1
|
Yunes-Leites PS, Sun Y, Martínez-Martínez S, Alfayate Á, Toral M, Méndez-Olivares MJ, Colmenar Á, Torralbo AI, López-Maderuelo D, Mateos-García S, Cornfield DN, Vázquez J, Redondo JM, Campanero MR. Phosphatase-independent activity of smooth-muscle calcineurin orchestrates a gene expression program leading to hypertension. PLoS Biol 2025; 23:e3003163. [PMID: 40367288 DOI: 10.1371/journal.pbio.3003163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
Angiotensin-II (Ang-II) drives pathological vascular wall remodeling in hypertension and abdominal aortic aneurysm (AAA) through mechanisms that are not completely understood. Previous studies showed that the phosphatase activity of calcineurin (Cn) mediates Ang-II-induced AAA, but the cell type involved in the action of Cn in AAA formation remained unknown. Here, by employing newly created smooth muscle cell (SMC)-specific and endothelial cell (EC)-specific Cn-deficient mice (SM-Cn-/- and EC-Cn-/- mice), we show that Cn expressed in SMCs, but not ECs, was required for Ang-II-induced AAA. Unexpectedly, SMC Cn also played a structural role in the early onset and maintenance of Ang-II-induced hypertension, independently of its known phosphatase activity. Among the signaling pathways activated by Ang-II, Cn signaling is essential in SMCs, as nearly 90% of the genes regulated by Ang-II in the aorta required Cn expression in SMCs. Cn orchestrated, independently of its enzymatic activity, the induction by Ang-II of a transcriptional program closely related to SMC contractility and hypertension. Cn deletion in SMCs, but not its pharmacological inhibition, impaired the regulation of arterial contractility. Among the genes whose regulation by Ang-II required Cn expression but not its phosphatase activity, we discovered that Serpine1 was critical for Ang-II-induced hypertension. Indeed, pharmacological inhibition of PAI-1, the protein encoded by Serpine1, impaired SMCs contractility and readily regressed hypertension. Mechanistically, Serpine1 induction was mediated by Smad2 activation via the structural role of Cn. These findings uncover an unexpected role for Cn in vascular pathophysiology and highlight PAI-1 as a potential therapeutic target for hypertension.
Collapse
Affiliation(s)
- Paula Sofía Yunes-Leites
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Yilin Sun
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
- Tissue and Organ Homeostais Program, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara Martínez-Martínez
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Álvaro Alfayate
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
- Cardiovascular Proteomics Laboratoy, CNIC, Madrid, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - María José Méndez-Olivares
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ángel Colmenar
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ana Isabel Torralbo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Dolores López-Maderuelo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Sergio Mateos-García
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - David N Cornfield
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
- Cardiovascular Proteomics Laboratoy, CNIC, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
- Tissue and Organ Homeostais Program, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel R Campanero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
- Tissue and Organ Homeostais Program, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Moztarzadeh S, Sepic S, Hamad I, Waschke J, Radeva MY, García-Ponce A. Cortactin is in a complex with VE-cadherin and is required for endothelial adherens junction stability through Rap1/Rac1 activation. Sci Rep 2024; 14:1218. [PMID: 38216638 PMCID: PMC10786853 DOI: 10.1038/s41598-024-51269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Vascular permeability is mediated by Cortactin (Cttn) and regulated by several molecules including cyclic-adenosine-monophosphate, small Rho family GTPases and the actin cytoskeleton. However, it is unclear whether Cttn directly interacts with any of the junctional components or if Cttn intervenes with signaling pathways affecting the intercellular contacts and the cytoskeleton. To address these questions, we employed immortalized microvascular myocardial endothelial cells derived from wild-type and Cttn-knock-out mice. We found that lack of Cttn compromised barrier integrity due to fragmented membrane distribution of different junctional proteins. Moreover, immunoprecipitations revealed that Cttn is within the VE-cadherin-based adherens junction complex. In addition, lack of Cttn slowed-down barrier recovery after Ca2+ repletion. The role of Cttn for cAMP-mediated endothelial barrier regulation was analyzed using Forskolin/Rolipram. In contrast to Cttn-KO, WT cells reacted with increased transendothelial electrical resistance. Absence of Cttn disturbed Rap1 and Rac1 activation in Cttn-depleted cells. Surprisingly, despite the absence of Cttn, direct activation of Rac1/Cdc42/RhoA by CN04 increased barrier resistance and induced well-defined cortical actin and intracellular actin bundles. In summary, our data show that Cttn is required for basal barrier integrity by allowing proper membrane distribution of junctional proteins and for cAMP-mediated activation of the Rap1/Rac1 signaling pathway.
