1
|
Sommerfeld LC, Holmes AP, Yu TY, O'Shea C, Kavanagh DM, Pike JM, Wright T, Syeda F, Aljehani A, Kew T, Cardoso VR, Kabir SN, Hepburn C, Menon PR, Broadway-Stringer S, O'Reilly M, Witten A, Fortmueller L, Lutz S, Kulle A, Gkoutos GV, Pavlovic D, Arlt W, Lavery GG, Steeds R, Gehmlich K, Stoll M, Kirchhof P, Fabritz L. Reduced plakoglobin increases the risk of sodium current defects and atrial conduction abnormalities in response to androgenic anabolic steroid abuse. J Physiol 2024; 602:4409-4436. [PMID: 38345865 DOI: 10.1113/jp284597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024] Open
Abstract
Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/-), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.
Collapse
Affiliation(s)
- Laura C Sommerfeld
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Ting Y Yu
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Research and Training Centre in Physical Sciences for Health, Birmingham, UK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Research and Training Centre in Physical Sciences for Health, Birmingham, UK
| | - Deirdre M Kavanagh
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Jeremy M Pike
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - Thomas Wright
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Fahima Syeda
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Areej Aljehani
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Tania Kew
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Victor R Cardoso
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - S Nashitha Kabir
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Claire Hepburn
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Priyanka R Menon
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | | | - Molly O'Reilly
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Anika Witten
- Genetic Epidemiology, Institute for Human Genetics, University of Münster, Münster, Germany
- Core Facility Genomics of the Medical Faculty, University of Münster, Münster, Germany
| | - Lisa Fortmueller
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
- Genetic Epidemiology, Institute for Human Genetics, University of Münster, Münster, Germany
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexandra Kulle
- Division of Paediatric Endocrinology and Diabetes, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Georgios V Gkoutos
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- MRC Health Data Research UK (HDR), Midlands Site, UK
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
- Medical Research Council London Institute of Medical Sciences, London UK & Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Richard Steeds
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Monika Stoll
- Genetic Epidemiology, Institute for Human Genetics, University of Münster, Münster, Germany
- Core Facility Genomics of the Medical Faculty, University of Münster, Münster, Germany
- Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Standort Hamburg/Kiel/Lübeck, Germany
- Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Guedes MR, de Noronha SISR, Chírico MTT, da Costa GDC, de Freitas Castro T, de Brito RCF, Vieira LG, Reis TO, Ribeiro MC, Reis AB, Carneiro CM, Bezerra FS, Montano N, da Silva VJD, de Menezes RCA, Chianca-Jr DA, Silva FCDS. Ivabradine restores tonic cardiovascular autonomic control and reduces tachycardia, hypertension and left ventricular inflammation in post-weaning protein malnourished rats. Life Sci 2024; 346:122636. [PMID: 38614307 DOI: 10.1016/j.lfs.2024.122636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Malnutrition results in autonomic imbalance and heart hypertrophy. Overexpression of hyperpolarization-activated cyclic nucleotide-gated channels (HCN) in the left ventricles (LV) is linked to hypertrophied hearts and abnormal myocardium automaticity. Given that ivabradine (IVA) has emerging pleiotropic effects, in addition to the widely known bradycardic response, this study evaluated if IVA treatment could repair the autonomic control and cardiac damages in malnourished rats. AIM Assess the impact of IVA on tonic cardiovascular autonomic control and its relationship with hemodynamics regulation, LV inflammation, and HCN gene expression in post-weaning protein malnutrition condition. MAIN METHODS After weaning, male rats were divided into control (CG; 22 % protein) and malnourished (MG; 6 % protein) groups. At 35 days, groups were subdivided into CG-PBS, CG-IVA, MG-PBS and MG-IVA (PBS 1 ml/kg or IVA 1 mg/kg) received during 8 days. We performed jugular vein cannulation and electrode implant for drug delivery and ECG registration to assess tonic cardiovascular autonomic control; femoral cannulation for blood pressure (BP) and heart rate (HR) assessment; and LV collection to evaluate ventricular remodeling and HCN gene expression investigation. KEY FINDINGS Malnutrition induced BP and HR increases, sympathetic system dominance, and LV remodeling without affecting HCN gene expression. IVA reversed the cardiovascular autonomic imbalance; prevented hypertension and tachycardia; and inhibited the LV inflammatory process and fiber thickening caused by malnutrition. SIGNIFICANCE Our findings suggest that ivabradine protects against malnutrition-mediated cardiovascular damage. Moreover, our results propose these effects were not attributed to HCN expression changes, but rather to IVA pleiotropic effects on autonomic control and inflammation.
Collapse
Affiliation(s)
- Mariana Reis Guedes
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Sylvana Izaura Salyba Rendeiro de Noronha
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Máira Tereza Talma Chírico
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Gabriela Dias Carvalho da Costa
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Thalles de Freitas Castro
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Rory Cristiane Fortes de Brito
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Lucas Gabriel Vieira
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Thayane Oliveira Reis
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Marcelo Carlos Ribeiro
- Statistics Department, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Alexandre Barbosa Reis
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Cláudia Martins Carneiro
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Frank Silva Bezerra
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, IRCCS Ca' Granda Foundation, Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.
| | - Valdo José Dias da Silva
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil; Graduate Program in Physiological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil.
| | - Rodrigo Cunha Alvim de Menezes
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Deoclécio Alves Chianca-Jr
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Fernanda Cacilda Dos Santos Silva
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences - CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| |
Collapse
|
3
|
Pay L, Yumurtaş AÇ, Tezen O, Çetin T, Keskin K, Eren S, Çinier G, Hayıroğlu Mİ, Çınar T, Tekkeşin Aİ. Effect of ivabradine on ventricular arrhythmias in heart failure patients with reduced ejection fraction. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20230703. [PMID: 37971125 PMCID: PMC10645178 DOI: 10.1590/1806-9282.20230703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/26/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND/INTRODUCTION Heart failure patients with reduced ejection fraction are at high risk for ventricular arrhythmias and sudden cardiac death. Ivabradine, a specific inhibitor of the If current in the sinoatrial node, provides heart rate reduction in sinus rhythm and angina control in chronic coronary syndromes. OBJECTIVE The effect of ivabradine on ventricular arrhythmias in heart failure patients with reduced ejection fraction patients has not been fully elucidated. The aim of this study was to investigate the effect of ivabradine use on life-threatening arrhythmias and long-term mortality in heart failure patients with reduced ejection fraction patients. METHODS In this retrospective study, 1,639 patients with heart failure patients with reduced ejection fraction were included. Patients were divided into two groups: ivabradine users and nonusers. Patients presenting with ventricular tachycardia, the presence of ventricular extrasystole, and ventricular tachycardia in 24-h rhythm monitoring, appropriate implantable cardioverter-defibrillator shocks, and long-term mortality outcomes were evaluated according to ivabradine use. RESULTS After adjustment for all possible variables, admission with ventricular tachycardia was three times higher in ivabradine nonusers (95% confidence interval 1.5-10.2). The presence of premature ventricular contractions and ventricular tachycardias in 24-h rhythm Holter monitoring was notably higher in ivabradine nonusers. According to the adjusted model for all variables, 4.1 times more appropriate implantable cardioverter-defibrillator shocks were observed in the ivabradine nonusers than the users (95%CI 1.8-9.6). Long-term mortality did not differ between these groups after adjustment for all covariates. CONCLUSION The use of ivabradine reduced the appropriate implantable cardioverter-defibrillator discharge in heart failure patients with reduced ejection fraction patients. Ivabradine has potential in the treatment of ventricular arrhythmias in heart failure patients with reduced ejection fraction patients.
