1
|
Kim W, Kwon HJ, Jung HY, Hahn KR, Moon SM, Yoon YS, Hwang IK, Choi SY, Kim DW. Tat-p27 Ameliorates Neuronal Damage Reducing α-Synuclein and Inflammatory Responses in Motor Neurons After Spinal Cord Ischemia. Neurochem Res 2021; 46:3123-3134. [PMID: 34403064 DOI: 10.1007/s11064-021-03392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022]
Abstract
p27Kip1 (p27) regulates the cell cycle by inhibiting G1 progression in cells. Several studies have shown conflicting results on the effects of p27 against cell death in various insults. In the present study, we examined the neuroprotective effects of p27 against H2O2-induced oxidative stress in NSC34 cells and against spinal cord ischemia-induced neuronal damage in rabbits. To promote delivery into NSC34 cells and motor neurons in the spinal cord, Tat-p27 fusion protein and its control protein (Control-p27) were synthesized with or without Tat peptide, respectively. Tat-p27, but not Control-27, was efficiently introduced into NSC34 cells in a concentration- and time-dependent manner, and the protein was detected in the cytoplasm. Tat-p27 showed neuroprotective effects against oxidative stress induced by H2O2 treatment and reduced the formation of reactive oxygen species, DNA fragmentation, and lipid peroxidation in NSC34 cells. Tat-p27, but not Control-p27, ameliorated ischemia-induced neurological deficits and cell damage in the rabbit spinal cord. In addition, Tat-p27 treatment reduced the expression of α-synuclein, activation of microglia, and release of pro-inflammatory cytokines such as interleukin-1β and tumor necrosis factor-α in the spinal cord. Taken together, these results suggest that Tat-p27 inhibits neuronal damage by decreasing oxidative stress, α-synuclein expression, and inflammatory responses after ischemia.
Collapse
Affiliation(s)
- Woosuk Kim
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
- Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul, 05030, South Korea
| | - Hyun Jung Kwon
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, 18450, South Korea
- Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon, 24253, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Soo Young Choi
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| |
Collapse
|
2
|
P27 Protects Neurons from Ischemic Damage by Suppressing Oxidative Stress and Increasing Autophagy in the Hippocampus. Int J Mol Sci 2020; 21:ijms21249496. [PMID: 33327462 PMCID: PMC7764997 DOI: 10.3390/ijms21249496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 01/07/2023] Open
Abstract
p27Kip1 (p27), a well-known cell regulator, is involved in the regulation of cell death and survival. In the present study, we observed the effects of p27 against oxidative stress induced by H2O2 in HT22 cells and transient ischemia in gerbils. Tat (trans-acting activator of transcription) peptide and p27 fusion proteins were prepared to facilitate delivery into cells and across the blood-brain barrier. The tat-p27 fusion protein, rather than its control protein Control-p27, was delivered intracellularly in a concentration and incubation time-dependent manner and showed its activity in HT22 cells. The localization of the delivered Tat-p27 protein was also confirmted in the HT22 cells and hippocampus in gerbils. In addition, the optimal concentration (5 μM) of Tat-p27 was determined to protect neurons from cell death induced by 1 mM H2O2. Treatment with 5 μM Tat-p27 significantly ameliorated H2O2-induced DNA fragmentation and the formation of reactive oxygen species (ROS) in HT22 cells. Tat-p27 significantly mitigated the increase in locomotor activity a day after ischemia and neuronal damage in the hippocampal CA1 region. It also reduced the ischemia-induced membrane phospholipids and ROS formation. In addition, Tat-p27 significantly increased microtubule-associated protein 1A/1B light chain 3A/3B expression and ameliorated the H2O2 or ischemia-induced increases of p62 and decreases of beclin-1 in the HT22 cells and hippocampus. These results suggest that Tat-p27 protects neurons from oxidative or ischemic damage by reducing ROS-induced damage and by facilitating the formation of autophagosomes in hippocampal cells.
