1
|
Haider KH. Priming mesenchymal stem cells to develop "super stem cells". World J Stem Cells 2024; 16:623-640. [PMID: 38948094 PMCID: PMC11212549 DOI: 10.4252/wjsc.v16.i6.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment, genetic manipulation, and chemical and pharmacological treatment, each strategy having advantages and limitations. Most of these pre-treatment protocols are non-combinative. This editorial is a continuum of Li et al's published article and Wan et al's editorial focusing on the significance of pre-treatment strategies to enhance their stemness, immunoregulatory, and immunosuppressive properties. They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia. Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells (MSCs), pre-treatment based on the mechanistic understanding is expected to develop "Super MSCs", which will create a transformative shift in MSC-based therapies in clinical settings, potentially revolutionizing the field. Once optimized, the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop "super stem cells" with augmented stemness, functionality, and reparability for diverse clinical applications with better outcomes.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Department of Basic Sciences, Sulaiman AlRajhi University, AlQaseem 52736, Saudi Arabia.
| |
Collapse
|
2
|
Li N, Zhang T, Zhu L, Sun L, Shao G, Gao J. Recent Advances of Using Exosomes as Diagnostic Markers and Targeting Carriers for Cardiovascular Disease. Mol Pharm 2023; 20:4354-4372. [PMID: 37566627 DOI: 10.1021/acs.molpharmaceut.3c00268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of human death worldwide. Exosomes act as endogenous biological vectors; they possess advantages of low immunogenicity and low safety risks, also providing tissue selectivity, including the inherent targeting the to heart. Therefore, exosomes not only have been applied as biomarkers for diagnosis and therapeutic outcome confirmation but also showed potential as drug carriers for cardiovascular targeting delivery. This review aims to summarize the progress and challenges of exosomes as novel biomarkers, especially many novel exosomal noncoding RNAs (ncRNAs), and also provides an overview of the improved targeting functions of exosomes by unique engineered approaches, the latest developed administration methods, and the therapeutic effects of exosomes used as the biocarriers of medications for cardiovascular disease treatment. Also, the possible therapeutic mechanisms and the potentials for transferring exosomes to the clinic for CVD treatment are discussed. The advances, in vivo and in vitro applications, modifications, mechanisms, and challenges summarized in this review will provide a general understanding of this promising strategy for CVD treatment.
Collapse
Affiliation(s)
- Ni Li
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linwen Zhu
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Chen Y, Zeng H, Liu H. MiR-21 participates in the neuroprotection of diazoxide against hypoxic-ischemia encephalopathy by targeting PDCD4. Brain Inj 2022; 36:876-885. [PMID: 35695083 DOI: 10.1080/02699052.2022.2087906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of neonatal death and permanent neurological disability. Here, we designed to quest therapeutic effects of diazoxide (DZ) on HIE and its mechanism. METHODS The cell model of HIE was established. CCK8 and flow cytometry were applied to test cell viability and apoptosis. RT-qPCR and western blotting was evaluated to the expression of miR-21, PDCD4, PI3K, and p-AKT/AKT. Commercial kits were employed to detect SOD, MDA, LDH. DCFH-DA was used to measure intracellular ROS. ELISA was performed to estimate IL-1β, IL-6 and TNF-α. Dual-luciferase reporter gene and RIP assay were applied to confirm the binding relationships between miR-21 and PDCD4. RESULTS In H19-7 cells and PC12 cells stimulated by OGD, with low cell viability, high apoptosis, miR-21 high expression and PDCD4 low expression. However, the functions were all reversed by DZ administration. Furthermore, miR-21 inhibitor could abolish the beneficial effects of DZ on OGD-induced cells. Besides, miR-21 could interact with PDCD4. In addition, PDCD4 involved with the regulation of DZ to OGD-induced cells via PI3K/AKT pathway. CONCLUSION DZ enhanced miR-21 level and inhibited PDCD4 level via PI3K/AKT pathway to resisted HIE.
Collapse
Affiliation(s)
- Yuxia Chen
- Department of Neurosurgery, Longhua District Central Hospital, Shenzhen, P.R. China
| | - Hao Zeng
- Department of Neonatology, Longhua District Central Hospital, Shenzhen, P.R. China
| | - Huayan Liu
- Department of Neonatology, Longhua District Central Hospital, Shenzhen, P.R. China
| |
Collapse
|
4
|
Intrapericardial Administration of Secretomes from Menstrual Blood-Derived Mesenchymal Stromal Cells: Effects on Immune-Related Genes in a Porcine Model of Myocardial Infarction. Biomedicines 2022; 10:biomedicines10051117. [PMID: 35625854 PMCID: PMC9138214 DOI: 10.3390/biomedicines10051117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Acute myocardial infarction (AMI) is a manifestation of ischemic heart disease where the immune system plays an important role in the re-establishment of homeostasis. We hypothesize that the anti-inflammatory activity of secretomes from menstrual blood-derived mesenchymal stromal cells (S-MenSCs) and IFNγ/TNFα-primed MenSCs (S-MenSCs*) may be considered a therapeutic option for the treatment of AMI. To assess this hypothesis, we have evaluated the effect of S-MenSCs and S-MenSCs* on cardiac function parameters and the involvement of immune-related genes using a porcine model of AMI. Twelve pigs were randomly divided into three biogroups: AMI/Placebo, AMI/S-MenSCs, and AMI/S-MenSCs*. AMI models were generated using a closed chest coronary occlusion-reperfusion procedure and, after 72 h, the different treatments were intrapericardially administered. Cardiac function parameters were monitored by magnetic resonance imaging before and 7 days post-therapy. Transcriptomic analyses in the infarcted tissue identified 571 transcripts associated with the Gene Ontology term Immune response, of which 57 were differentially expressed when different biogroups were compared. Moreover, a prediction of the interactions between differentially expressed genes (DEGs) and miRNAs from secretomes revealed that some DEGs in the infarction area, such as STAT3, IGFR1, or BCL6 could be targeted by previously identified miRNAs in secretomes from MenSCs. In conclusion, the intrapericardial administration of secretome early after infarction has a significant impact on the expression of immune-related genes in the infarcted myocardium. This confirms the immunomodulatory potential of intrapericardially delivered secretomes and opens new therapeutic perspectives in myocardial infarction treatment.
Collapse
|
5
|
Yin H, He H, Shen X, Tang S, Zhao J, Cao X, Han S, Cui C, Chen Y, Wei Y, Wang Y, Li D, Zhu Q. MicroRNA Profiling Reveals an Abundant miR-200a-3p Promotes Skeletal Muscle Satellite Cell Development by Targeting TGF-β2 and Regulating the TGF‑β2/SMAD Signaling Pathway. Int J Mol Sci 2020; 21:ijms21093274. [PMID: 32380777 PMCID: PMC7247338 DOI: 10.3390/ijms21093274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved, small noncoding RNAs that play critical post-transcriptional regulatory roles in skeletal muscle development. Chicken is an optimal model to study skeletal muscle formation because its developmental anatomy is similar to that of mammals. In this study, we identified potential miRNAs in the breast muscle of broilers and layers at embryonic day 10 (E10), E13, E16, and E19. We detected 1836 miRNAs, 233 of which were differentially expressed between broilers and layers. In particular, miRNA-200a-3p was significantly more highly expressed in broilers than layers at three time points. In vitro experiments showed that miR-200a-3p accelerated differentiation and proliferation of chicken skeletal muscle satellite cells (SMSCs) and inhibited SMSCs apoptosis. The transforming growth factor 2 (TGF-β2) was identified as a target gene of miR-200a-3p, and which turned out to inhibit differentiation and proliferation, and promote apoptosis of SMSCs. Exogenous TGF-β2 increased the abundances of phosphorylated SMAD2 and SMAD3 proteins, and a miR-200a-3p mimic weakened this effect. The TGF-β2 inhibitor treatment reduced the promotional and inhibitory effects of miR-200a-3p on SMSC differentiation and apoptosis, respectively. Our results indicate that miRNAs are abundantly expressed during embryonic skeletal muscle development, and that miR-200a-3p promotes SMSC development by targeting TGF-β2 and regulating the TGF-β2/SMAD signaling pathway.