Collapse
Affiliation(s)
- Levent Pay
- Ardahan State Hospital, Department of Cardiology – Ardahan, Turkey
| | - Ahmet Çağdaş Yumurtaş
- Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training Hospital, Department of Cardiology – İstanbul, Turkey
| | - Ozan Tezen
- Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training Hospital, Department of Cardiology – İstanbul, Turkey
| | - Tuğba Çetin
- Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training Hospital, Department of Cardiology – İstanbul, Turkey
| | - Kıvanç Keskin
- Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training Hospital, Department of Cardiology – İstanbul, Turkey
| | - Semih Eren
- Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training Hospital, Department of Cardiology – İstanbul, Turkey
| | - Göksel Çinier
- Başakşehir Çam and Sakura City Hospital, Department of Electrophysiology – İstanbul, Turkey
| | - Mert İlker Hayıroğlu
- Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training Hospital, Department of Cardiology – İstanbul, Turkey
| | - Tufan Çınar
- University of Maryland Medical Center Midtown Campus, Department of Medicine – Baltimore (MD), United States
| | - Ahmet İlker Tekkeşin
- Başakşehir Çam and Sakura City Hospital, Department of Electrophysiology – İstanbul, Turkey
| |
Collapse
|
4
|
Averin AS, Konakov MV, Pimenov OY, Galimova MH, Berezhnov AV, Nenov MN, Dynnik VV. Regulation of Papillary Muscle Contractility by NAD and Ammonia Interplay: Contribution of Ion Channels and Exchangers. MEMBRANES 2022; 12:1239. [PMID: 36557146 PMCID: PMC9785361 DOI: 10.3390/membranes12121239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Various models, including stem cells derived and isolated cardiomyocytes with overexpressed channels, are utilized to analyze the functional interplay of diverse ion currents involved in cardiac automaticity and excitation-contraction coupling control. Here, we used β-NAD and ammonia, known hyperpolarizing and depolarizing agents, respectively, and applied inhibitory analysis to reveal the interplay of several ion channels implicated in rat papillary muscle contractility control. We demonstrated that: 4 mM β-NAD, having no strong impact on resting membrane potential (RMP) and action potential duration (APD90) of ventricular cardiomyocytes, evoked significant suppression of isometric force (F) of paced papillary muscle. Reactive blue 2 restored F to control values, suggesting the involvement of P2Y-receptor-dependent signaling in β-NAD effects. Meantime, 5 mM NH4Cl did not show any effect on F of papillary muscle but resulted in significant RMP depolarization, APD90 shortening, and a rightward shift of I-V relationship for total steady state currents in cardiomyocytes. Paradoxically, NH4Cl, being added after β-NAD and having no effect on RMP, APD, and I-V curve, recovered F to the control values, indicating β-NAD/ammonia antagonism. Blocking of HCN, Kir2.x, and L-type calcium channels, Ca2+-activated K+ channels (SK, IK, and BK), or NCX exchanger reverse mode prevented this effect, indicating consistent cooperation of all currents mediated by these channels and NCX. We suggest that the activation of Kir2.x and HCN channels by extracellular K+, that creates positive and negative feedback, and known ammonia and K+ resemblance, may provide conditions required for the activation of all the chain of channels involved in the interplay. Here, we present a mechanistic model describing an interplay of channels and second messengers, which may explain discovered antagonism of β-NAD and ammonia on rat papillary muscle contractile activity.
Collapse
Affiliation(s)
- Alexey S. Averin
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maxim V. Konakov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Oleg Y. Pimenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miliausha H. Galimova
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miroslav N. Nenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Vladimir V. Dynnik
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
5
|
Sebastian S, Weinstein LS, Ludwig A, Munroe P, Tinker A. Slowing Heart Rate Protects Against Pathological Cardiac Hypertrophy. FUNCTION 2022; 4:zqac055. [PMID: 36540889 PMCID: PMC9761894 DOI: 10.1093/function/zqac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022] Open
Abstract
We aimed to determine the pathophysiological impact of heart rate (HR) slowing on cardiac function. We have recently developed a murine model in which it is possible to conditionally delete the stimulatory heterotrimeric G-protein (Gαs) in the sinoatrial (SA) node after the addition of tamoxifen using cre-loxP technology. The addition of tamoxifen leads to bradycardia. We used this approach to examine the physiological and pathophysiological effects of HR slowing. We first looked at the impact on exercise performance by running the mice on a treadmill. After the addition of tamoxifen, mice with conditional deletion of Gαs in the SA node ran a shorter distance at a slower speed. Littermate controls preserved their exercise capacity after tamoxifen. Results consistent with impaired cardiac capacity in the mutants were also obtained with a dobutamine echocardiographic stress test. We then examined if HR reduction influenced pathological cardiac hypertrophy using two models: ligation of the left anterior descending coronary artery for myocardial infarction and abdominal aortic banding for hypertensive heart disease. In littermate controls, both procedures resulted in cardiac hypertrophy. However, induction of HR reduction prior to surgical intervention significantly ameliorated the hypertrophy. In order to assess potential protein kinase pathways that may be activated in the left ventricle by relative bradycardia, we used a phospho-antibody array and this revealed selective activation of phosphoinositide-3 kinase. In conclusion, HR reduction protects against pathological cardiac hypertrophy but limits physiological exercise capacity.
Collapse
Affiliation(s)
- Sonia Sebastian
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Building 10, Room 8C101, Bethesda, MD 20892-1752, USA
| | - Andreas Ludwig
- Institut fuer Experimentelle und Klinische Pharmakologie und Toxikologie, Universitaet Erlangen-Nuernberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Patricia Munroe
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | |
Collapse
|
6
|
CREB1 transcription-activated lncRNA PVT1 promotes cardiac fibrosis via miR-145/HCN1 axis. Int J Cardiol 2022; 353:88-95. [DOI: 10.1016/j.ijcard.2022.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
|
7
|
Rodríguez-Angulo HO, Colombet-Naranjo D, Maza MC, Poveda C, Herreros-Cabello A, Mendoza I, Perera JC, Goyo JD, Gironès N, Fresno M. Molecular Remodeling of Cardiac Sinus Node Associated with Acute Chagas Disease Myocarditis. Microorganisms 2021; 9:microorganisms9112208. [PMID: 34835334 PMCID: PMC8620628 DOI: 10.3390/microorganisms9112208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Chagas disease principally affects Latin-American people, but it currently has worldwide distribution due to migration. Death among those with Chagas disease can occur suddenly and without warning, even in those who may not have evidence of clinical or structural cardiac disease and who are younger than 60 years old. HCN4 channels, one of the principal elements responsible for pacemaker currents, are associated with cardiac fetal reprogramming and supraventricular and ventricular arrhythmias, but their role in chagasic arrhythmias is not clear. We found that a single-dose administration of ivabradine, which blocks HCN4, caused QTc and QRS enlargement and an increase in P-wave amplitude and was associated with ventricular and supraventricular arrhythmias in mice challenged with isoproterenol, a chronotropic/ionotropic positive agent. Continuous treatment with ivabradine did not alter the QTc interval, but P-wave morphology was deeply modified, generating supraventricular arrhythmias. In addition, we found that repolarization parameters improved with ivabradine treatment. These effects could have been caused by the high HCN4 expression observed in auricular and ventricular tissue in infected mice. Thus, we suggest, for the first time, that molecular remodeling by overexpression of HCN4 channels may be related to supraventricular arrhythmias in acute Chagas disease, causing ivabradine over-response. Thus, ivabradine treatment should be administered with caution, while HCN4 overexpression may be an indicator of heart failure and/or sudden death risk.