Collapse
|
3
|
Ale-Agha N, Goy C, Jakobs P, Spyridopoulos I, Gonnissen S, Dyballa-Rukes N, Aufenvenne K, von Ameln F, Zurek M, Spannbrucker T, Eckermann O, Jakob S, Gorressen S, Abrams M, Grandoch M, Fischer JW, Köhrer K, Deenen R, Unfried K, Altschmied J, Haendeler J. CDKN1B/p27 is localized in mitochondria and improves respiration-dependent processes in the cardiovascular system-New mode of action for caffeine. PLoS Biol 2018; 16:e2004408. [PMID: 29927970 PMCID: PMC6013014 DOI: 10.1371/journal.pbio.2004408] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/18/2018] [Indexed: 12/16/2022] Open
Abstract
We show that the cyclin-dependent kinase inhibitor 1B (CDKN1B)/p27, previously known as a cell cycle inhibitor, is also localized within mitochondria. The migratory capacity of endothelial cells, which need intact mitochondria, is completely dependent on mitochondrial p27. Mitochondrial p27 improves mitochondrial membrane potential, increases adenosine triphosphate (ATP) content, and is required for the promigratory effect of caffeine. Domain mapping of p27 revealed that the N-terminus and C-terminus are required for those improvements. Further analysis of those regions revealed that the translocation of p27 into the mitochondria and its promigratory activity depend on serine 10 and threonine 187. In addition, mitochondrial p27 protects cardiomyocytes against apoptosis. Moreover, mitochondrial p27 is necessary and sufficient for cardiac myofibroblast differentiation. In addition, p27 deficiency and aging decrease respiration in heart mitochondria. Caffeine does not increase respiration in p27-deficient animals, whereas aged mice display improvement after 10 days of caffeine in drinking water. Moreover, caffeine induces transcriptome changes in a p27-dependent manner, affecting mostly genes relevant for mitochondrial processes. Caffeine also reduces infarct size after myocardial infarction in prediabetic mice and increases mitochondrial p27. Our data characterize mitochondrial p27 as a common denominator that improves mitochondria-dependent processes and define an increase in mitochondrial p27 as a new mode of action of caffeine.
Collapse
Affiliation(s)
- Niloofar Ale-Agha
- Heisenberg-group—Environmentally-induced Cardiovascular Degeneration, Medical Faculty, HHU Duesseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Christine Goy
- Heisenberg-group—Environmentally-induced Cardiovascular Degeneration, Medical Faculty, HHU Duesseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Philipp Jakobs
- Heisenberg-group—Environmentally-induced Cardiovascular Degeneration, Medical Faculty, HHU Duesseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Ioakim Spyridopoulos
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stefanie Gonnissen
- Core Unit Biosafety Level 2 Laboratory, IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Nadine Dyballa-Rukes
- Heisenberg-group—Environmentally-induced Cardiovascular Degeneration, Medical Faculty, HHU Duesseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Karin Aufenvenne
- Heisenberg-group—Environmentally-induced Cardiovascular Degeneration, Medical Faculty, HHU Duesseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Florian von Ameln
- Heisenberg-group—Environmentally-induced Cardiovascular Degeneration, Medical Faculty, HHU Duesseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Core Unit Biosafety Level 2 Laboratory, IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Mark Zurek
- Heisenberg-group—Environmentally-induced Cardiovascular Degeneration, Medical Faculty, HHU Duesseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Tim Spannbrucker
- Environmentally-induced Skin and Lung Aging, IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Olaf Eckermann
- Heisenberg-group—Environmentally-induced Cardiovascular Degeneration, Medical Faculty, HHU Duesseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Sascha Jakob
- Heisenberg-group—Environmentally-induced Cardiovascular Degeneration, Medical Faculty, HHU Duesseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Simone Gorressen
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, HHU Duesseldorf, Duesseldorf, Germany
| | - Marcel Abrams
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, HHU Duesseldorf, Duesseldorf, Germany
| | - Maria Grandoch
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, HHU Duesseldorf, Duesseldorf, Germany
| | - Jens W. Fischer
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, HHU Duesseldorf, Duesseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), HHU, Duesseldorf, Germany
| | - René Deenen
- Biological and Medical Research Center (BMFZ), HHU, Duesseldorf, Germany
| | - Klaus Unfried
- Environmentally-induced Skin and Lung Aging, IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Joachim Altschmied
- Core Unit Biosafety Level 2 Laboratory, IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Judith Haendeler
- Heisenberg-group—Environmentally-induced Cardiovascular Degeneration, Medical Faculty, HHU Duesseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| |
Collapse
|
4
|
Signaling Pathways in Cardiac Myocyte Apoptosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9583268. [PMID: 28101515 PMCID: PMC5215135 DOI: 10.1155/2016/9583268] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/20/2016] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation.