Collapse
|
6
|
Liang Y, He Y. Advances in research on the role of interleukin-11 in cardiovascular system. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2020. [DOI: 10.23736/s0393-3660.19.04058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Haider KH, Aramini B. Mircrining the injured heart with stem cell-derived exosomes: an emerging strategy of cell-free therapy. Stem Cell Res Ther 2020; 11:23. [PMID: 31918755 PMCID: PMC6953131 DOI: 10.1186/s13287-019-1548-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have successfully progressed to phase III clinical trials successive to an intensive in vitro and pre-clinical assessment in experimental animal models of ischemic myocardial injury. With scanty evidence regarding their cardiogenic differentiation in the recipient patients' hearts post-engraftment, paracrine secretion of bioactive molecules is being accepted as the most probable underlying mechanism to interpret the beneficial effects of cell therapy. Secretion of small non-coding microRNA (miR) constitutes an integral part of the paracrine activity of stem cells, and there is emerging interest in miRs' delivery to the heart as part of cell-free therapy to exploit their integral role in various cellular processes. MSCs also release membrane vesicles of diverse sizes loaded with a wide array of miRs as part of their paracrine secretions primarily for intercellular communication and to shuttle genetic material. Exosomes can also be loaded with miRs of interest for delivery to the organs of interest including the heart, and hence, exosome-based cell-free therapy is being assessed for cell-free therapy as an alternative to cell-based therapy. This review of literature provides an update on cell-free therapy with primary focus on exosomes derived from BM-derived MSCs for myocardial repair.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Sulaiman Alrajhi University, Al-Qaseem, Kingdom of Saudi Arabia
- Department of Basic Sciences, Sulaiman Alrajhi University, PO Box 777, Al Bukairiyah, 51941 Kingdom of Saudi Arabia
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
Li Y, Wu Q, Jin Y, Yang Q. Antiviral activity of interleukin-11 as a response to porcine epidemic diarrhea virus infection. Vet Res 2019; 50:111. [PMID: 31864417 PMCID: PMC6925494 DOI: 10.1186/s13567-019-0729-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/04/2019] [Indexed: 11/11/2022] Open
Abstract
Interleukin-11 (IL-11), a well-known anti-inflammatory factor, provides protection from intestinal epithelium damage caused by physical or chemical factors. However, little is known of the role of IL-11 during viral infections. In this study, IL-11 expression at mRNA and protein levels were found to be high in Vero cells and the jejunum of piglets during porcine epidemic diarrhea virus (PEDV) infection, while IL-11 expression was found to be positively correlated with the level of viral infection. Pretreatment with recombinant porcine IL-11 (pIL-11) was found to suppress PEDV replication in Vero E6 cells, while IL-11 knockdown promoted viral infection. Furthermore, pIL-11 was found to inhibit viral infection by preventing PEDV-mediated apoptosis of cells by activating the IL-11/STAT3 signaling pathway. Conversely, application of a STAT3 phosphorylation inhibitor significantly antagonized the anti-apoptosis function of pIL-11 and counteracted its inhibition of PEDV. Our data suggest that IL-11 is a newfound PEDV-inducible cytokine, and its production enhances the anti-apoptosis ability of epithelial cells against PEDV infection. The potential of IL-11 to be used as a novel therapeutic against devastating viral diarrhea in piglets deserves more attention and study.
Collapse
Affiliation(s)
- Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qingxin Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuxin Jin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Pedretti S, Brulhart-Meynet MC, Montecucco F, Lecour S, James RW, Frias MA. HDL protects against myocardial ischemia reperfusion injury via miR-34b and miR-337 expression which requires STAT3. PLoS One 2019; 14:e0218432. [PMID: 31220137 PMCID: PMC6586303 DOI: 10.1371/journal.pone.0218432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE High density lipoprotein (HDL) protects against myocardial infarction via mechanisms that remain unclear. STAT3 (signal transducer and activator of transcription 3) plays a key role in HDL-induced cardioprotection. In the heart, microRNAs (miRNAs) are involved in ischemia reperfusion injury. We therefore investigated whether the cardioprotective effect of HDL modulates miRNAs as a downstream target of STAT3 activation. METHODS STAT3 cardiomyocyte deficient mice (STAT3-KO) and wildtype littermates (STAT3-WT) were submitted to left coronary ligature and reperfused (IR) with or without injection of HDL. Infarct size (IS) was determined and cardiac miRNA expression was evaluated after reperfusion in sham, IR and IR+HDL hearts by microarray analysis. In vitro, neonatal rat ventricular cardiomyocytes were submitted to hypoxia with or without HDL incubation. Cell viability and miRNA expression were analysed. RESULTS In vivo, HDL reduced IS from 40.5±4.3% to 24.4±2.1% (p<0.05) in STAT3-WT mice. HDL failed to protect in STAT3-KO mice. In STAT3-WT mice, both miR-34b and miR-337 were increased in IR compared to sham and IR+HDL groups (p<0.05). These miRNAs were not modulated in STAT3-KO mice. In vitro, incubation with HDL improved cell viability against hypoxia (p<0.05). The expression of miR-34b and miR-337 was increased by hypoxia and reduced by HDL treatment (p<0.05). In cardiomyocytes transfected with miRNA mimics, HDL failed to improve cell viability against hypoxia. CONCLUSIONS Our study, performed both in vivo and in vitro, delineates a novel cardioprotective signalling pathway activated by HDL, involving STAT3-mediated decrease of miR-34b and miR-337 expression.
Collapse
Affiliation(s)
- Sarah Pedretti
- Department of Medical Specialties-Endocrinology, Diabetology, Hypertension and Nutrition, University of Geneva, Geneva, Switzerland
| | - Marie-Claude Brulhart-Meynet
- Department of Medical Specialties-Endocrinology, Diabetology, Hypertension and Nutrition, University of Geneva, Geneva, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy
- IRCCS AOU San Martino—IST, Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Richard W. James
- Department of Medical Specialties-Endocrinology, Diabetology, Hypertension and Nutrition, University of Geneva, Geneva, Switzerland
| | - Miguel A. Frias
- Department of Medical Specialties-Endocrinology, Diabetology, Hypertension and Nutrition, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
10
|
Elmadbouh I, Ashraf M. Tadalafil, a long acting phosphodiesterase inhibitor, promotes bone marrow stem cell survival and their homing into ischemic myocardium for cardiac repair. Physiol Rep 2018; 5:5/21/e13480. [PMID: 29138357 PMCID: PMC5688776 DOI: 10.14814/phy2.13480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/23/2017] [Indexed: 12/31/2022] Open
Abstract
The aim was to evaluate the tadalafil‐mediated effects at molecular level on bone marrow‐derived mesenchymal stem cells (MSCs) survival and their homing into the infarcted hearts to promote cardiac repair and improve function. MSCs were pretreated in vitro with inhibitors of PKG, MAPK, FasL, nitric oxide synthase (NOS) (L‐NAME), CXCR4 (AMD3100), or miR‐21 inhibitors (+/−luciferase construction +/−Fas) prior to tadalafil treatment for 2 h. These MSCs were then subjected to H2O2 stress to assess their injury. Rats were subjected to acute myocardial infarction (AMI), and then followed by injection of saline or 1.5 x 106 MSCs‐treated ± tadalafil into infarcted and peri‐infarcted area. In another group, AMI was performed in 1‐month post‐myelo‐ablated rats and were injected intraperitoneally (IP) with tadalafil ± AMD3100 or L‐NAME for 5 days. Also, in another group, AMI mice were treated with IP ± tadalafil before intravenous injection with 111In‐oxine‐MSCs followed by CT/SPECT imaging to locate mobilized MSCs. Cardiac function was assessed by echocardiography. MSCs and heart extracts were analyzed by molecular bioassays. Tadalafil‐treated MSCs had higher expression of cGMP, NOS, SDF‐1α, p‐VASP, p‐Erk1/2, p‐STAT3, p‐Akt, PKG1 and Bcl‐xl; expression of these molecules was reduced with PKG1, MAPK, NOS or FasL inhibitors. Tadalafil inhibited apoptosis through increased miR‐21 expression and improved cell survival by inhibiting Fas (restored by PKG1, MAPK or miR‐21 inhibitors). In vivo, heart function, grafted cell survival, MSCs mobilization and homing were improved in tadalafil‐treated AMI animals versus controls. Conclusions: Tadalafil prolonged MSCs survival via up‐regulation of miR‐21 dependent suppression of Fas, and increased MSCs mobilization and their homing into infarcted myocardium resulting in improved cardiac repair and function.