Collapse
Affiliation(s)
- Héctor O. Rodríguez-Angulo
- Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela; (H.O.R.A.); (D.C.-N.)
- Unidad de Biología Celular, Departamento de Ciencias Morfológicas, Programa de Medicina, Facultad de Ciencias de la vida, Universidad Centroccidental Lisandro Alvarado, Barquisimeto 3001, Venezuela; (J.C.P.); (J.D.G.)
| | - Diana Colombet-Naranjo
- Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela; (H.O.R.A.); (D.C.-N.)
| | - María C. Maza
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.C.M.); (C.P.); (A.-H.C.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Cristina Poveda
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.C.M.); (C.P.); (A.-H.C.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Alfonso Herreros-Cabello
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.C.M.); (C.P.); (A.-H.C.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Iván Mendoza
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas 1060, Venezuela;
| | - Juan C. Perera
- Unidad de Biología Celular, Departamento de Ciencias Morfológicas, Programa de Medicina, Facultad de Ciencias de la vida, Universidad Centroccidental Lisandro Alvarado, Barquisimeto 3001, Venezuela; (J.C.P.); (J.D.G.)
| | - Juan D. Goyo
- Unidad de Biología Celular, Departamento de Ciencias Morfológicas, Programa de Medicina, Facultad de Ciencias de la vida, Universidad Centroccidental Lisandro Alvarado, Barquisimeto 3001, Venezuela; (J.C.P.); (J.D.G.)
| | - Núria Gironès
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.C.M.); (C.P.); (A.-H.C.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario de la Princesa, 28009 Madrid, Spain
- Correspondence: (N.G.); (M.F.)
| | - Manuel Fresno
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.C.M.); (C.P.); (A.-H.C.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario de la Princesa, 28009 Madrid, Spain
- Correspondence: (N.G.); (M.F.)
| |
Collapse
|
8
|
Oknińska M, Paterek A, Zambrowska Z, Mackiewicz U, Mączewski M. Effect of Ivabradine on Cardiac Ventricular Arrhythmias: Friend or Foe? J Clin Med 2021; 10:4732. [PMID: 34682854 PMCID: PMC8537674 DOI: 10.3390/jcm10204732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Life-threatening ventricular arrhythmias, such as ventricular tachycardia and ventricular fibrillation remain an ongoing clinical problem and their prevention and treatment require optimization. Conventional antiarrhythmic drugs are associated with significant proarrhythmic effects that often outweigh their benefits. Another option, the implantable cardioverter defibrillator, though clearly the primary therapy for patients at high risk of ventricular arrhythmias, is costly, invasive, and requires regular monitoring. Thus there is a clear need for new antiarrhythmic treatment strategies. Ivabradine, a heartrate-reducing agent, an inhibitor of HCN channels, may be one of such options. In this review we discuss emerging data from experimental studies that indicate new mechanism of action of this drug and further areas of investigation and potential use of ivabradine as an antiarrhythmic agent. However, clinical evidence is limited, and the jury is still out on effects of ivabradine on cardiac ventricular arrhythmias in the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | - Michał Mączewski
- Centre of Postgraduate Medical Education, Department of Clinical Physiology, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (M.O.); (A.P.); (Z.Z.); (U.M.)
| |
Collapse
|
9
|
Wang J, Xia Y, Lu A, Wang H, Davis DR, Liu P, Beanlands RS, Liang W. Cardiomyocyte-specific deletion of β-catenin protects mouse hearts from ventricular arrhythmias after myocardial infarction. Sci Rep 2021; 11:17722. [PMID: 34489488 PMCID: PMC8421412 DOI: 10.1038/s41598-021-97176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/23/2021] [Indexed: 11/09/2022] Open
Abstract
Wnt/β-catenin signaling is activated in the heart after myocardial infarction (MI). This study aims to investigate if β-catenin deletion affects post-MI ion channel gene alterations and ventricular tachycardias (VT). MI was induced by permanent ligation of left anterior descending artery in wild-type (WT) and cardiomyocyte-specific β-catenin knockout (KO) mice. KO mice showed reduced susceptibility to VT (18% vs. 77% in WT) at 8 weeks after MI, associated with reduced scar size and attenuated chamber dilation. qPCR analyses of both myocardial tissues and purified cardiomyocytes demonstrated upregulation of Wnt pathway genes in border and infarct regions after MI, including Wnt ligands (such as Wnt4) and receptors (such as Fzd1 and Fzd2). At 1 week after MI, cardiac sodium channel gene (Scn5a) transcript was reduced in WT but not in KO hearts, consistent with previous studies showing Scn5a inhibition by Wnt/β-catenin signaling. At 8 weeks after MI when Wnt genes have declined, Scn5a returned to near sham levels and K+ channel gene downregulations were not different between WT and KO mice. This study demonstrated that VT susceptibility in the chronic phase after MI is reduced in mice with cardiomyocyte-specific β-catenin deletion primarily through attenuated structural remodeling, but not ion channel gene alterations.
Collapse
Affiliation(s)
- Jerry Wang
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ying Xia
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Aizhu Lu
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hongwei Wang
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
| | - Darryl R Davis
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Peter Liu
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rob S Beanlands
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
| | - Wenbin Liang
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Hadova K, Kralova E, Doka G, Bies Pivackova L, Kmecova Z, Krenek P, Klimas J. Isolated downregulation of HCN2 in ventricles of rats with streptozotocin-induced diabetic cardiomyopathy. BMC Cardiovasc Disord 2021; 21:118. [PMID: 33653265 PMCID: PMC7927235 DOI: 10.1186/s12872-021-01929-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In spite of disrupted repolarization of diabetic heart, some studies report less tendency of diabetic heart to develop ventricular arrhythmias suggesting effective compensatory mechanism. We hypothesized that myocardial alterations in HCN2 and HCN4 channels occur under hyperglycaemia. METHODS Diabetes was induced in rats using a single injection of streptozotocin (STZ; 55 mg/kg body weight, i.p.). Basal ECG was measured. Expression of mRNA for HCN channels, potassium channels and microRNA 1 and 133a were measured in ventricular tissues. Protein expression of HCN2 channel isoform was assessed in five different regions of the heart by western blotting. Differentiated H9c2 cell line was used to examine HCN channels expression under hyperglycaemia in vitro. RESULTS Six weeks after STZ administration, heart rate was reduced, QRS complex duration, QT interval and T-wave were prolonged in diabetic rats compared to controls. mRNA and protein expressions of HCN2 decreased exclusively in the ventricles of diabetic rats. HCN2 expression levels in atria of STZ rats and H9c2 cells treated with excess of glucose were not changed. MicroRNA levels were stable in STZ rat hearts. We found significantly decreased mRNA levels of several potassium channels participating in repolarization, namely Kcnd2 (Ito1), Kcnh2 (IKr), Kcnq1 (IKs) and Kcnj11 (IKATP). CONCLUSIONS This result together with downregulated HCN2 channels suggest that HCN channels might be an integral part of ventricular electric remodelling and might play a role in cardiac repolarization projected in altered arrhythmogenic profile of diabetic heart.
