were unaltered in the continued presence of 10 μM NS1643 in the mammalian expression systems, indicating qualitative differences from NS1643 effects in X. laevis oocytes.
Collapse
Affiliation(s)
- Anna M Schuster
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | | |
Collapse
|
31
|
Varró A, Baczkó I. Cardiac ventricular repolarization reserve: a principle for understanding drug-related proarrhythmic risk. Br J Pharmacol 2011; 164:14-36. [PMID: 21545574 PMCID: PMC3171857 DOI: 10.1111/j.1476-5381.2011.01367.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/22/2011] [Accepted: 03/02/2011] [Indexed: 12/11/2022] Open
Abstract
Cardiac repolarization abnormalities can be caused by a wide range of cardiac and non-cardiac compounds and may lead to the development of life-threatening Torsades de Pointes (TdP) ventricular arrhythmias. Drug-induced torsades de pointes is associated with unexpected and unexplained sudden cardiac deaths resulting in the withdrawal of several compounds in the past. To better understand the mechanism of such unexpected sudden cardiac deaths, the concept of repolarization reserve has recently emerged. According to this concept, pharmacological, congenital or acquired impairment of one type of transmembrane ion channel does not necessarily result in excessive repolarization changes because other repolarizing currents can take over and compensate. In this review, the major factors contributing to repolarization reserve are discussed in the context of their clinical significance in physiological and pathophysiological conditions including drug administration, genetic defects, heart failure, diabetes mellitus, gender, renal failure, hypokalaemia, hypothyroidism and athletes' sudden deaths. In addition, pharmacological support of repolarization reserve as a possible therapeutic option is discussed. Some methods for the quantitative estimation of repolarization reserve are also recommended. It is concluded that repolarization reserve should be considered by safety pharmacologists to better understand, predict and prevent previously unexplained drug-induced sudden cardiac deaths.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.
| | | |
Collapse
|
32
|
Affiliation(s)
- T Jespersen
- Department of Biomedical Sciences 16.5, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Larsen AP, Bentzen BH, Grunnet M. Differential effects of Kv11.1 activators on Kv11.1a, Kv11.1b and Kv11.1a/Kv11.1b channels. Br J Pharmacol 2011; 161:614-28. [PMID: 20880400 DOI: 10.1111/j.1476-5381.2010.00897.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE K(v)11.1 channels are involved in regulating cellular excitability in various tissues including brain, heart and smooth muscle. In these tissues, at least two isoforms, K(v)11.1a and K(v)11.1b, with different kinetics, are expressed. K(v)11.1 activators are potential therapeutic agents, but their effects have only been tested on the K(v)11.1a isoform. In this study, the effects of two different K(v)11.1 activators, NS1643 and RPR260243, were characterized on K(v)11.1a and K(v)11.1b channels. EXPERIMENTAL APPROACH K(v)11.1a and K(v)11.1b channels were expressed in Xenopus laevis oocytes, and currents were measured using two-electrode voltage clamp. I/V curves and channel kinetics were measured before and after application of 30 µM NS1643 or 10 µM RPR260243. KEY RESULTS NS1643 increased steady-state currents through Kv11.1b several fold more than through K(v)11.1a channels, without affecting EC(50) values. NS1643 increased activation rates and decreased rates of inactivation, recovery from inactivation and deactivation for both channels. Except for activation, where effect of NS1643 was comparable, relative changes were greater for Kv11.1b than for K(v)11.1a. RPR260243 increased steady-state currents only through Kv11.1a channels, but slowed the process of deactivation for both channels primarily by decreasing time constant of slow deactivation. This effect was greater on K(v)11.1b than on K(v)11.1a. Effects of both compounds on heteromeric K(v)11.1a/K(v)11.1b channels were similar to those on K(v)11.1a. CONCLUSIONS AND IMPLICATIONS Both NS1643 and RPR260243 displayed differential effects on K(v)11.1a and K(v)11.1b channels, the effects being relatively more pronounced on K(v)11.1b channels. This affirms the importance of testing the effect of K(v)11.1 activators on different channel isoforms.