Collapse
Affiliation(s)
- Ibrahim Elmadbouh
- Department of Emergency Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, Ohio.,Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Muhammad Ashraf
- Department of Emergency Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Balbi C, Piccoli M, Barile L, Papait A, Armirotti A, Principi E, Reverberi D, Pascucci L, Becherini P, Varesio L, Mogni M, Coviello D, Bandiera T, Pozzobon M, Cancedda R, Bollini S. First Characterization of Human Amniotic Fluid Stem Cell Extracellular Vesicles as a Powerful Paracrine Tool Endowed with Regenerative Potential. Stem Cells Transl Med 2017; 6:1340-1355. [PMID: 28271621 PMCID: PMC5442724 DOI: 10.1002/sctm.16-0297] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/08/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Human amniotic fluid stem cells (hAFS) have shown a distinct secretory profile and significant regenerative potential in several preclinical models of disease. Nevertheless, little is known about the detailed characterization of their secretome. Herein we show for the first time that hAFS actively release extracellular vesicles (EV) endowed with significant paracrine potential and regenerative effect. c‐KIT+ hAFS were isolated from leftover samples of amniotic fluid from prenatal screening and stimulated to enhance EV release (24 hours 20% O2 versus 1% O2 preconditioning). The capacity of the c‐KIT+ hAFS‐derived EV (hAFS‐EV) to induce proliferation, survival, immunomodulation, and angiogenesis were investigated in vitro and in vivo. The hAFS‐EV regenerative potential was also assessed in a model of skeletal muscle atrophy (HSA‐Cre, SmnF7/F7 mice), in which mouse AFS transplantation was previously shown to enhance muscle strength and survival. hAFS secreted EV ranged from 50 up to 1,000 nm in size. In vitro analysis defined their role as biological mediators of regenerative, paracrine effects while their modulatory role in decreasing skeletal muscle inflammation in vivo was shown for the first time. Hypoxic preconditioning significantly induced the enrichment of exosomes endowed with regenerative microRNAs within the hAFS‐EV. In conclusion, this is the first study showing that c‐KIT+ hAFS dynamically release EV endowed with remarkable paracrine potential, thus representing an appealing tool for future regenerative therapy. Stem Cells Translational Medicine2017;6:1340–1355
Collapse
Affiliation(s)
- Carolina Balbi
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Martina Piccoli
- Stem Cells and Regenerative Medicine Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Lucio Barile
- Laboratory of Molecular and Cellular Cardiology, CardioCentro Ticino Foundation_CCT, Lugano Switzerland
| | - Andrea Papait
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Andrea Armirotti
- Drug Discovery and Development Department, IIT-Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Elisa Principi
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Daniele Reverberi
- Molecular Pathology Unit, IRCCS AOU San Martino - IST National Institute for Cancer Research, Genova, Italy
| | - Luisa Pascucci
- Veterinary Medicine Department, University of Perugia, Perugia, Italy
| | - Pamela Becherini
- Molecular Biology Laboratory, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Luigi Varesio
- Molecular Biology Laboratory, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Massimo Mogni
- Human Genetics Laboratory, E.O. Ospedali Galliera, Genova, Italy
| | | | - Tiziano Bandiera
- Drug Discovery and Development Department, IIT-Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Ranieri Cancedda
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| |
Collapse
|
12
|
Hu X, Chen P, Wu Y, Wang K, Xu Y, Chen H, Zhang L, Wu R, Webster KA, Yu H, Zhu W, Wang J. MiR-211/STAT5A Signaling Modulates Migration of Mesenchymal Stem Cells to Improve its Therapeutic Efficacy. Stem Cells 2016; 34:1846-58. [PMID: 27145179 PMCID: PMC5096301 DOI: 10.1002/stem.2391] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
Abstract
Our previous study showed that the therapeutic effects of mesenchymal stem cells (MSCs) transplantation were improved by enhancing migration. MicroRNA-211 (miR-211) can modulate the migratory properties of some cell types by mechanisms that are not fully understood. This study was designed to investigate a possible role for miR-211 in MSC migration, and whether genetic manipulation of miR-211 in MSCs could be used to enhance its beneficial effects of cell transplantation. Transwell assays confirmed that MSCs migration of was significantly impaired by miR-211 knockdown but enhanced by miR-211 overexpression. MiR-211 overexpressing MSCs also exhibited significantly increased cell engraftment in the peri-infarct areas of female rat hearts 2 days after intravenous transplantation of male MSCs as shown by GFP tracking and SYR gene quantification. This conferred a significant decrease in infarct size and improved cardiac performance. By using a loss or gain of gene function approach, we demonstrated that miR-211 targeted STAT5A to modulate MSCs migration, possibly by interacting with MAPK signaling. Furthermore, the beneficial effects of miR-211 overexpression in MSCs were abolished by simultaneous overexpression of STAT5A whereas the negative effects of miR-211 silencing on MSC migration were rescued by simultaneous downregulation of STAT5A. Finally, using ChIP-PCR and luciferase assays, we provide novel evidence that STAT3 can directly bind to promoter elements that activate miR-211 expression. STAT3/miR-211/STAT5A signaling plays a key role in MSCs migration. Intravenous infusion of genetically modified miR-211 overexpressing MSCs conveys enhanced protection from adverse post-MI remodeling compared with unmodified MSCs. Stem Cells 2016;34:1846-1858.
Collapse
Affiliation(s)
- Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Provincial Key Laboratory of Cardiovascular Research, Hangzhou, People’s Republic of China
| | - Panpan Chen
- Department of Cardiology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Provincial Key Laboratory of Cardiovascular Research, Hangzhou, People’s Republic of China
| | - Yan Wu
- Department of Cardiology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Provincial Key Laboratory of Cardiovascular Research, Hangzhou, People’s Republic of China
| | - Kan Wang
- Department of Cardiology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Provincial Key Laboratory of Cardiovascular Research, Hangzhou, People’s Republic of China
| | - Yinchuan Xu
- Department of Cardiology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Provincial Key Laboratory of Cardiovascular Research, Hangzhou, People’s Republic of China
| | - Han Chen
- Department of Cardiology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Provincial Key Laboratory of Cardiovascular Research, Hangzhou, People’s Republic of China
| | - Ling Zhang
- Department of Cardiology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Provincial Key Laboratory of Cardiovascular Research, Hangzhou, People’s Republic of China
| | - Rongrong Wu
- Department of Cardiology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Provincial Key Laboratory of Cardiovascular Research, Hangzhou, People’s Republic of China
| | - Keith A. Webster
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Hong Yu
- Department of Cardiology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Provincial Key Laboratory of Cardiovascular Research, Hangzhou, People’s Republic of China
| | - Wei Zhu
- Department of Cardiology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Provincial Key Laboratory of Cardiovascular Research, Hangzhou, People’s Republic of China
| | - Jian’an Wang
- Department of Cardiology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Provincial Key Laboratory of Cardiovascular Research, Hangzhou, People’s Republic of China
| |
Collapse
|
13
|
Hua C, Wang Z, Zhang J, Peng X, Hou X, Yang Y, Li K, Tang Z. SMAD7, an antagonist of TGF-beta signaling, is a candidate of prenatal skeletal muscle development and weaning weight in pigs. Mol Biol Rep 2016; 43:241-51. [DOI: 10.1007/s11033-016-3960-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/17/2016] [Indexed: 12/22/2022]
|
14
|
YU YONGHUI, CHU WANLI, CHAI JIAKE, LI XIAO, LIU LINGYING, MA LI. Critical role of miRNAs in mediating skeletal muscle atrophy (Review). Mol Med Rep 2015; 13:1470-4. [DOI: 10.3892/mmr.2015.4748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 12/08/2015] [Indexed: 11/05/2022] Open
|
15
|
Abroun S, Saki N, Ahmadvand M, Asghari F, Salari F, Rahim F. STATs: An Old Story, Yet Mesmerizing. CELL JOURNAL 2015; 17:395-411. [PMID: 26464811 PMCID: PMC4601860 DOI: 10.22074/cellj.2015.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 08/07/2014] [Indexed: 01/01/2023]
Abstract
Signal transducers and activators of transcription (STATs) are cytoplasmic transcription factors that have a key role in cell fate. STATs, a protein family comprised of
seven members, are proteins which are latent cytoplasmic transcription factors that
convey signals from the cell surface to the nucleus through activation by cytokines
and growth factors. The signaling pathways have diverse biological functions that
include roles in cell differentiation, proliferation, development, apoptosis, and inflammation which place them at the center of a very active area of research. In this review we explain Janus kinase (JAK)/STAT signaling and focus on STAT3, which is
transient from cytoplasm to nucleus after phosphorylation. This procedure controls
fundamental biological processes by regulating nuclear genes controlling cell proliferation, survival, and development. In some hematopoietic disorders and cancers,
overexpression and activation of STAT3 result in high proliferation, suppression of
cell differentiation and inhibition of cell maturation. This article focuses on STAT3
and its role in malignancy, in addition to the role of microRNAs (miRNAs) on STAT3
activation in certain cancers.