Collapse
Affiliation(s)
- Katarina Hadova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovakia
| | - Eva Kralova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovakia
| | - Gabriel Doka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovakia
| | - Lenka Bies Pivackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovakia
| | - Zuzana Kmecova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovakia.
| |
Collapse
|
11
|
Chakraborty P, Rose RA, Nair K, Downar E, Nanthakumar K. The rationale for repurposing funny current inhibition for management of ventricular arrhythmia. Heart Rhythm 2020; 18:130-137. [PMID: 32738405 DOI: 10.1016/j.hrthm.2020.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 11/26/2022]
Abstract
Management of ventricular arrhythmia in structural heart disease is complicated by the toxicity of the limited antiarrhythmic options available. In others, proarrhythmia and deleterious hemodynamic and noncardiac effects prevent practical use. This necessitates new thinking in therapeutic agents for ventricular arrhythmia in structural heart disease. Ivabradine, a funny current (If) inhibitor, has proven safety in heart failure, angina, and inappropriate sinus tachycardia. Although it is commonly known that funny channels are primarily expressed in the sinoatrial node, atrioventricular node, and conducting system of the ventricle, ivabradine is known to exert effects on metabolism, ion homeostasis, and membrane electrophysiology of remodeled ventricular myocardium. This review considers novel concepts and evidence from clinical and experimental studies regarding this paradigm, with a potential role of ivabradine in ventricular arrhythmia.
Collapse
Affiliation(s)
- Praloy Chakraborty
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada
| | - Robert A Rose
- Libin Cardiovascular Institute of Alberta, An entity of the University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Krishnakumar Nair
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada
| | - Eugene Downar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Notch1-mediated histone demethylation of HCN4 contributes to aconitine-induced ventricular myocardial dysrhythmia. Toxicol Lett 2020; 327:19-31. [DOI: 10.1016/j.toxlet.2020.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
|
13
|
Ide T, Ohtani K, Higo T, Tanaka M, Kawasaki Y, Tsutsui H. Ivabradine for the Treatment of Cardiovascular Diseases. Circ J 2018; 83:252-260. [PMID: 30606942 DOI: 10.1253/circj.cj-18-1184] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Higher heart rate (HR) is independently related to worse outcomes in various cardiac diseases, including hypertension, coronary artery disease, and heart failure (HF). HR is determined by the pacemaker activity of cells within the sinoatrial node. The hyperpolarization-activated cyclic nucleotide-gated (HCN) 4 channel, one of 4 HCN isoforms, generates the If current and plays an important role in the regulation of pacemaker activity in the sinoatrial node. Ivabradine is a novel and only available HCN inhibitor, which can reduce HR and has been approved for stable angina and chronic HF in many countries other than Japan. In this review, we summarize the current knowledge of the HCN4 channel and ivabradine, including the function of HCN4 in cardiac pacemaking, the mechanism of action of If inhibition by ivabradine, and the pharmacological and clinical effects of ivabradine in cardiac diseases as HF, coronary artery disease, and atrial fibrillation.
Collapse
Affiliation(s)
- Tomomi Ide
- Department of Experimental and Clinical Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Kisho Ohtani
- Department of Experimental and Clinical Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Taiki Higo
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | | | | | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
14
|
Spinelli V, Sartiani L, Mugelli A, Romanelli MN, Cerbai E. Hyperpolarization-activated cyclic-nucleotide-gated channels: pathophysiological, developmental, and pharmacological insights into their function in cellular excitability. Can J Physiol Pharmacol 2018; 96:977-984. [PMID: 29969572 DOI: 10.1139/cjpp-2018-0115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hyperpolarization-activated cyclic-nucleotide-gated (HCN) proteins are voltage-dependent ion channels, conducting both Na+ and K+, blocked by millimolar concentrations of extracellular Cs+ and modulated by cyclic nucleotides (mainly cAMP) that contribute crucially to the pacemaker activity in cardiac nodal cells and subsidiary pacemakers. Over the last decades, much attention has focused on HCN current, If, in non-pacemaker cardiac cells and its potential role in triggering arrhythmias. In fact, in addition to pacemakers, HCN current is constitutively present in the human atria and has long been proposed to sustain atrial arrhythmias associated to different cardiac pathologies or triggered by various modulatory signals (catecholamines, serotonin, natriuretic peptides). An atypical If occurs in diseased ventricular cardiomyocytes, its amplitude being linearly related to the severity of cardiac hypertrophy. The properties of atrial and ventricular If and its modulation by pharmacological interventions has been object of intense study, including the synthesis and characterization of new compounds able to block preferentially HCN1, HCN2, or HCN4 isoforms. Altogether, clues emerge for opportunities of future pharmacological strategies exploiting the unique properties of this channel family: the prevalence of different HCN subtypes in organs and tissues, the possibility to target HCN gain- or loss-of-function associated with disease, the feasibility of novel isoform-selective drugs, as well as the discovery of HCN-mediated effects for old medicines.
Collapse
Affiliation(s)
- Valentina Spinelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Alessandro Mugelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| |
Collapse
|
15
|
Silbernagel N, Walecki M, Schäfer MKH, Kessler M, Zobeiri M, Rinné S, Kiper AK, Komadowski MA, Vowinkel KS, Wemhöner K, Fortmüller L, Schewe M, Dolga AM, Scekic-Zahirovic J, Matschke LA, Culmsee C, Baukrowitz T, Monassier L, Ullrich ND, Dupuis L, Just S, Budde T, Fabritz L, Decher N. The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function. FASEB J 2018; 32:6159-6173. [PMID: 29879376 PMCID: PMC6629115 DOI: 10.1096/fj.201800246r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels encode neuronal and cardiac pacemaker currents. The composition of pacemaker channel complexes in different tissues is poorly understood, and the presence of additional HCN modulating subunits was speculated. Here we show that vesicle-associated membrane protein-associated protein B (VAPB), previously associated with a familial form of amyotrophic lateral sclerosis 8, is an essential HCN1 and HCN2 modulator. VAPB significantly increases HCN2 currents and surface expression and has a major influence on the dendritic neuronal distribution of HCN2. Severe cardiac bradycardias in VAPB-deficient zebrafish and VAPB-/- mice highlight that VAPB physiologically serves to increase cardiac pacemaker currents. An altered T-wave morphology observed in the ECGs of VAPB-/- mice supports the recently proposed role of HCN channels for ventricular repolarization. The critical function of VAPB in native pacemaker channel complexes will be relevant for our understanding of cardiac arrhythmias and epilepsies, and provides an unexpected link between these diseases and amyotrophic lateral sclerosis.-Silbernagel, N., Walecki, M., Schäfer, M.-K. H., Kessler, M., Zobeiri, M., Rinné, S., Kiper, A. K., Komadowski, M. A., Vowinkel, K. S., Wemhöner, K., Fortmüller, L., Schewe, M., Dolga, A. M., Scekic-Zahirovic, J., Matschke, L. A., Culmsee, C., Baukrowitz, T., Monassier, L., Ullrich, N. D., Dupuis, L., Just, S., Budde, T., Fabritz, L., Decher, N. The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function.