Collapse
|
5
|
Li WQ, Li XH, Wu YH, Du J, Wang AP, Li D, Li YJ. Role of eukaryotic translation initiation factors 3a in hypoxia-induced right ventricular remodeling of rats. Life Sci 2015; 144:61-8. [PMID: 26612348 DOI: 10.1016/j.lfs.2015.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/14/2015] [Accepted: 11/19/2015] [Indexed: 11/25/2022]
Abstract
AIM Eukaryotic translation initiation factors 3a (eIF3a) is involved in regulating cell cycle, cell division, growth and differentiation. Previous studies suggest a role of eIF3a on fibrosis disease and cellular proliferation and differentiation of fibroblasts. The present study aims to investigate the role of eIF3a on hypoxia-induced right ventricular (RV) remodeling and underlying mechanism. MAIN METHODS RV remodeling was induced by hypoxia (10% O2, 3 weeks) in rats. Primary cardiac fibroblasts were cultured in vitro and their proliferation was investigated by MTS and EdU incorporation method. eIF3a knockdown was conducted by eIF3a siRNA. The expression/level of TGF-β1, eIF3a, p27 and α-SMA, collagen-I, collagen-III, ANP and BNP were analyzed by ELISA, real-time PCR or Western blot. KEY FINDINGS The expression of eIF3a was obviously increased in right ventricle of RV remodeling rats accompanied by up-regulation of α-SMA and collagens. In cultured cardiac fibroblasts, application of exogenous TGF-β1-induced cellular proliferation and differentiation concomitantly with up-regulation of eIF3a expression and down-regulation of p27 expression. The effects of TGF-β1-induced proliferation and up-regulation of α-SMA and collagen in cardiac fibroblasts were abolished by eIF3a siRNA. eIF3a siRNA reversed TGF-β1 induced down-regulation of p27 expression. SIGNIFICANCE The eIF3a plays a crucial role in hypoxia-induced RV remodeling by regulating TGF-β1-induced proliferation and differentiation of cardiac fibroblasts, which is mediated via eIF3a/p27 pathway.