Collapse
Affiliation(s)
- Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ahmadvand
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farahnaz Asghari
- Department of Medicine II, Division of Gastroenterology, University of Rostock, E.Heydemann-Strasse 6, Rostock, Germany
| | - Fatemeh Salari
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research Institute, Hearing Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Ali M, Mehmood A, Anjum MS, Tarrar MN, Khan SN, Riazuddin S. Diazoxide preconditioning of endothelial progenitor cells from streptozotocin-induced type 1 diabetic rats improves their ability to repair diabetic cardiomyopathy. Mol Cell Biochem 2015; 410:267-79. [PMID: 26359087 DOI: 10.1007/s11010-015-2560-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (DM) is a strong risk factor for the development of diabetic cardiomyopathy (DCM) which is the leading cause of morbidity and mortality in the type 1 diabetic patients. Stem cells may act as a therapeutic agent for the repair of DCM. However, deteriorated functional abilities and survival of stem cells derived from type 1 diabetic subjects need to be overcome for obtaining potential outcome of the stem cell therapy. Diazoxide (DZ) a highly selective mitochondrial ATP-sensitive K(+) channel opener has been previously shown to improve the ability of mesenchymal stem cells for the repair of heart failure. In the present study, we evaluated the effects of DZ preconditioning in improving the ability of streptozotocin-induced type 1 diabetes affected bone marrow-derived endothelial progenitor cells (DM-EPCs) for the repair of DCM in the type 1 diabetic rats. DM-EPCs were characterized by immunocytochemistry, flow cytometry, and reverse transcriptase PCR for endothelial cell-specific markers like vWF, VE cadherin, VEGFR2, PECAM, CD34, and eNOS. In vitro studies included preconditioning of DM-EPCs with 200 μM DZ for 30 min followed by exposure to either 200 μM H2O2 for 2 h (for oxidative stress induction) or 30 mM glucose media (for induction of hyperglycemic stress) for 48 h. Non-preconditioned EPCs with and without exposure to H2O2 and 30 mM high glucose served as controls. These cells were then evaluated for survival (by MTT and XTT cell viability assays), senescence, paracrine potential (by ELISA for VEGF), and alteration in gene expression [VEGF, stromal derived factor-1α (SDF-1α), HGF, bFGF, Bcl2, and Caspase-3]. DZ preconditioned DM-EPCs demonstrated significantly increased survival and VEGF release while reduced cell injury and senescence. Furthermore, DZ preconditioned DM-EPCs exhibited up-regulated expression of prosurvival genes (VEGF, SDF-1α, HGF, bFGF, and Bcl2) on exposure to H2O2, and VEGF and Bcl2 on exposure to hyperglycemia while down regulation of Caspase-3 gene. Eight weeks after type 1 diabetes induction, DZ preconditioned, and non-preconditioned DM-EPCs were transplanted into left ventricle of diabetic rats (at a dose of 2 × 10(6) DM-EPCs/70 μl serum free medium). After 4 weeks, DZ preconditioned DM-EPCs transplantation improved cardiac function as assessed by Millar's apparatus. There was decrease in collagen content estimated by Masson's trichrome and sirius red staining. Furthermore, reduced cell injury was observed as evidenced by decreased expression of Caspase-3 and increased expression of prosurvival genes Bcl2, VEGF, and bFGF by semi-quantitative real-time PCR. In conclusion, the present study demonstrated that DZ preconditioning enhanced EPCs survival under oxidative and hyperglycemic stress and their ability to treat DCM.
Collapse
Affiliation(s)
- Muhammad Ali
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Muhammad Sohail Anjum
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | | | - Shaheen N Khan
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan.
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore, Pakistan. .,Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.
| |
Collapse
|
17
|
Liu Q, Du GQ, Zhu ZT, Zhang C, Sun XW, Liu JJ, Li X, Wang YS, Du WJ. Identification of apoptosis-related microRNAs and their target genes in myocardial infarction post-transplantation with skeletal myoblasts. J Transl Med 2015; 13:270. [PMID: 26286600 PMCID: PMC4539916 DOI: 10.1186/s12967-015-0603-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/10/2015] [Indexed: 11/13/2022] Open
Abstract
Background Skeletal myoblasts (SkMs) has
provided a promising treatment for myocardial infarction (MI). Functioning as posttranscriptional regulators, microRNAs (miRNAs) play important roles in cardiac repairment and stem cell regulation. However, the correlation between miRNAs and their targeted genes in SkM cell therapy for MI was not fully understood. Methods We explored the cardioprotection by SkMs in infracted rats and determined cardiac functions at 4 weeks. In addition, we compared the expression profiles of miRNAs and mRNAs in post-MI rats with or without SkM cell therapy using microarray. The concordance between miRNA expression and mRNA levels of potential target genes was confirmed by quantitative real-time PCR. Results Quantitative echocardiography and histology showed improved cardiac function, attenuated heart infarcted area and inhibited cardiomyocyte apoptosis in the SkM group, compared with MI group. We identified that 160 miRNAs were differentially expressed in MI group as compared to the control group and 78 miRNAs were differentially expressed in the SkM treated group as compared to the untreated post-MI. We focused on a novel set of apoptosis-associated miRNAs and their target genes, among which 4 miRNAs (miR-30a-5p, miR-30c-5p, miR-145-5p, miR-140-3p), except one (miR-143-3p), were downregulated in the SkM treated group as compared to the untreated group. Furthermore, we found seven genes including Angptl4, Dpep1, Egr1, Eif5a, Tsc22d3, Irs2 and Cebpb that showed a linear correlation with which miRNAs. Conclusions The downregulation of apoptosis-regulatory miRNAs and in turn upregulation of target genes may partially account for rescue effect of SKM therapy for MI. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0603-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Liu
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China. .,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Guo Qing Du
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China. .,Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zhi Tao Zhu
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China. .,Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - ChunYang Zhang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China. .,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Xiao Wei Sun
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China. .,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Jing Jin Liu
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China. .,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Xia Li
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China. .,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Yong Shun Wang
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China. .,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Wen Juan Du
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China. .,Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
18
|
Mehmood A, Ali M, Khan SN, Riazuddin S. Diazoxide preconditioning of endothelial progenitor cells improves their ability to repair the infarcted myocardium. Cell Biol Int 2015; 39:1251-63. [PMID: 26032287 DOI: 10.1002/cbin.10498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Azra Mehmood
- National Centre of Excellence in Molecular Biology; 87-West Canal Bank Road; University of Punjab; Lahore Pakistan
| | - Muhammad Ali
- National Centre of Excellence in Molecular Biology; 87-West Canal Bank Road; University of Punjab; Lahore Pakistan
| | - Shaheen N. Khan
- National Centre of Excellence in Molecular Biology; 87-West Canal Bank Road; University of Punjab; Lahore Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology; 87-West Canal Bank Road; University of Punjab; Lahore Pakistan
- Allama Iqbal Medical College; University of Health Sciences; Lahore Pakistan
| |
Collapse
|
19
|
Abstract
BACKGROUND Anesthetic cardioprotection reduces myocardial infarct size after ischemia-reperfusion injury. Currently, the role of microRNA in this process remains unknown. MicroRNAs are short, noncoding nucleotide sequences that negatively regulate gene expression through degradation or suppression of messenger RNA. In this study, the authors uncovered the functional role of microRNA-21 (miR-21) up-regulation after anesthetic exposure. METHODS MicroRNA and messenger RNA expression changes were analyzed by quantitative real-time polymerase chain reaction in cardiomyocytes after exposure to isoflurane. Lactate dehydrogenase release assay and propidium iodide staining were conducted after inhibition of miR-21. miR-21 target expression was analyzed by Western blot. The functional role of miR-21 was confirmed in vivo in both wild-type and miR-21 knockout mice. RESULTS Isoflurane induces an acute up-regulation of miR-21 in both in vivo and in vitro rat models (n = 6, 247.8 ± 27.5% and 258.5 ± 9.0%), which mediates protection to cardiomyocytes through down-regulation of programmed cell death protein 4 messenger RNA (n = 3, 82.0 ± 4.9% of control group). This protective effect was confirmed by knockdown of miR-21 and programmed cell death protein 4 in vitro. In addition, the protective effect of isoflurane was abolished in miR-21 knockout mice in vivo, with no significant decrease in infarct size compared with nonexposed controls (n = 8, 62.3 ± 4.6% and 56.2 ± 3.2%). CONCLUSIONS The authors demonstrate for the first time that isoflurane mediates protection of cardiomyocytes against oxidative stress via an miR-21/programmed cell death protein 4 pathway. These results reveal a novel mechanism by which the damage done by ischemia/reperfusion injury may be decreased.