Collapse
Affiliation(s)
- Nicole Silbernagel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Magdalena Walecki
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Martin K-H Schäfer
- Institute of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | - Mirjam Kessler
- Molecular Cardiology, Department of Internal Medicine II, University Hospital Ulm, Ulm, Germany
| | | | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Aytug K Kiper
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Marlene A Komadowski
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany.,Institute of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | - Kirsty S Vowinkel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Konstantin Wemhöner
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Lisa Fortmüller
- Department of Cardiology II - Electrophysiology, University Hospital Münster, University of Münster, Munster, Germany
| | - Marcus Schewe
- Institute of Physiology, Christian-Albrechts University, Kiel, Germany
| | - Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, Phillips University, Marburg, Germany
| | - Jelena Scekic-Zahirovic
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Lina A Matschke
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Phillips University, Marburg, Germany
| | - Thomas Baukrowitz
- Institute of Physiology, Christian-Albrechts University, Kiel, Germany
| | - Laurent Monassier
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Nina D Ullrich
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Luc Dupuis
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,INSERM, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University Hospital Ulm, Ulm, Germany
| | - Thomas Budde
- Institute for Physiology I, University of Münster, Munster, Germany
| | - Larissa Fabritz
- Department of Cardiology II - Electrophysiology, University Hospital Münster, University of Münster, Munster, Germany.,Institute of Cardiovascular Sciences, University Hospital Birmingham, University of Birmingham, Birmingham, United Kingdom.,Department of Cardiology, University Hospital Birmingham, University of Birmingham, Birmingham, United Kingdom.,Division of Rhythmology, Department of Genetic Epidemiology, University Hospital Münster, University of Münster, Munster, Germany.,Institute of Human Genetics, Department of Genetic Epidemiology, University Hospital Münster, University of Münster, Munster, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| |
Collapse
|
16
|
Abstract
The Popeye domain containing (POPDC) genes encode transmembrane proteins, which are abundantly expressed in striated muscle cells. Hallmarks of the POPDC proteins are the presence of three transmembrane domains and the Popeye domain, which makes up a large part of the cytoplasmic portion of the protein and functions as a cAMP-binding domain. Interestingly, despite the prediction of structural similarity between the Popeye domain and other cAMP binding domains, at the protein sequence level they strongly differ from each other suggesting an independent evolutionary origin of POPDC proteins. Loss-of-function experiments in zebrafish and mouse established an important role of POPDC proteins for cardiac conduction and heart rate adaptation after stress. Loss-of function mutations in patients have been associated with limb-girdle muscular dystrophy and AV-block. These data suggest an important role of these proteins in the maintenance of structure and function of striated muscle cells.
Collapse
|
17
|
|
18
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
19
|
Šatrauskienė A, Navickas R, Laucevičius A, Huber HJ. Identifying differential miR and gene consensus patterns in peripheral blood of patients with cardiovascular diseases from literature data. BMC Cardiovasc Disord 2017; 17:173. [PMID: 28666417 PMCID: PMC5493858 DOI: 10.1186/s12872-017-0609-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/22/2017] [Indexed: 01/13/2023] Open
Abstract
Background Numerous recent studies suggest the potential of circulating MicroRNAs (miRs) in peripheral blood samples as diagnostic or prognostic markers for coronary artery disease (CAD), acute coronary syndrome (ACS) and heart failure (HF). However, literature often remains inconclusive regarding as to which markers are most indicative for which of the above diseases. This shortcoming is mainly due to the lack of a systematic analyses and absence of information on the functional pathophysiological role of these miRs and their target genes. Methods We here provide an-easy-to-use scoring approach to investigate the likelihood of regulation of several miRs and their target genes from literature by identifying consensus patterns of regulation. We therefore have screened over 1000 articles that study mRNA markers in cardiovascular and metabolic diseases, and devised a scoring algorithm to identify consensus means for miRs and genes regulation across several studies. We then aimed to identify differential markers between CAD, ACS and HF. Results We first identified miRs (miR-122, −126, −223, −138 and −370) as commonly regulated within a group of metabolic disease, while investigating cardiac-related pathologies (CAD, ACS, HF) revealed a decisive role of miR-1, −499, −208b, and -133a. Looking at differential markers between cardiovascular disease revealed miR-1, miR-208a and miR-133a to distinguish ACS and CAD to HF. Relating differentially expressed miRs to their putative gene targets using MirTarBase, we further identified HCN2/4 and LASP1 as potential markers of CAD and ACS, but not in HF. Likewise, BLC-2 was found oppositely regulated between CAD and HF. Interestingly, while studying overlap in target genes between CAD, ACS and HF only revealed little similarities, mapping these genes to gene ontology terms revealed a surprising similarity between CAD and ACS compared to HF. Conclusion We conclude that our analysis using gene and miR scores allows the extraction of meaningful markers and the elucidation of differential pathological functions between cardiac diseases and provides a novel approach for literature screening for miR and gene consensus patterns. The analysis is easy to use and extendable upon further emergent literature as we provide an Excel sheet for this analysis to the community. Electronic supplementary material The online version of this article (doi:10.1186/s12872-017-0609-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agnė Šatrauskienė
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania.,Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
| | - Rokas Navickas
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania.,Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
| | - Aleksandras Laucevičius
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania.,Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
| | - Heinrich J Huber
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium. .,Institute for Automation Engineering (IFAT), Laboratory for Systems Theory and Automatic Control, Otto-von-Guericke University Magdeburg, 39106, Magdeburg, Germany.
| |
Collapse
|
20
|
Foster DB, Liu T, Kammers K, O'Meally R, Yang N, Papanicolaou KN, Talbot CC, Cole RN, O'Rourke B. Integrated Omic Analysis of a Guinea Pig Model of Heart Failure and Sudden Cardiac Death. J Proteome Res 2016; 15:3009-28. [PMID: 27399916 DOI: 10.1021/acs.jproteome.6b00149] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here, we examine key regulatory pathways underlying the transition from compensated hypertrophy (HYP) to decompensated heart failure (HF) and sudden cardiac death (SCD) in a guinea pig pressure-overload model by integrated multiome analysis. Relative protein abundances from sham-operated HYP and HF hearts were assessed by iTRAQ LC-MS/MS. Metabolites were quantified by LC-MS/MS or GC-MS. Transcriptome profiles were obtained using mRNA microarrays. The guinea pig HF proteome exhibited classic biosignatures of cardiac HYP, left ventricular dysfunction, fibrosis, inflammation, and extravasation. Fatty acid metabolism, mitochondrial transcription/translation factors, antioxidant enzymes, and other mitochondrial procsses, were downregulated in HF but not HYP. Proteins upregulated in HF implicate extracellular matrix remodeling, cytoskeletal remodeling, and acute phase inflammation markers. Among metabolites, acylcarnitines were downregulated in HYP and fatty acids accumulated in HF. The correlation of transcript and protein changes in HF was weak (R(2) = 0.23), suggesting post-transcriptional gene regulation in HF. Proteome/metabolome integration indicated metabolic bottlenecks in fatty acyl-CoA processing by carnitine palmitoyl transferase (CPT1B) as well as TCA cycle inhibition. On the basis of these findings, we present a model of cardiac decompensation involving impaired nuclear integration of Ca(2+) and cyclic nucleotide signals that are coupled to mitochondrial metabolic and antioxidant defects through the CREB/PGC1α transcriptional axis.