Collapse
Affiliation(s)
- Wen-Qun Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiao-Hui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Yue-Han Wu
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jie Du
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Ai-Ping Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Department of Anatomy, School of Medicine, University of South China, Hengyang 421001, China
| | - Dai Li
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
6
|
Schechter MA, Hsieh MKH, Njoroge LW, Thompson JW, Soderblom EJ, Feger BJ, Troupes CD, Hershberger KA, Ilkayeva OR, Nagel WL, Landinez GP, Shah KM, Burns VA, Santacruz L, Hirschey MD, Foster MW, Milano CA, Moseley MA, Piacentino V, Bowles DE. Phosphoproteomic profiling of human myocardial tissues distinguishes ischemic from non-ischemic end stage heart failure. PLoS One 2014; 9:e104157. [PMID: 25117565 PMCID: PMC4130503 DOI: 10.1371/journal.pone.0104157] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/06/2014] [Indexed: 12/31/2022] Open
Abstract
The molecular differences between ischemic (IF) and non-ischemic (NIF) heart failure are poorly defined. A better understanding of the molecular differences between these two heart failure etiologies may lead to the development of more effective heart failure therapeutics. In this study extensive proteomic and phosphoproteomic profiles of myocardial tissue from patients diagnosed with IF or NIF were assembled and compared. Proteins extracted from left ventricular sections were proteolyzed and phosphopeptides were enriched using titanium dioxide resin. Gel- and label-free nanoscale capillary liquid chromatography coupled to high resolution accuracy mass tandem mass spectrometry allowed for the quantification of 4,436 peptides (corresponding to 450 proteins) and 823 phosphopeptides (corresponding to 400 proteins) from the unenriched and phospho-enriched fractions, respectively. Protein abundance did not distinguish NIF from IF. In contrast, 37 peptides (corresponding to 26 proteins) exhibited a ≥ 2-fold alteration in phosphorylation state (p<0.05) when comparing IF and NIF. The degree of protein phosphorylation at these 37 sites was specifically dependent upon the heart failure etiology examined. Proteins exhibiting phosphorylation alterations were grouped into functional categories: transcriptional activation/RNA processing; cytoskeleton structure/function; molecular chaperones; cell adhesion/signaling; apoptosis; and energetic/metabolism. Phosphoproteomic analysis demonstrated profound post-translational differences in proteins that are involved in multiple cellular processes between different heart failure phenotypes. Understanding the roles these phosphorylation alterations play in the development of NIF and IF has the potential to generate etiology-specific heart failure therapeutics, which could be more effective than current therapeutics in addressing the growing concern of heart failure.
Collapse
Affiliation(s)
- Matthew A. Schechter
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael K. H. Hsieh
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Linda W. Njoroge
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - J. Will Thompson
- Duke Proteomics Core, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Erik J. Soderblom
- Duke Proteomics Core, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bryan J. Feger
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Constantine D. Troupes
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kathleen A. Hershberger
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Olga R. Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Whitney L. Nagel
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gina P. Landinez
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kishan M. Shah
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Virginia A. Burns
- Duke Translational Research Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lucia Santacruz
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew D. Hirschey
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew W. Foster
- Division of Pulmonary, Allergy and Critical Care, Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Carmelo A. Milano
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - M. Arthur Moseley
- Duke Proteomics Core, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Valentino Piacentino
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Dawn E. Bowles
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
7
|
Jia X, Li W, Miao Z, Feng C, Liu Z, He Y, Lv J, Du Y, Hou M, He W, Li D, Chen L. Identification of modules related to programmed cell death in CHD based on EHEN. BIOMED RESEARCH INTERNATIONAL 2014; 2014:475379. [PMID: 25133163 PMCID: PMC4123579 DOI: 10.1155/2014/475379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/28/2014] [Indexed: 01/26/2023]
Abstract
The formation and death of macrophages and foam cells are one of the major factors that cause coronary heart disease (CHD). In our study, based on the Edinburgh Human Metabolic Network (EHMN) metabolic network, we built an enzyme network which was constructed by enzymes (nodes) and reactions (edges) called the Edinburgh Human Enzyme Network (EHEN). By integrating the subcellular location information for the reactions and refining the protein-reaction relationships based on the location information, we proposed a computational approach to select modules related to programmed cell death. The identified module was in the EHEN-mitochondria (EHEN-M) and was confirmed to be related to programmed cell death, CHD pathogenesis, and lipid metabolism in the literature. We expected this method could analyze CHD better and more comprehensively from the point of programmed cell death in subnetworks.