Collapse
|
20
|
Xu X, Kriegel AJ, Jiao X, Liu H, Bai X, Olson J, Liang M, Ding X. miR-21 in ischemia/reperfusion injury: a double-edged sword? Physiol Genomics 2014; 46:789-97. [PMID: 25159851 DOI: 10.1152/physiolgenomics.00020.2014] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are endogenous, small RNA molecules that suppress expression of targeted mRNA. miR-21, one of the most extensively studied miRNAs, is importantly involved in divergent pathophysiological processes relating to ischemia/reperfusion (I/R) injury, such as inflammation and angiogenesis. The role of miR-21 in renal I/R is complex, with both protective and pathological pathways being regulated by miR-21. Preconditioning-induced upregulation of miR-21 contributes to the protection against subsequent renal I/R injury through the targeting of genes such as the proapoptotic gene programmed cell death 4 and interactions between miR-21 and hypoxia-inducible factor. Conversely, long-term elevation of miR-21 may be detrimental to the organ by promoting the development of renal interstitial fibrosis following I/R injury. miR-21 is importantly involved in several pathophysiological processes related to I/R injury including inflammation and angiogenesis as well as the biology of stem cells that could be used to treat I/R injury; however, the effect of miR-21 on these processes in renal I/R injury remains to be studied.
Collapse
Affiliation(s)
- Xialian Xu
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoyan Jiao
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Hong Liu
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Xiaowen Bai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Olson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoqiang Ding
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China; Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, Peoples Republic of China; Kidney and Dialysis Institute of Shanghai, Shanghai, Peoples Republic of China; and Kidney and Blood Purification Laboratory of Shanghai, Shanghai, Peoples Republic of China
| |
Collapse
|
21
|
Abstract
We demonstrate the first use of smartphone spectrophotometry for readout of fluorescence-based biological assays. We evaluated the smartphone fluorimeter in the context of a fluorescent molecular beacon (MB) assay for detection of specific nucleic acid sequences in a liquid test sample and compared performance against a conventional laboratory fluorimeter. The capability of distinguishing a one-point mismatch is also demonstrated by detecting single-base mutation in target nucleic acids. Our approach offers a route toward portable biomolecular assays for viral/bacterial pathogens, disease biomarkers, and toxins.
Collapse
Affiliation(s)
- Hojeong Yu
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign , 208 North Wright Street, Urbana, Illinois 61801, United States
| | | | | |
Collapse
|
22
|
miRNA transcriptome of hypertrophic skeletal muscle with overexpressed myostatin propeptide. BIOMED RESEARCH INTERNATIONAL 2014; 2014:328935. [PMID: 25147795 PMCID: PMC4131533 DOI: 10.1155/2014/328935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 01/16/2023]
Abstract
MicroRNAs (miRNAs) play an imperative role in cell proliferation, differentiation, and cell metabolism through regulation of gene expression. Skeletal muscle hypertrophy that results from myostatin depression by its propeptide provides an interesting model to understand how miRNA transcriptome is involved in myostatin-based fiber hypertrophy. This study employed Solexa deep sequencing followed by Q-PCR methods to analyze miRNA transcriptome of skeletal muscle of myostatin propeptide transgenic mice in comparison with their littermate controls. A total of 461 mature known and 69 novel miRNAs were reported from this study. Fifty-seven miRNAs were expressed differentially between transgenic and littermate controls, of which most abundant miRNAs, miR-133a and 378a, were significantly differentially expressed. Expression profiling was validated on 8 known and 2 novel miRNAs. The miRNA targets prediction and pathway analysis showed that FST, SMAD3, TGFBR1, and AcvR1a genes play a vital role in skeletal muscle hypertrophy in the myostatin propeptide transgenic mice. It is predicted that miR-101 targeted to TGFBR1 and SMAD3, miR-425 to TGFBR2 and FST, and miR-199a to AcvR2a and TGF-β genes. In conclusion, the study offers initial miRNA profiling and methodology of miRNA targets prediction for myostatin-based hypertrophy. These differentially expressed miRNAs are proposed as candidate miRNAs for skeletal muscle hypertrophy.
Collapse
|
23
|
Haghikia A, Hoch M, Stapel B, Hilfiker-Kleiner D. STAT3 regulation of and by microRNAs in development and disease. JAKSTAT 2014; 1:143-50. [PMID: 24058763 PMCID: PMC3670237 DOI: 10.4161/jkst.19573] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenously expressed small non-coding RNAs acting at the post-transcriptional level where they promote mRNA degradation and block protein translation. Recent findings suggest that complex transcriptional and post-transcriptional circuits control miRNAs. STAT3 has emerged as an important regulator of their expression and biogenesis and, in turn, STAT3 signaling pathways are controlled by distinct miRNAs. We summarize the current knowledge on STAT3 mediated processing of individual miRNAs and contrariwise, the modulation of the STAT3 pathway by miRNAs in development and in pathophysiological conditions such as immune processes, infection, cancer, cardiovascular disease and pulmonary hypertension.
Collapse
Affiliation(s)
- Arash Haghikia
- Department of Cardiology and Angiology; Medical School Hannover; Hannover, Germany
| | | | | | | |
Collapse
|
24
|
Haider BA, Baras AS, McCall MN, Hertel JA, Cornish TC, Halushka MK. A critical evaluation of microRNA biomarkers in non-neoplastic disease. PLoS One 2014; 9:e89565. [PMID: 24586876 PMCID: PMC3935874 DOI: 10.1371/journal.pone.0089565] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/21/2014] [Indexed: 01/13/2023] Open
Abstract
Background MicroRNAs (miRNAs) are small (∼22-nt), stable RNAs that critically modulate post-transcriptional gene regulation. MicroRNAs can be found in the blood as components of serum, plasma and peripheral blood mononuclear cells (PBMCs). Many microRNAs have been reported to be specific biomarkers in a variety of non-neoplastic diseases. To date, no one has globally evaluated these proposed clinical biomarkers for general quality or disease specificity. We hypothesized that the cellular source of circulating microRNAs should correlate with cells involved in specific non-neoplastic disease processes. Appropriate cell expression data would inform on the quality and usefulness of each microRNA as a biomarker for specific diseases. We further hypothesized a useful clinical microRNA biomarker would have specificity to a single disease. Methods and Findings We identified 416 microRNA biomarkers, of which 192 were unique, in 104 publications covering 57 diseases. One hundred and thirty-nine microRNAs (33%) represented biologically plausible biomarkers, corresponding to non-ubiquitous microRNAs expressed in disease-appropriate cell types. However, at a global level, many of these microRNAs were reported as “specific” biomarkers for two or more unrelated diseases with 6 microRNAs (miR-21, miR-16, miR-146a, miR-155, miR-126 and miR-223) being reported as biomarkers for 9 or more distinct diseases. Other biomarkers corresponded to common patterns of cellular injury, such as the liver-specific microRNA, miR-122, which was elevated in a disparate set of diseases that injure the liver primarily or secondarily including hepatitis B, hepatitis C, sepsis, and myocardial infarction. Conclusions Only a subset of reported blood-based microRNA biomarkers have specificity for a particular disease. The remainder of the reported non-neoplastic biomarkers are either biologically implausible, non-specific, or uninterpretable due to limitations of our current understanding of microRNA expression.
Collapse
Affiliation(s)
- Baqer A. Haider
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore Maryland, United States of America
| | - Alexander S. Baras
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore Maryland, United States of America
| | - Matthew N. McCall
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, United States of America
| | - Joshua A. Hertel
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore Maryland, United States of America
| | - Toby C. Cornish
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore Maryland, United States of America
| | - Marc K. Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol 2014; 26:54-74. [PMID: 24552665 DOI: 10.1016/j.smim.2014.01.001] [Citation(s) in RCA: 526] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022]
Abstract
Inflammatory responses play pivotal roles in cancer development, including tumor initiation, promotion, progression, and metastasis. Cytokines are now recognized as important mediators linking inflammation and cancer, and are therefore potential therapeutic and preventive targets as well as prognostic factors. The interleukin (IL)-6 family of cytokines, especially IL-6 and IL-11, is highly up-regulated in many cancers and considered as one of the most important cytokine families during tumorigenesis and metastasis. This review discusses molecular mechanisms linking the IL-6 cytokine family to solid malignancies and their treatment.