Collapse
Affiliation(s)
- D Brian Foster
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Ting Liu
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Kai Kammers
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland 21205, United States
| | - Robert O'Meally
- Proteomics Core Facility, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Ni Yang
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Kyriakos N Papanicolaou
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Robert N Cole
- Proteomics Core Facility, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Brian O'Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| |
Collapse
|
21
|
Navickas R, Gal D, Laucevičius A, Taparauskaitė A, Zdanytė M, Holvoet P. Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review. Cardiovasc Res 2016; 111:322-37. [PMID: 27357636 PMCID: PMC4996262 DOI: 10.1093/cvr/cvw174] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/19/2016] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study is to identify microRNAs (miRs) with high potential to be used as biomarkers in plasma and/or serum to clinically diagnose, or provide accurate prognosis for survival in, patients with atherosclerosis, coronary artery disease, and acute coronary syndrome (ACS). A systematic search of published original research yielded a total of 72 studies. After review of the risk of bias of the published studies, according to Cochrane Collaboration and the QUADUAS Group standards, 19 studies were selected. Overall 52 different miRs were reported. In particular, miR-133a/b (5 studies), miR-208a/b (6 studies), and miR-499 (7 studies) were well studied and found to be significant diagnostic and/or prognostic markers across different cardiovascular disease progression stages. miR-1 and miR-145b are potential biomarkers of ACS; miR-1 with higher sensitivity for all acute myocardial infarction (AMI), and miR-145 for STEMI and worse outcome of AMI. But when miRs were studied across different ACS study populations, patients had varying degrees of coronary stenosis, which was identified as an important confounder that limited the ability to quantitatively pool the study results. The identified miRs were found to regulate endothelial function and angiogenesis (miR-1, miR-133), vascular smooth muscle cell differentiation (miR-133, miR-145), communication between vascular smooth muscle and endothelial cell to stabilize plaques (miR-145), apoptosis (miR-1, miR-133, miR-499), cardiac myocyte differentiation (miR-1, miR-133, miR-145, miR-208, miR-499), and to repress cardiac hypertrophy (miR-133). Their role in these processes may be explained by regulation of shared RNA targets such as cyclin-dependent kinase inhibitor 1A (or p21), ETS proto-oncogene 1, fascin actin-bundling protein 1, hyperpolarization-activated cyclic nucleotide-gated potassium channel 4, insulin-like growth factor 1 receptor LIM and SH3 protein 1, purine nucleoside phosphorylase, and transgelin 2. These mechanistic data further support the clinical relevance of the identified miRs. miR-1, miR-133a/b, miR-145, miR-208a/b, and miR-499(a) in plasma and/or serum show some potential for diagnosis of cardiovascular disease. However, biased selection of miRs in most studies and unexplained contrasting results are major limitations of current miR research. Inconsistencies need to be addressed in order to definitively identify clinically useful miRs. Therefore, this paper presents important aspects to improve future miR research, including unbiased selection of miRs, standardization/normalization of reference miRs, adjustment for patient comorbidities and medication, and robust protocols of data-sharing plans that could prevent selective publication and selective reporting of miR research outcomes.
Collapse
Affiliation(s)
- Rokas Navickas
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
| | - Diane Gal
- Department of Cardiovascular Sciences, Atherosclerosis and Metabolism Unit, KU Leuven, Leuven, Belgium
| | - Aleksandras Laucevičius
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania Vilnius University Hospital Santariškių Klinikos, Vilnius, Lithuania
| | | | | | - Paul Holvoet
- Department of Cardiovascular Sciences, Atherosclerosis and Metabolism Unit, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Heusch G, Kleinbongard P. Ivabradine: Cardioprotection By and Beyond Heart Rate Reduction. Drugs 2016; 76:733-40. [DOI: 10.1007/s40265-016-0567-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
The Long and the Short of It: Seizures Induce Cardiac Remodeling and Arrhythmia. Epilepsy Curr 2015; 15:90-1. [PMID: 26251651 DOI: 10.5698/1535-7597-15.2.90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Kleinbongard P, Gedik N, Witting P, Freedman B, Klöcker N, Heusch G. Pleiotropic, heart rate-independent cardioprotection by ivabradine. Br J Pharmacol 2015; 172:4380-90. [PMID: 26076181 DOI: 10.1111/bph.13220] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/27/2015] [Accepted: 06/06/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE In pigs, ivabradine reduces infarct size even when given only at reperfusion and in the absence of heart rate reduction. The mechanism of this non-heart rate-related cardioprotection is unknown. Hence, in the present study we assessed the pleiotropic action of ivabradine in more detail. EXPERIMENTAL APPROACH Anaesthetized mice were pretreated with ivabradine (1.7 mg · kg(-1) i.v.) or placebo (control) before a cycle of coronary occlusion/reperfusion (30/120 min ± left atrial pacing). Infarct size was determined. Isolated ventricular cardiomyocytes were exposed to simulated ischaemia/reperfusion (60/5 min) in the absence and presence of ivabradine, viability was then quantified and intra- and extracellular reactive oxygen species (ROS) formation was detected. Mitochondria were isolated from mouse hearts and exposed to simulated ischaemia/reperfusion (6/3 min) in glutamate/malate- and ADP-containing buffer in the absence and presence of ivabradine respectively. Mitochondrial respiration, extramitochondrial ROS, mitochondrial ATP production and calcium retention capacity (CRC) were assessed. KEY RESULTS Ivabradine decreased infarct size even with atrial pacing. Cardiomyocyte viability after simulated ischaemia/reperfusion was better preserved with ivabradine, the accumulation of intra- and extracellular ROS decreased in parallel. Mitochondrial complex I respiration was not different without/with ivabradine, but ivabradine significantly inhibited the accumulation of extramitochondrial ROS, increased mitochondrial ATP production and increased CRC. CONCLUSION AND IMPLICATIONS Ivabradine reduces infarct size independently of a reduction in heart rate and improves ventricular cardiomyocyte viability, possibly by reducing mitochondrial ROS formation, increasing ATP production and CRC.
Collapse
Affiliation(s)
- P Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen Medical School, Essen, Germany
| | - N Gedik
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen Medical School, Essen, Germany
| | - P Witting
- Discipline of Pathology, The Charles Perkins Centre, The University of Sydney Medical School, Sydney, NSW, Australia
| | - B Freedman
- Concord Repatriation General Hospital, Vascular Biology Group, ANZAC Research Institute, Concord, NSW, Australia
| | - N Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - G Heusch
- Institute for Pathophysiology, West German Heart and Vascular Centre Essen, University of Essen Medical School, Essen, Germany
| |
Collapse
|
25
|
Günther A, Baumann A. Distinct expression patterns of HCN channels in HL-1 cardiomyocytes. BMC Cell Biol 2015; 16:18. [PMID: 26141616 PMCID: PMC4490601 DOI: 10.1186/s12860-015-0065-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/05/2015] [Indexed: 01/05/2023] Open
Abstract
Background Cardiac rhythmic activity is initiated in functionally specialized areas of the heart. Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are fundamental for these processes of cardiac physiology. Results Here we investigated transcript and protein expression patterns of HCN channels in HL-1 cardiomyocytes using a combination of quantitative PCR analysis and immunocytochemistry. Gene expression profiles of hcn1, hcn2 and hcn4 were acutely affected during HL-1 cell propagation. In addition, distinct expression patterns were uncovered for HCN1, HCN2 and HCN4 proteins. Conclusions Our results suggest that HCN channel isoforms might be involved in the concerted differentiation of HL-1 cells and may indirectly affect the occurrence of contractile HL-1 cell activity. We expect that these findings will promote studies on other molecular markers that contribute to cardiac physiology. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0065-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Günther
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Wilhelm-Johnen-Straße, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Arnd Baumann
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Wilhelm-Johnen-Straße, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| |
Collapse
|
26
|
Ectopic automaticity induced in ventricular myocytes by transgenic overexpression of HCN2. J Mol Cell Cardiol 2015; 80:81-9. [DOI: 10.1016/j.yjmcc.2014.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 11/22/2022]
|
27
|
Herrmann S, Schnorr S, Ludwig A. HCN channels--modulators of cardiac and neuronal excitability. Int J Mol Sci 2015; 16:1429-47. [PMID: 25580535 PMCID: PMC4307311 DOI: 10.3390/ijms16011429] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/31/2014] [Indexed: 01/06/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels comprise a family of cation channels activated by hyperpolarized membrane potentials and stimulated by intracellular cyclic nucleotides. The four members of this family, HCN1-4, show distinct biophysical properties which are most evident in the kinetics of activation and deactivation, the sensitivity towards cyclic nucleotides and the modulation by tyrosine phosphorylation. The four isoforms are differentially expressed in various excitable tissues. This review will mainly focus on recent insights into the functional role of the channels apart from their classic role as pacemakers. The importance of HCN channels in the cardiac ventricle and ventricular hypertrophy will be discussed. In addition, their functional significance in the peripheral nervous system and nociception will be examined. The data, which are mainly derived from studies using transgenic mice, suggest that HCN channels contribute significantly to cellular excitability in these tissues. Remarkably, the impact of the channels is clearly more pronounced in pathophysiological states including ventricular hypertrophy as well as neural inflammation and neuropathy suggesting that HCN channels may constitute promising drug targets in the treatment of these conditions. This perspective as well as the current therapeutic use of HCN blockers will also be addressed.