Collapse
Affiliation(s)
- A P Larsen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | | | | |
Collapse
|
34
|
Grunnet M, Abbruzzese J, Sachse FB, Sanguinetti MC. Molecular determinants of human ether-à-go-go-related gene 1 (hERG1) K+ channel activation by NS1643. Mol Pharmacol 2011; 79:1-9. [PMID: 20876384 PMCID: PMC3014275 DOI: 10.1124/mol.110.067728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 09/27/2010] [Indexed: 12/11/2022] Open
Abstract
Human ether-à-go-go-related gene 1 (hERG1) channels conduct the rapid delayed rectifier K+ current, I(Kr), an important determinant of action potential repolarization in mammals, including humans. Reduced I(Kr) function caused by mutations in KCNH2 or drug block of hERG1 channels prolongs the QT interval of the electrocardiogram and increases the risk of ventricular fibrillation and sudden cardiac death. Several activators of hERG1 channels have been discovered in recent years. These compounds shorten the duration of cardiac action potentials and have been proposed as a new therapeutic approach for the treatment of acquired or congenital long QT syndrome. We defined previously the mechanism of action of 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643), a compound that increases hERG1 currents by shifting the voltage-dependence of inactivation to more positive potentials. Here, we use scanning mutagenesis of hERG1 and functional characterization of 56 mutant channels heterologously expressed in Xenopus laevis oocytes to define the molecular determinants of the binding site for NS1643. Most point mutations did not alter response to the drug; however, 10 mutant channels had reduced sensitivity, and F619A and I567A exhibited enhanced activation by the drug. Some of these residues form a cluster and, together with molecular modeling, suggest that NS1643 binds to a pocket near the extracellular ends of the S5/S6 segments of two adjacent hERG1 channel subunits. This putative binding site differs from the sites described previously for two other hERG1 activators, (3R,4R)-4-[3-(6-methoxy-quinolin-4-yl)-3-oxo-propyl]-1-[3-(2,3,5-trifluoro-phenyl)-prop-2-ynyl]-piperidine-3-carboxylic acid (RPR260243) and 2-(4-[2-(3,4-dichloro-phenyl)-ethyl]-phenylamino)-benzoic acid (PD-118057).
Collapse
Affiliation(s)
- Morten Grunnet
- Department of Drug Discovery Portfolio Management, NeuroSearch A/S, Pederstrupvej 93, 2750 Ballerup, Denmark.
| | | | | | | |
Collapse
|
35
|
Meyer T, Stuerz K, Guenther E, Edamura M, Kraushaar U. Cardiac slices as a predictive tool for arrhythmogenic potential of drugs and chemicals. Expert Opin Drug Metab Toxicol 2010; 6:1461-75. [PMID: 21067457 DOI: 10.1517/17425255.2010.526601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE OF THE FIELD cardiac arrhythmia represents one of the primary safety pharmacological concerns in drug development. The most prominent example is drug induced ventricular tachycardia of the Torsade des Pointes type. The mechanism how this type of arrhythmia develops is a complex multi-cellular phenomenon. It can only be insufficiently reflected by cellular or molecular assays. However, organ models - such as Langendorff hearts - or in vivo experiments are expensive and time consuming and not suitable for assays requiring an increased throughput. AREAS COVERED IN THIS REVIEW here, we describe and review an assay bridging the gap between cardiomyocyte based assays and organ based systems - cardiac slices. This assay is reviewed in direct comparison with established safety pharmacological assays. WHAT THE READER WILL GAIN while slices have played an important role in brain research for > 2 decades, cardiac slices are experiencing a renaissance due to the novel challenges in safety pharmacology just in the last few years. Cardiac slices can be cultured and recorded over several days. It is possible to access electrophysiological data with a high number of electrodes - up to 256 electrodes - embedded in the surface of a microelectrode array. TAKE HOME MESSAGE cardiac slices close the gap between cellular and organ based assays in cardiac safety pharmacology. The tissue properties of a functional cardiac syncytium are more accurately reflected by a slice rather than a single cell.