Collapse
Affiliation(s)
- Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; UC San Diego Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Tili E, Michaille JJ, Croce CM. MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev 2013; 253:167-84. [PMID: 23550646 DOI: 10.1111/imr.12050] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Esmerina Tili
- Department of Molecular Virology; Immunology and Medical Genetics; The Ohio State University Medical Center; Comprehensive Cancer Center; Columbus; OH; USA
| | | | - Carlo M. Croce
- Department of Molecular Virology; Immunology and Medical Genetics; The Ohio State University Medical Center; Comprehensive Cancer Center; Columbus; OH; USA
| |
Collapse
|
27
|
Li Z, Lan X, Guo W, Sun J, Huang Y, Wang J, Huang T, Lei C, Fang X, Chen H. Comparative transcriptome profiling of dairy goat microRNAs from dry period and peak lactation mammary gland tissues. PLoS One 2012; 7:e52388. [PMID: 23300659 PMCID: PMC3530564 DOI: 10.1371/journal.pone.0052388] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/12/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small noncoding RNA molecules that serve as important post-transcriptional gene expression regulators by targeting messenger RNAs for post-transcriptional endonucleolytic cleavage or translational inhibition. miRNAs play important roles in many biological processes. Extensive high-throughput sequencing studies of miRNAs have been performed in several animal models. However, little is known about the diversity of these regulatory RNAs in goat (Capra hircus), which is one of the most important agricultural animals and the oldest domesticated species raised worldwide. Goats have long been used for their milk, meat, hair (including cashmere), and skins throughout much of the world. RESULTS In this study, two small RNA libraries were constructed based on dry period and peak lactation dairy goat mammary gland tissues and sequenced using the Illumina-Solexa high-throughput sequencing technology. A total of 346 conserved and 95 novel miRNAs were identified in the dairy goat. miRNAs expression was confirmed by qRT-PCR in nine tissues and in the mammary gland during different stages of lactation. In addition, several candidate miRNAs that may be involved in mammary gland development and lactation were found by comparing the miRNA expression profiles in different tissues and developmental stages of the mammary gland. CONCLUSIONS This study reveals the first miRNAs profile related to the biology of the mammary gland in the dairy goat. The characterization of these miRNAs could contribute to a better understanding of the molecular mechanisms of lactation physiology and mammary gland development in the dairy goat.
Collapse
Affiliation(s)
- Zhuanjian Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, People’s Republic of China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, People’s Republic of China
| | - Wenjiao Guo
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, People’s Republic of China
| | - Jiajie Sun
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, People’s Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, People’s Republic of China
| | - Jing Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, People’s Republic of China
| | - Tinghua Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, People’s Republic of China
| | - Chuozhao Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, People’s Republic of China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu, People’s Republic of China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, People’s Republic of China
| |
Collapse
|
28
|
Zhang J, Zhang A, Wang Y, Liu N, You Y, Kang C, Pu P. New insights into the roles of ncRNA in the STAT3 pathway. Future Oncol 2012; 8:723-30. [PMID: 22764770 DOI: 10.2217/fon.12.52] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
STAT3 signaling has been linked to the development of various cancers and is widely recognized as a critical molecular target for cancer therapy. ncRNAs, especially miRNAs and lncRNAs, are acting as promising biomarkers and therapy targets implicated in tumor pathogenesis. This review focuses on the most up-to-date knowledge of miRNAs and lncRNAs, and their involvement with STAT3 signaling. The important miRNAs involved in the STAT3 pathway are summarized in a complex interaction network. The lncRNAs' potential for targeting STAT3 at post-transcriptional level was predicted based upon lncRNA-mRNA interaction. The current and potential STAT3-targeted therapeutics are also discussed.
Collapse
Affiliation(s)
- Junxia Zhang
- Department of Neurosurgery, Laboratory of Neuro-Oncology, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Fragoso MA, Patel AK, Nakamura REI, Yi H, Surapaneni K, Hackam AS. The Wnt/β-catenin pathway cross-talks with STAT3 signaling to regulate survival of retinal pigment epithelium cells. PLoS One 2012; 7:e46892. [PMID: 23056515 PMCID: PMC3464242 DOI: 10.1371/journal.pone.0046892] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 09/10/2012] [Indexed: 12/23/2022] Open
Abstract
Wnt/β-catenin signaling is an essential pathway that regulates numerous cellular processes, including cell survival. The molecular mechanisms contributing to pro-survival Wnt signaling are mostly unknown. Signal transducer and activator of transcription proteins (STATs) are a well-described family of transcription factors. STAT3 induces expression of anti-apoptotic genes in many tissues and is a downstream mediator of protective growth factors and cytokines. In this study, we investigated whether pro-survival Wnt signaling is mediated by STAT3. The Wnt3a ligand activated Wnt signaling in the retinal pigment epithelium ARPE-19 cell line and significantly increased the viability of cells exposed to oxidative stress. Furthermore, Wnt3a increased STAT3 activation and nuclear translocation, as measured by an antibody against phosphorylated STAT3. Reducing STAT3 levels with siRNA eliminated Wnt3a-dependent protection from oxidative stress. Together, these data demonstrate a previously unknown link between Wnt3a-mediated activation of STAT3 and cell survival, and indicate cross-talk between two important pro-survival signaling pathways.
Collapse
Affiliation(s)
- Miryam A. Fragoso
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Amit K. Patel
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Rei E. I. Nakamura
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Hyun Yi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Krishna Surapaneni
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Abigail S. Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
30
|
Gérard C, Dufour C, Goudenege S, Skuk D, Tremblay JP. AG490 improves the survival of human myoblasts in vitro and in vivo. Cell Transplant 2012; 21:2665-76. [PMID: 22963730 DOI: 10.3727/096368912x655028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cell therapies consist in transplanting healthy cells into a disabled tissue with the goal to repopulate it and restore its function at least partially. In muscular diseases, most of the time, myoblasts are chosen for their expansion capacity in culture. Nevertheless, cell transplantation has limitations, among them, death of the transplanted cells, during the days following the graft. One possibility to counteract this problem is to enhance the proliferation of the transplanted myoblasts before their fusion with the existing muscle fibers. AG490 is a specific inhibitor of janus tyrosine kinase 2 (JAK2). The hypothesis is to block myoblast differentiation with AG490, thus permitting their proliferation. The inhibition of myoblast fusion by AG490 was confirmed in this study by gene expression and with a myosin heavy chain staining (MyHC). Moreover, cell survival was estimated by flow cytometry. AG490 was found to protect myoblasts in vitro from apoptosis induced by H(2)O(2) or by preventing attachment of cells to their substrate. Finally, in an in vivo model of muscle regeneration, when AG490 was coinjected with the myoblasts their survival was increased by 45% at 5 days after their transplantation.
Collapse
Affiliation(s)
- Catherine Gérard
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Kim HW, Jiang S, Ashraf M, Haider KH. Stem cell-based delivery of Hypoxamir-210 to the infarcted heart: implications on stem cell survival and preservation of infarcted heart function. J Mol Med (Berl) 2012; 90:997-1010. [PMID: 22648522 DOI: 10.1007/s00109-012-0920-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 01/11/2023]
Abstract
This study seeks to test our hypothesis that transgenic induction of miR-210 in mesenchymal stem cells (MSC) simulates the pro-survival effects of ischemic preconditioning (IPC) and that engraftment of (PC)MSC helps in the functional recovery of ischemic heart by miR-210 transfer to host cardiomyocytes through gap junctions. miR-210 expression in MSC was achieved by IPC or nanoparticle-based transfection of miR-210 plasmid ((miR)MSC) and functional recovery of the infarcted heart of rat transplanted with (PC)MSC or (miR)MSC was evaluated. Both (PC)MSC and (miR)MSC showed higher survival under lethal anoxia as compared to (non-PC)MSC and scramble-transfected MSC ((Sc)MSC) controls with concomitantly lower CASP8AP2 expression. Similarly, both (PC)MSC and (miR)MSC survived better and accelerated functional recovery of ischemic heart post-transplantation. To validate our hypothesis that MSC deliver miR-210 to host cardiomyocytes, in vitro co-culture between cardiomyocytes and (PC)MSC or (miR)MSC (using (non-PC)MSC or (Sc)MSC as controls) showed co-localization of miR-210 with gap-junctional connexin-43. miR-210 transfer to cardiomyocytes was blocked by heptanol pretreatment. Moreover, higher survival of cardiomyocytes co-cultured with (PC)MSC was observed with concomitant expression of CASP8AP2 as compared to cardiomyocytes co-cultured with (non-PC)MSC thus suggesting that miR-210 was translocated from MSC to protect host cardiomyocytes. Induction of miR-210 in MSC promoted their survival post-engraftment in the infarcted heart. Moreover, direct transfer of pro-survival miR-210 from (miR)MSC to host cardiomyocytes led to functional recovery of the ischemic heart.