Collapse
Affiliation(s)
- Stefan Herrmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Sabine Schnorr
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
28
|
Zhou YF, Yang XJ, Li HX, Han LH, Jiang WP. Genetically-engineered mesenchymal stem cells transfected with human HCN1 gene to create cardiac pacemaker cells. J Int Med Res 2014; 41:1570-6. [PMID: 24097828 DOI: 10.1177/0300060513501123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To test the proof-of-principle that genetically-engineered mesenchymal stem cells (MSCs) transfected with the human hyperpolarization-activated cyclic nucleotide-gated channel 1 (hHCN1) gene can be modified to become cardiac pacemaker cells. METHODS MSCs were transfected with the hHCN1 gene using lentiviral-based transfection. The expressed pacemaker current (I(f)) in hHCN1-transfected MSCs was recorded using whole-cell patch-clamp analysis. The effect of the hHCN1-transfected MSCs on cardiomyocyte excitability was determined by coculturing the MSCs with neonatal rabbit ventricular myocytes (NRVM). The spontaneous action potentials of the NRVM were recorded by whole-cell current-clamp analysis. RESULTS A high level time- and voltage-dependent inward hyperpolarization current that was inhibited by 4 mM caesium chloride was detected in hHCN1-transfected MSCs, suggesting that the HCN1 proteins acted as I(f) channels in MSCs. The mean ± SE beating frequency in NRVMs cocultured with control MSCs transfected with the pcDNA3 plasmid control was 82 ± 8 beats/min (n = 5) compared with 129 ± 11 beats/min (n = 5) in NRVMs cocultured with hHCN1-transfected MSCs. CONCLUSIONS Genetically-engineered MSCs transfected with the hHCN1 gene can be modified to become cardiac pacemaker cells.
Collapse
Affiliation(s)
- Ya-Feng Zhou
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
29
|
Kunisek J, Zaputovic L, Cubranic Z, Kunisek L, Zuvic Butorac M, Lukin-Eskinja K, Karlavaris R. Influence of the left ventricular types on QT intervals in hypertensive patients. Anatol J Cardiol 2014; 15:33-9. [PMID: 25179883 PMCID: PMC5336895 DOI: 10.5152/akd.2014.5134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective: To investigate the possible electrophysiological background of the greater excitability of concentric and eccentric left ventricular hypertrophy types in relation to the asymmetric type. Methods: 187 patients with essential hypertension, without ishaemic heart disease were divided into three groups with regard to left ventricule type: concentric (relative wall thickness >0.42, interventricular septum/left ventricular posterior wall ≤1.3), eccentric (left ventricular diameter in systoles >32, relative wall thickness <0.42), asymmetric left ventricular hypertrophy (interventricular septum/left ventricular posterior wall >1.3), and three subgroups: mild (interventricular septum or left ventricular posterior wall 11-12 mm), moderate (interventricular septum or left ventricular posterior wall 13-14 mm) and severe left ventricular hypertrophy (interventricular septum or left ventricular posterior wall ≥15 mm). In all patients QT intervals, QT dispersion, left ventricular mass index and ventricular arrhythmias were measured. An upper normal limit for QT corrected interval: 450/460 ms for men/women; for QT dispersion: 70 ms. Results: The QT corrected interval and QT dispersion were increased in severe concentric and eccentric left ventricular hypertrophy (443 and 480 ms for QT corrected; 53 and 45 ms for QT dispersion, respectively), not significantly. QT dispersion in men with severe left ventricular hypertrophy was significantly enlarged (67.5 vs. 30 ms, p=0.047). QT interval was significantly longer in patients with complex ventricular arrhythmias (p=0.037). Conclusion: No significant association of QT intervals or QT dispersion with the degree/type of left ventricular hypertrophy was found. QT corrected interval and QT dispersion tend to increase proportionally to the left ventricular mass only in the concentric and eccentric type.
Collapse
Affiliation(s)
- Juraj Kunisek
- Thalassotherapia Crikvenica, Special Hospital for Medical Rehabilitation; Crikvenica-Croatia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Powell KL, Jones NC, Kennard JT, Ng C, Urmaliya V, Lau S, Tran A, Zheng T, Ozturk E, Dezsi G, Megatia I, Delbridge LM, Pinault D, Reid CA, White PJ, O'Brien TJ. HCN channelopathy and cardiac electrophysiologic dysfunction in genetic and acquired rat epilepsy models. Epilepsia 2014; 55:609-20. [PMID: 24592881 DOI: 10.1111/epi.12563] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Evidence from animal and human studies indicates that epilepsy can affect cardiac function, although the molecular basis of this remains poorly understood. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate pacemaker activity and modulate cellular excitability in the brain and heart, with altered expression and function associated with epilepsy and cardiomyopathies. Whether HCN expression is altered in the heart in association with epilepsy has not been investigated previously. We studied cardiac electrophysiologic properties and HCN channel subunit expression in rat models of genetic generalized epilepsy (Genetic Absence Epilepsy Rats from Strasbourg, GAERS) and acquired temporal lobe epilepsy (post-status epilepticus SE). We hypothesized that the development of epilepsy is associated with altered cardiac electrophysiologic function and altered cardiac HCN channel expression. METHODS Electrocardiography studies were recorded in vivo in rats and in vitro in isolated hearts. Cardiac HCN channel messenger RNA (mRNA) and protein expression were measured using quantitative PCR and Western blotting respectively. RESULTS Cardiac electrophysiology was significantly altered in adult GAERS, with slower heart rate, shorter QRS duration, longer QTc interval, and greater standard deviation of RR intervals compared to control rats. In the post-SE model, we observed similar interictal changes in several of these parameters, and we also observed consistent and striking bradycardia associated with the onset of ictal activity. Molecular analysis demonstrated significant reductions in cardiac HCN2 mRNA and protein expression in both models, providing a molecular correlate of these electrophysiologic abnormalities. SIGNIFICANCE These results demonstrate that ion channelopathies and cardiac dysfunction can develop as a secondary consequence of chronic epilepsy, which may have relevance for the pathophysiology of cardiac dysfunction in patients with epilepsy.