Collapse
Affiliation(s)
- Thomas Meyer
- Multi Channel Systems MCS GmbH, Aspenhaustr. 21, 72770 Reutlingen, Germany.
| | | | | | | | | |
Collapse
|
36
|
Larsen AP, Olesen SP, Grunnet M, Poelzing S. Pharmacological activation of IKr impairs conduction in guinea pig hearts. J Cardiovasc Electrophysiol 2010; 21:923-9. [PMID: 20163495 DOI: 10.1111/j.1540-8167.2010.01733.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The hERG (Kv11.1) potassium channel underlies cardiac I(Kr) and is important for cardiac repolarization. Recently, hERG agonists have emerged as potential antiarrhythmic drugs. As modulation of outward potassium currents has been suggested to modulate cardiac conduction, we tested the hypothesis that pharmacological activation of I(Kr) results in impaired cardiac conduction. METHODS AND RESULTS Cardiac conduction was assessed in Langendorff-perfused guinea pig hearts. Application of the hERG agonist NS3623 (10 microM) prolonged the QRS rate dependently. A significant prolongation (16 +/- 6%) was observed at short basic cycle length (BCL 90 ms) but not at longer cycle lengths (BCL 250 ms). The effect could be reversed by the I(Kr) blocker E4031 (1 microM). While partial I(Na) inhibition with flecainide (1 microM) alone prolonged the QRS (34 +/- 3%, BCL 250 ms), the QRS was further prolonged by 19 +/- 2% when NS3623 was added in the presence of flecainide. These data suggest that the effect of NS3623 was dependent on sodium channel availability. Surprisingly, in the presence of the voltage sensitive dye di-4-ANEPPS a similar potentiation of the effect of NS3623 was observed. With di-4-ANEPPS, NS3623 prolonged the QRS significantly (26 +/- 4%, BCL 250 ms) compared to control with a corresponding decrease in conduction velocity. CONCLUSION Pharmacological activation of I(Kr) by the hERG agonist NS3623 impairs cardiac conduction. The effect is dependent on sodium channel availability. These findings suggest a role for I(Kr) in modulating cardiac conduction and may have implications for the use of hERG agonists as antiarrhythmic drugs.
Collapse
Affiliation(s)
- Anders Peter Larsen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
37
|
Grunnet M. Repolarization of the cardiac action potential. Does an increase in repolarization capacity constitute a new anti-arrhythmic principle? Acta Physiol (Oxf) 2010; 198 Suppl 676:1-48. [PMID: 20132149 DOI: 10.1111/j.1748-1716.2009.02072.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cardiac action potential can be divided into five distinct phases designated phases 0-4. The exact shape of the action potential comes about primarily as an orchestrated function of ion channels. The present review will give an overview of ion channels involved in generating the cardiac action potential with special emphasis on potassium channels involved in phase 3 repolarization. In humans, these channels are primarily K(v)11.1 (hERG1), K(v)7.1 (KCNQ1) and K(ir)2.1 (KCNJ2) being the responsible alpha-subunits for conducting I(Kr), I(Ks) and I(K1). An account will be given about molecular components, biophysical properties, regulation, interaction with other proteins and involvement in diseases. Both loss and gain of function of these currents are associated with different arrhythmogenic diseases. The second part of this review will therefore elucidate arrhythmias and subsequently focus on newly developed chemical entities having the ability to increase the activity of I(Kr), I(Ks) and I(K1). An evaluation will be given addressing the possibility that this novel class of compounds have the ability to constitute a new anti-arrhythmic principle. Experimental evidence from in vitro, ex vivo and in vivo settings will be included. Furthermore, conceptual differences between the short QT syndrome and I(Kr) activation will be accounted for.