Collapse
Affiliation(s)
- Ha Won Kim
- Department of Pathology, University of Cincinnati, 231-Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
33
|
Idris NM, Ashraf M, Ahmed RPH, Shujia J, Haider KH. Activation of IL-11/STAT3 pathway in preconditioned human skeletal myoblasts blocks apoptotic cascade under oxidant stress. Regen Med 2012; 7:47-57. [PMID: 22168497 DOI: 10.2217/rme.11.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To determine whether our novel approach of diazoxide-induced stem cell preconditioning might be extrapolated to human skeletal myoblasts to support their survival under lethal oxidant stress. METHODS & RESULTS Using an in vitro model of H(2)O(2) treatment of human skeletal myoblasts, we report the ability of diazoxide-preconditioned human skeletal myoblasts to express cytokines and growth factors, which act in an autocrine and paracrine fashion to promote their own survival. Preconditioning of skeletal myoblasts was cytoprotective and significantly reduced their apoptotic index (p < 0.05). IL-11 gene and protein expression was significantly increased in preconditioned skeletal myoblasts. Transfection of skeletal myoblasts with IL-11-specific siRNA incurred their death under oxidant stress. The cytoprotective effect of diazoxide preconditioning was blocked by Erk1/2 inhibitor PD98059 (20-100 µM), which abrogated STAT-3 phosphorylation, thus confirming a possible involvement of Erk1/2/STAT3 signaling downstream of IL-11 in cell survival. We also investigated the time course of subcellular changes and signaling pathway of skeletal myoblasts apoptosis under oxidant stress before and after preconditioning. Apoptosis was induced in skeletal myoblasts with 100-500 µM H(2)O(2) for time points ranging from 1 to 24 h. Release of lactate dehydrogenase, disruption of the mitochondrial membrane potential and cytochrome-c translocation into cytoplasm were the earliest signs of apoptosis. Total Akt protein remained unchanged whereas marked reduction in pAkt was observed in the native skeletal myoblasts. Terminal dUTP nick end-labeling and annexin-V positivity were significantly increased after 4 h. Ultra-structure studies showed condensed chromatin, shriveled nuclei and swollen mitochondria. CONCLUSION These data suggest that skeletal myoblasts undergo apoptosis under oxidant stress in a time-dependent manner and preconditioning of skeletal myoblasts significantly prevented their apoptosis via IL-11/STAT3 signaling.
Collapse
Affiliation(s)
- Niagara Muhammad Idris
- Department of Pathology, 231 Albert Sabin Way, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
34
|
Mohsin S, Siddiqi S, Collins B, Sussman MA. Empowering adult stem cells for myocardial regeneration. Circ Res 2012; 109:1415-28. [PMID: 22158649 DOI: 10.1161/circresaha.111.243071] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Treatment strategies for heart failure remain a high priority for ongoing research due to the profound unmet need in clinical disease coupled with lack of significant translational progress. The underlying issue is the same whether the cause is acute damage, chronic stress from disease, or aging: progressive loss of functional cardiomyocytes and diminished hemodynamic output. To stave off cardiomyocyte losses, a number of strategic approaches have been embraced in recent years involving both molecular and cellular approaches to augment myocardial structure and performance. Resultant excitement surrounding regenerative medicine in the heart has been tempered by realizations that reparative processes in the heart are insufficient to restore damaged myocardium to normal functional capacity and that cellular cardiomyoplasty is hampered by poor survival, proliferation, engraftment, and differentiation of the donated population. To overcome these limitations, a combination of molecular and cellular approaches must be adopted involving use of genetic engineering to enhance resistance to cell death and increase regenerative capacity. This review highlights biological properties of approached to potentiate stem cell-mediated regeneration to promote enhanced myocardial regeneration, persistence of donated cells, and long-lasting tissue repair. Optimizing cell delivery and harnessing the power of survival signaling cascades for ex vivo genetic modification of stem cells before reintroduction into the patient will be critical to enhance the efficacy of cellular cardiomyoplasty. Once this goal is achieved, then cell-based therapy has great promise for treatment of heart failure to combat the loss of cardiac structure and function associated with acute damage, chronic disease, or aging.
Collapse
|
35
|
Yan X, Ding L, Li Y, Zhang X, Liang Y, Sun X, Teng CB. Identification and profiling of microRNAs from skeletal muscle of the common carp. PLoS One 2012; 7:e30925. [PMID: 22303472 PMCID: PMC3267759 DOI: 10.1371/journal.pone.0030925] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/25/2011] [Indexed: 12/22/2022] Open
Abstract
The common carp is one of the most important cultivated species in the world of freshwater aquaculture. The cultivation of this species is particularly productive due to its high skeletal muscle mass; however, the molecular mechanisms of skeletal muscle development in the common carp remain unknown. It has been shown that a class of non-coding ∼22 nucleotide RNAs called microRNAs (miRNAs) play important roles in vertebrate development. They regulate gene expression through sequence-specific interactions with the 3' untranslated regions (UTRs) of target mRNAs and thereby cause translational repression or mRNA destabilization. Intriguingly, the role of miRNAs in the skeletal muscle development of the common carp remains unknown. In this study, a small-RNA cDNA library was constructed from the skeletal muscle of the common carp, and Solexa sequencing technology was used to perform high throughput sequencing of the library. Subsequent bioinformatics analysis identified 188 conserved miRNAs and 7 novel miRNAs in the carp skeletal muscle. The miRNA expression profiling showed that, miR-1, miR-133a-3p, and miR-206 were specifically expressed in muscle-containing organs, and that miR-1, miR-21, miR-26a, miR-27a, miR-133a-3p, miR-206, miR-214 and miR-222 were differentially expressed in the process of skeletal muscle development of the common carp. This study provides a first identification and profiling of miRNAs related to the muscle biology of the common carp. Their identification could provide clues leading towards a better understanding of the molecular mechanisms of carp skeletal muscle development.
Collapse
Affiliation(s)
- Xuechun Yan
- Key Laboratory of Aquatic Biotechnology, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Lei Ding
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yunchao Li
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaofeng Zhang
- Key Laboratory of Aquatic Biotechnology, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yang Liang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaowen Sun
- Key Laboratory of Aquatic Biotechnology, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- * E-mail: (XS); (CBT)
| | - Chun-Bo Teng
- College of Life Sciences, Northeast Forestry University, Harbin, China
- * E-mail: (XS); (CBT)
| |
Collapse
|
36
|
Gerard C, Forest MA, Beauregard G, Skuk D, Tremblay JP. Fibrin Gel Improves the Survival of Transplanted Myoblasts. Cell Transplant 2012; 21:127-37. [DOI: 10.3727/096368911x576018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most frequent muscular dystrophy in children and young adults. Currently, there is no cure for the disease. The transplantation of healthy myoblasts is an experimental therapeutic strategy, since it could restore the expression of dystrophin in DMD muscles. Nevertheless, this cellular therapy is limited by immune reaction, low migration of the implanted cells, and high early cell death that could be at least partially due to anoikis. To avoid the lack of attachment of the cells to an extracellular matrix after the transplantation, which is the cause of anoikis, we tested the use of a fibrin gel for myoblast transplantation. In vitro, three concentrations of fibrinogen were compared (3, 20, and 50 mg/ml) to form a fibrin gel. A stiffer fibrin gel leads to less degradability and less proliferation of the cells. A concentration of 3 mg/ml fibrin gel enhanced the differentiation of the myoblasts earlier as a culture in monolayer. Human myoblasts were also transplanted in muscles of Rag/mdx mice in a fibrin gel or in a saline solution (control). The use of 3 mg/ml fibrin gel for cell transplantation increased not only the survival of the cells as measured after 5 days but also the number of fibers expressing dystrophin after 21 days, compared to the control. Moreover, the fibrin gel was also compared to a prosurvival cocktail. The survival of the myoblasts at 5 days was increased in both conditions compared to the control but the efficacy of the prosurvival cocktail was not significantly higher than the fibrin gel.