Collapse
Affiliation(s)
- Kim L Powell
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rawal S, Manning P, Katare R. Cardiovascular microRNAs: as modulators and diagnostic biomarkers of diabetic heart disease. Cardiovasc Diabetol 2014; 13:44. [PMID: 24528626 PMCID: PMC3976030 DOI: 10.1186/1475-2840-13-44] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/10/2014] [Indexed: 02/06/2023] Open
Abstract
Diabetic heart disease (DHD) is the leading cause of morbidity and mortality among the people with diabetes, with approximately 80% of the deaths in diabetics are due to cardiovascular complications. Importantly, heart disease in the diabetics develop at a much earlier stage, although remaining asymptomatic till the later stage of the disease, thereby restricting its early detection and active therapeutic management. Thus, a better understanding of the modulators involved in the pathophysiology of DHD is necessary for the early diagnosis and development of novel therapeutic implications for diabetes-associated cardiovascular complications. microRNAs (miRs) have recently been evolved as key players in the various cardiovascular events through the regulation of cardiac gene expression. Besides their credible involvement in controlling the cellular processes, they are also released in to the circulation in disease states where they serve as potential diagnostic biomarkers for cardiovascular disease. However, their potential role in DHD as modulators as well as diagnostic biomarkers is largely unexplored. In this review, we describe the putative mechanisms of the selected cardiovascular miRs in relation to cardiovascular diseases and discuss their possible involvement in the pathophysiology and early diagnosis of DHD.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Patrick Manning
- Department of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
32
|
Cheng Q, Zhou Y. Novel role of KT5720 on regulating hyperpolarization-activated cyclic nucleotide-gated channel activity and dorsal root ganglion neuron excitability. DNA Cell Biol 2013; 32:320-8. [PMID: 23713946 DOI: 10.1089/dna.2013.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed in dorsal root ganglion (DRG) neurons, which are involved in diverse mechanisms that regulate DRG functions. Protein kinase A (PKA) is an essential kinase that plays a key role in almost all types of cells; it regulates the ion channel activity, the intracellular Ca(2+) concentration, as well as modulates cellular signals transduction. Nevertheless, the effect of PKA inhibition on the HCN channel activity in DRG neuron remains to be elucidated. Here we investigated the impact of PKA inhibition on the HCN channel activity and DRG neurons excitability. Our patch-clamp experiments both under whole-cell and single-channel conditions demonstrated that PKA inhibition with KT5720, a cell membrane permeable PKA-specific inhibitor, significantly attenuated HCN channel currents. Current clamp recording on freshly isolated DRG neurons showed KT5720 reduced overshoot amplitude and enhanced the threshold of the action potential. Moreover, our live-cell Ca(2+) imaging experiments illustrated KT5720 markedly reduced the intracellular Ca(2+) level. Collectively, this is the first report that addresses KT5720 attenuates the HCN channel activity and intracellular Ca(2+), thus reducing DRG neurons excitability. Therefore, our data strongly suggest that PKA is a potential target for curing HCN and DRG neuron relevant diseases.
Collapse
Affiliation(s)
- Qiuping Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | | |
Collapse
|
33
|
Dias P, Terracciano CM. Hyperpolarization-activated cyclic nucleotide-gated channels and ventricular arrhythmias in heart failure: a novel target for therapy? J Am Heart Assoc 2013; 2:e000287. [PMID: 23747794 PMCID: PMC3698796 DOI: 10.1161/jaha.113.000287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Priyanthi Dias
- Imperial College London, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, London, UK (P.D., C.M.T.)
| | - Cesare M. Terracciano
- Imperial College London, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, London, UK (P.D., C.M.T.)
| |
Collapse
|
34
|
Kuwabara Y, Kuwahara K, Takano M, Kinoshita H, Arai Y, Yasuno S, Nakagawa Y, Igata S, Usami S, Minami T, Yamada Y, Nakao K, Yamada C, Shibata J, Nishikimi T, Ueshima K, Nakao K. Increased expression of HCN channels in the ventricular myocardium contributes to enhanced arrhythmicity in mouse failing hearts. J Am Heart Assoc 2013; 2:e000150. [PMID: 23709563 PMCID: PMC3698776 DOI: 10.1161/jaha.113.000150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/30/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND The efficacy of pharmacological interventions to prevent sudden arrhythmic death in patients with chronic heart failure remains limited. Evidence now suggests increased ventricular expression of hyperpolarization-activated cation (HCN) channels in hypertrophied and failing hearts contributes to their arrythmicity. Still, the role of induced HCN channel expression in the enhanced arrhythmicity associated with heart failure and the capacity of HCN channel blockade to prevent lethal arrhythmias remains undetermined. METHODS AND RESULTS We examined the effects of ivabradine, a specific HCN channel blocker, on survival and arrhythmicity in transgenic mice (dnNRSF-Tg) expressing a cardiac-specific dominant-negative form of neuron-restrictive silencer factor, a useful mouse model of dilated cardiomyopathy leading to sudden death. Ivabradine (7 mg/kg per day orally) significantly reduced ventricular tachyarrhythmias and improved survival among dnNRSF-Tg mice while having no significant effect on heart rate or cardiac structure or function. Ivabradine most likely prevented the increase in automaticity otherwise seen in dnNRSF-Tg ventricular myocytes. Moreover, cardiac-specific overexpression of HCN2 in mice (HCN2-Tg) made hearts highly susceptible to arrhythmias induced by chronic β-adrenergic stimulation. Indeed, ventricular myocytes isolated from HCN2-Tg mice were highly susceptible to β-adrenergic stimulation-induced abnormal automaticity, which was inhibited by ivabradine. CONCLUSIONS HCN channel blockade by ivabradine reduces lethal arrhythmias associated with dilated cardiomyopathy in mice. Conversely, cardiac-specific overexpression of HCN2 channels increases arrhythmogenicity of β-adrenergic stimulation. Our findings demonstrate the contribution of HCN channels to the increased arrhythmicity seen in failing hearts and suggest HCN channel blockade is a potentially useful approach to preventing sudden death in patients with heart failure.
Collapse
Affiliation(s)
- Yoshihiro Kuwabara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Koichiro Kuwahara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine, Japan (M.T., S.I.)
| | - Hideyuki Kinoshita
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Yuji Arai
- Department of Bioscience, National Cerebral and Cardiovascular Center Research Institute, Japan (Y.A.)
| | - Shinji Yasuno
- EBM Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.Y., K.U.)
| | - Yasuaki Nakagawa
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Sachiyo Igata
- Department of Physiology, Kurume University School of Medicine, Japan (M.T., S.I.)
| | - Satoru Usami
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Takeya Minami
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Yuko Yamada
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Kazuhiro Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Chinatsu Yamada
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Junko Shibata
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Toshio Nishikimi
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| | - Kenji Ueshima
- EBM Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.Y., K.U.)
| | - Kazuwa Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.K., K.K., H.K., Y.N., S.U., T.M., Y.Y., K.N., C.Y., J.S., T.N., K.N.)
| |
Collapse
|
35
|
|
36
|
Abstract
Hyperpolarization-activated cyclic nucleotide gated (HCN) channels pass a cationic current (I(h)/I(f)) that crucially contributes to the slow diastolic depolarization (SDD) of sinoatrial pacemaker cells and, hence, is a key determinant of cardiac automaticity and the generation of the heartbeat. However, there is growing evidence that HCN channels are not restricted to the spontaneously active cells of the sinoatrial node and the conduction system but are also present in ventricular cardiomyocytes that produce an action potential lacking SDD. This observation raises the question of the principal function(s) of HCN channels in working myocardium. Our recent analysis of an HCN3-deficient (HCN3-/-) mouse line has shed new light on this central question. We propose that HCN channels contribute to the ventricular action potential waveform, specifically during late repolarization. In this review, we outline this new concept.
Collapse
Affiliation(s)
- Stefanie Fenske
- Center for Integrated Protein Science CIPS-M and Zentrum für Pharmaforschung-Department Pharmazie, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|