Collapse
Affiliation(s)
- Xu Jia
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhengqiang Miao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Chenchen Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhe Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Youwen Du
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Min Hou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| | - Danbin Li
- Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
8
|
Sun X, Momen A, Wu J, Noyan H, Li R, von Harsdorf R, Husain M. p27 protein protects metabolically stressed cardiomyocytes from apoptosis by promoting autophagy. J Biol Chem 2014; 289:16924-35. [PMID: 24794871 DOI: 10.1074/jbc.m113.542795] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
p27(Kip1) (p27), a key regulator of cell division, has been implicated in autophagy of cancer cells. However, its role in autophagy, the evolutionarily conserved catabolic process that enables cells to remove unwanted proteins and damaged organelles, had not been examined in the heart. Here we report that ectopic delivery of a p27 fusion protein (TAT-p27) was sufficient to induce autophagy in neonatal rat ventricular cardiomyocytes in vitro, under basal conditions and after glucose deprivation. Conversely, lentivirus-delivered shRNA against p27 successfully reduced p27 levels and suppressed basal and glucose-deprived levels of autophagy in cardiomyocytes in vitro. Glucose deprivation mimics myocardial ischemia and induces apoptosis in cardiomyocytes. During glucose deprivation, TAT-p27 inhibited apoptosis, whereas down-regulation of p27 decreased survival of cardiomyocytes. However, inhibition of autophagy by pharmacological (3-methyladenine, chloroquine, or bafilomycin A1) or genetic approaches (siRNA-mediated knockdown of Atg5) sensitized cardiomyocytes to glucose deprivation-induced apoptosis, even in the presence of TAT-p27. TAT-p27 was also able to provoke greater levels of autophagy in resting and fasting cardiomyocytes in vivo. Further, TAT-p27 enhanced autophagy and repressed cardiomyocytes apoptosis, improved cardiac function, and reduced infarct size following myocardial infarction. Again, these effects were lost when cardiac autophagy in vivo was blocked by chloroquine. Taken together, these data show that p27 positively regulates cardiac autophagy in vitro and in vivo, at rest and after metabolic stress, and that TAT-p27 inhibits apoptosis by promoting autophagy in glucose-deprived cardiomyocytes in vitro and in post-myocardial infarction hearts in vivo.
Collapse
Affiliation(s)
- Xuetao Sun
- From the Toronto General Research Institute
| | | | - Jun Wu
- From the Toronto General Research Institute
| | | | - Renke Li
- From the Toronto General Research Institute, Peter Munk Cardiac Centre, and
| | - Rüdiger von Harsdorf
- From the Toronto General Research Institute, Peter Munk Cardiac Centre, and McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario M5G 2C4, Canada, and the Department of Medicine and
| | - Mansoor Husain
- From the Toronto General Research Institute, Peter Munk Cardiac Centre, and McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario M5G 2C4, Canada, and the Department of Medicine and Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto M5G 1L7, Canada
| |
Collapse
|
9
|
Lee J, Cha MJ, Lim KS, Kim JK, Lee SK, Kim YH, Hwang KC, Lee KY. Injectable microsphere/hydrogel hybrid system containing heat shock protein as therapy in a murine myocardial infarction model. J Drug Target 2013; 21:822-9. [DOI: 10.3109/1061186x.2013.829072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Abstract
Proper protein turnover is required for cardiac homeostasis and, accordingly, impaired proteasomal function appears to contribute to heart disease. Specific proteasomal degradation mechanisms underlying cardiovascular biology and disease have been identified, and such cellular pathways have been proposed to be targets of clinical relevance. This review summarizes the latest literature regarding the specific E3 ligases involved in heart biology, and the general ways that the proteasome regulates protein quality control in heart disease. The potential for therapeutic intervention in Ubiquitin Proteasome System function in heart disease is discussed.
Collapse
Affiliation(s)
- Julia Pagan
- Department of Translational Medical Sciences, Via Sergio Pansini, 5, 80131 Naples, Italy
| | | | | | | |
Collapse
|
11
|
Zebrowski DC, Engel FB. The Cardiomyocyte Cell Cycle in Hypertrophy, Tissue Homeostasis, and Regeneration. Rev Physiol Biochem Pharmacol 2013; 165:67-96. [DOI: 10.1007/112_2013_12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|