Collapse
Affiliation(s)
- Catherine Gerard
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| | - Marie Anne Forest
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| | - Genevieve Beauregard
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| | - Daniel Skuk
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| | - Jacques P. Tremblay
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| |
Collapse
|
37
|
Jakob P, Landmesser U. Role of microRNAs in stem/progenitor cells and cardiovascular repair. Cardiovasc Res 2011; 93:614-22. [PMID: 22135162 DOI: 10.1093/cvr/cvr311] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNAs, play a critical role in differentiation and self-renewal of pluripotent stem cells, as well as in differentiation of cardiovascular lineage cells. Several miRNAs have been demonstrated to repress stemness factors such as Oct4, Nanog, Sox2 and Klf4 in embryonic stem cells, thereby promoting embryonic stem cell differentiation. Furthermore, targeting of different miRNAs promotes reprogramming towards induced pluripotent stem cells. MicroRNAs are critical for vascular smooth muscle cell differentiation and phenotype regulation, and miR-143 and miR-145 play a particularly important role in this respect. Notably, these miRNAs are down-regulated in several cardiovascular disease states, such as in atherosclerotic lesions and vascular neointima formation. MicroRNAs are critical regulators of endothelial cell differentiation and ischaemia-induced neovascularization. miR-126 is important for vascular integrity, endothelial cell proliferation and neovascularization. miR-1 and miR-133 are highly expressed in cardiomyocytes and their precursors and regulate cardiomyogenesis. In addition, miR-499 promotes differentiation of cardiomyocyte progenitor cells. Notably, miRNA expression is altered in cardiovascular disease states, and recent studies suggest that dysregulated miRNAs may limit cardiovascular repair responses. Dysregulation of miRNAs may lead to an altered function and differentiation of cardiovascular progenitor cells, which is also likely to represent a limitation of autologous cell-based treatment approaches in these patients. These findings suggest that targeting of specific miRNAs may represent an interesting novel opportunity to impact on endogenous cardiovascular repair responses, including effects on stem/progenitor cell differentiation and functions. This approach may also serve to optimize cell-based treatment approaches in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Philipp Jakob
- Cardiovascular Center, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
38
|
Fujio Y, Maeda M, Mohri T, Obana M, Iwakura T, Hayama A, Yamashita T, Nakayama H, Azuma J. Glycoprotein 130 cytokine signal as a therapeutic target against cardiovascular diseases. J Pharmacol Sci 2011; 117:213-22. [PMID: 22056652 DOI: 10.1254/jphs.11r05cr] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Postnatal cardiomyocytes have only limited capacity of proliferation. Therefore, the myocardium is intrinsically equipped with cardioprotective machineries and protects itself from pathological stresses. One of the most important cardioprotective systems is the signal network of autocrine/paracrine factors, including neurohumoral factors, growth factors, and cytokines. In this review, we focus on the roles of interleukin-6 (IL-6) family cytokines, also known as glycoprotein 130 (gp130) cytokines, in cardioprotection. These cytokines make a complex with their specific cytokine receptor α-subunits. The cytokine-receptor α-subunit complex binds to gp130, a common receptor of the IL-6 family, followed by the activation of JAK/STAT, ERK, and PI3 kinase/Akt pathways. In cardiomyocytes, signals through gp130 promote cell survival and angiogenesis through the JAK/STAT pathway. Activation of gp130 in cardiac stem cells induces their endothelial transdifferentiation, leading to neovascularization. Recently, accumulating evidence has revealed that altered JAK/STAT activity is associated with heart failure, suggesting that the JAK/STAT pathway is a therapeutic target against cardiovascular diseases. Interestingly, activation of the JAK/STAT pathway with interleukin-11 (IL-11) exhibits preconditioning effects in ischemia/reperfusion model. Moreover, IL-11 treatment after coronary ligation prevents cardiac remodeling through the JAK/STAT pathway. Since IL-11 is used for patients with thrombocytopenia, we propose that IL-11 is a candidate cytokine clinically available for cardioprotection therapy.
Collapse
Affiliation(s)
- Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
MicroRNA as a Novel Modulator in Head and Neck Squamous Carcinoma. JOURNAL OF ONCOLOGY 2011; 2010:135632. [PMID: 21461395 PMCID: PMC3065009 DOI: 10.1155/2010/135632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/30/2010] [Indexed: 12/12/2022]
Abstract
MicroRNAs have emerged as important regulators of cell proliferation, development, cancer formation, stress responses, cell death, and other physiological conditions in the past decade. On the other hand, head and neck cancer is one of the top ten most common cancers worldwide. Recent advances in microRNAs have revealed their prominent role in regulating gene expression and provided new aspects of applications in diagnosis, prognosis, and therapeutic strategies in head and neck squamous carcinoma. In the present paper, we focus on microRNAs showing significant differences between normal and tumor cells or between cells with differential ability of metastasis. We also emphasize specific microRNAs that could modulate tumor cell properties, such as apoptosis, metastasis, and proliferation. These microRNAs possess the potential to be applied on clinical therapy in the future.
Collapse
|
40
|
Gao L, Tsun J, Sun L, Kwan J, Watson A, Macdonald PS, Hicks M. Critical role of the STAT3 pathway in the cardioprotective efficacy of zoniporide in a model of myocardial preservation - the rat isolated working heart. Br J Pharmacol 2011; 162:633-47. [PMID: 20942815 PMCID: PMC3041253 DOI: 10.1111/j.1476-5381.2010.01071.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/23/2010] [Accepted: 09/21/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Ischemia-reperfusion injury plays an important role in the development of primary allograft failure after heart transplantation. Inhibition of the Na+/H+ exchanger is one of the most promising therapeutic strategies for treating ischemia-reperfusion injury. Here we have characterized the cardioprotective efficacy of zoniporide and the underlying mechanisms in a model of myocardial preservation using rat isolated working hearts. EXPERIMENTAL APPROACH Rat isolated hearts subjected to 6 h hypothermic (1-4°C) storage followed by 45 min reperfusion at 37°C were treated with zoniporide at different concentrations and timing. Recovery of cardiac function, levels of total and phosphorylated protein kinase B, extracellular signal-regulated kinase 1/2, glycogen synthase kinase-3β and STAT3 as well as cleaved caspase 3 were measured at the end of reperfusion. Lactate dehydrogenase release into coronary effluent before and post-storage was also measured. KEY RESULTS Zoniporide concentration-dependently improved recovery of cardiac function after reperfusion. The functional recovery induced by zoniporide was accompanied by up-regulation of p-extracellular signal-regulated kinase 1/2 and p-STAT3, and by reduction in lactate dehydrogenase release and cleaved caspase 3. There were no significant differences in any of the above indices when zoniporide was administered before, during or after ischemia. The STAT3 inhibitor, stattic, abolished zoniporide-induced improvements in functional recovery and up-regulation of p-STAT3 after reperfusion. CONCLUSIONS AND IMPLICATIONS Zoniporide is a potent cardioprotective agent and activation of STAT3 plays a critical role in the cardioprotective action of zoniporide. This agent shows promise as a supplement to storage solutions to improve preservation of donor hearts.
Collapse
Affiliation(s)
- L Gao
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Stem cell transplantation has emerged as a novel treatment option for ischemic heart disease. Different cell types have been utilized and the recent development of induced pluripotent stem cells has generated tremendous excitement in the regenerative field. Bone marrow-derived multipotent progenitor cell transplantation in preclinical large animal models of postinfarction left ventricular remodeling has demonstrated long-term functional and bioenergetic improvement. These beneficial effects are observed despite no significant engraftment of bone marrow cells in the myocardium and even lower differentiation of these cells into cardiomyocytes. It is thought to be related to the paracrine effect of these stem cells, which secrete factors that lead to long-term gene expression changes in the host myocardium, thereby promoting neovascularization, inhibiting apoptosis, and stimulating resident cardiac progenitor cells. Future studies are warranted to examine the changes in the recipient myocardium after stem cell transplantation and to investigate the signaling pathways involved in these effects.
Collapse
|