Collapse
Affiliation(s)
- M Grunnet
- NeuroSearch A/S, Ballerup, and Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Denmark.
| |
Collapse
|
38
|
Voulgari C, Tentolouris N. Assessment of the Spatial QRS-T Angle by Vectorcardiography: Current Data and Perspectives. Curr Cardiol Rev 2009; 5:251-62. [PMID: 21037841 PMCID: PMC2842956 DOI: 10.2174/157340309789317850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 03/26/2009] [Accepted: 03/31/2009] [Indexed: 01/19/2023] Open
Abstract
The concept of the ventricular gradient (VG) was conceived in the 1930s and its calculation yielded information that was not otherwise obtainable. The VG was not utilized by clinicians at large because it was not easy to understand and its computation time-consuming. Spatial vectorcardiography is based on the concept of the VG. Its current major clinical use is to identify primary [heterogeneity of ventricular action potential (VAP) morphology] in the presence of secondary [heterogeneity in ventricular depolarization instants] T-wave abnormalities in an ECG. Nowadays, the calculation of the spatial VG can be computed on the basis of a regular routine ECG and contributes to localization of arrhythmogenic areas in the heart by assessing overall and local VAP duration heterogeneity. Recent population-based studies suggest that the spatial VG is a dominant ECG predictor of future cardiovascular events and death and it is superior to more conventional ECG parameters. Its assessment warrants consideration for intensified primary and secondary prevention efforts and can be included in everyday clinical practice. This review addresses the nature and diagnostic potential of the spatial VG. The main focus is the role of the spatial VG in ECG assessment of dispersion of repolarization, a key factor in arrhythmogeneity.
Collapse
Affiliation(s)
| | - Nicholas Tentolouris
- 1st Department of Propaedeutic Medicine, Athens University Medical School, Laiko General Hospital Athens, Greece
| |
Collapse
|
39
|
Diness JG, Hansen RS, Nissen JD, Jespersen T, Grunnet M. Antiarrhythmic effect of IKr activation in a cellular model of LQT3. Heart Rhythm 2009; 6:100-6. [DOI: 10.1016/j.hrthm.2008.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
|
40
|
Model systems for the discovery and development of antiarrhythmic drugs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:328-39. [PMID: 19038282 DOI: 10.1016/j.pbiomolbio.2008.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide and about 25% of cardiovascular deaths are due to disturbances in cardiac rhythm or "arrhythmias". Arrhythmias were traditionally treated with antiarrhythmic drugs, but increasing awareness of the risks of presently available antiarrhythmic agents has greatly limited their usefulness. Most common treatment algorithms still involve small molecule drugs, and antiarrhythmic agents with improved efficacy and safety are sorely needed. This paper reviews the model systems that are available for discovery and development of new antiarrhythmic drugs. We begin with a presentation of screening methods used to identify specific channel-interacting agents, with a particular emphasis on high-throughput screens. Traditional manual electrophysiological methods, automated electrophysiology, fluorescent dye methods, flux assays and radioligand binding assays are reviewed. We then discuss a variety of relevant arrhythmia models. Two models are widely used in testing for arrhythmogenic actions related to excess action potential prolongation, an important potential adverse effect of chemical entities affecting cardiac rhythm: the methoxamine-sensitized rabbit and the dog with chronic atrioventricular block. We then go on to review models used to assess potential antiarrhythmic actions. For ventricular arrhythmias, chemical induction methods, cardiac or neural electrical stimulation, ischaemic heart models and models of cardiac channelopathies can be used to identify effective antiarrhythmic agents. For atrial arrhythmias, potentially useful models include vagally-maintained atrial fibrillation, acute asphyxia with atrial burst-pacing, sterile pericarditis, Y-shaped atria surgical incisions, chronic atrial dilation models, atrial electrical remodelling due to sustained atrial tachycardia, heart failure-related atrial remodelling, and acute atrial ischaemia. It is hoped that the new technologies now available and the recently-developed models for arrhythmia-response assessment will permit the introduction of newer and more effective antiarrhythmic therapies in the near future.
Collapse
|
41
|
hERG1 channel activators: A new anti-arrhythmic principle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:347-62. [DOI: 10.1016/j.pbiomolbio.2009.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|