Collapse
Affiliation(s)
- Sina Moztarzadeh
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sara Sepic
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Ibrahim Hamad
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Alexander García-Ponce
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany.
| |
Collapse
|
3
|
Saldanha PA, Bolanle IO, Palmer TM, Nikitenko LL, Rivero F. Complex Transcriptional Profiles of the PPP1R12A Gene in Cells of the Circulatory System as Revealed by In Silico Analysis and Reverse Transcription PCR. Cells 2022; 11:cells11152315. [PMID: 35954160 PMCID: PMC9367544 DOI: 10.3390/cells11152315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The myosin light chain phosphatase target subunit 1 (MYPT1), encoded by the PPP1R12A gene, is a key component of the myosin light chain phosphatase (MLCP) protein complex. MYPT1 isoforms have been described as products of the cassette-type alternative splicing of exons E13, E14, E22, and E24. Through in silico analysis of the publicly available EST and mRNA databases, we established that PPP1R12A contains 32 exons (6 more than the 26 previously reported), of which 29 are used in 11 protein-coding transcripts. An in silico analysis of publicly available RNAseq data combined with validation by reverse transcription (RT)-PCR allowed us to determine the relative abundance of each transcript in three cell types of the circulatory system where MYPT1 plays important roles: human umbilical vein endothelial cells (HUVEC), human saphenous vein smooth muscle cells (HSVSMC), and platelets. All three cell types express up to 10 transcripts at variable frequencies. HUVECs and HSVSMCs predominantly express the full-length variant (58.3% and 64.3%, respectively) followed by the variant skipping E13 (33.7% and 23.1%, respectively), whereas in platelets the predominant variants are those skipping E14 (51.4%) and E13 (19.9%), followed by the full-length variant (14.4%). Variants including E24 account for 5.4% of transcripts in platelets but are rare (<1%) in HUVECs and HSVSMCs. Complex transcriptional profiles were also found across organs using in silico analysis of RNAseq data from the GTEx project. Our findings provide a platform for future studies investigating the specific (patho)physiological roles of understudied MYPT1 isoforms.
Collapse
|
4
|
Decoding the Phosphatase Code: Regulation of Cell Proliferation by Calcineurin. Int J Mol Sci 2022; 23:ijms23031122. [PMID: 35163061 PMCID: PMC8835043 DOI: 10.3390/ijms23031122] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Calcineurin, a calcium-dependent serine/threonine phosphatase, integrates the alterations in intracellular calcium levels into downstream signaling pathways by regulating the phosphorylation states of several targets. Intracellular Ca2+ is essential for normal cellular physiology and cell cycle progression at certain critical stages of the cell cycle. Recently, it was reported that calcineurin is activated in a variety of cancers. Given that abnormalities in calcineurin signaling can lead to malignant growth and cancer, the calcineurin signaling pathway could be a potential target for cancer treatment. For example, NFAT, a typical substrate of calcineurin, activates the genes that promote cell proliferation. Furthermore, cyclin D1 and estrogen receptors are dephosphorylated and stabilized by calcineurin, leading to cell proliferation. In this review, we focus on the cell proliferative functions and regulatory mechanisms of calcineurin and summarize the various substrates of calcineurin. We also describe recent advances regarding dysregulation of the calcineurin activity in cancer cells. We hope that this review will provide new insights into the potential role of calcineurin in cancer development.
Collapse
|
5
|
Williams RB, Johnson CN. A Review of Calcineurin Biophysics with Implications for Cardiac Physiology. Int J Mol Sci 2021; 22:ijms222111565. [PMID: 34768996 PMCID: PMC8583826 DOI: 10.3390/ijms222111565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Calcineurin, also known as protein phosphatase 2B, is a heterodimeric serine threonine phosphatase involved in numerous signaling pathways. During the past 50 years, calcineurin has been the subject of extensive investigation. Many of its cellular and physiological functions have been described, and the underlying biophysical mechanisms are the subject of active investigation. With the abundance of techniques and experimental designs utilized to study calcineurin and its numerous substrates, it is difficult to reconcile the available information. There have been a plethora of reports describing the role of calcineurin in cardiac disease. However, a physiological role of calcineurin in healthy cardiomyocyte function requires clarification. Here, we review the seminal biophysical and structural details that are responsible for the molecular function and inhibition of calcineurin. We then focus on literature describing the roles of calcineurin in cardiomyocyte physiology and disease.
Collapse
Affiliation(s)
- Ryan B. Williams
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA;
| | - Christopher N. Johnson
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA;
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
6
|
Tóth E, Erdődi F, Kiss A. Activation of Myosin Phosphatase by Epigallocatechin-Gallate Sensitizes THP-1 Leukemic Cells to Daunorubicin. Anticancer Agents Med Chem 2021; 21:1092-1098. [PMID: 32679023 DOI: 10.2174/1871520620666200717142315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Myosin Phosphatase (MP) holoenzyme is composed of a Protein Phosphatase type 1 (PP1) catalytic subunit and a regulatory subunit termed Myosin Phosphatase Target subunit 1 (MYPT1). Besides dephosphorylation of myosin, MP has been implicated in the control of cell proliferation via dephosphorylation and activation of the tumor suppressor gene products, retinoblastoma protein (pRb) and merlin. Inhibition of MP was shown to attenuate the drug-induced cell death of leukemic cells by chemotherapeutic agents, while activation of MP might have a sensitizing effect. OBJECTIVE Recently, Epigallocatechin-Gallate (EGCG), a major component of green tea, was shown to activate MP by inducing the dephosphorylation of MYPT1 at phospho-Thr696 (MYPT1pT696), which might confer enhanced chemosensitivity to cancer cells. METHODS THP-1 leukemic cells were treated with EGCG and Daunorubicin (DNR) and cell viability was analyzed. Phosphorylation of tumor suppressor proteins was detected by Western blotting. RESULTS EGCG or DNR (at sub-lethal doses) alone had moderate effects on cell viability, while the combined treatment caused a significant decrease in the number of viable cells by enhancing apoptosis and decreasing proliferation. EGCG plus DNR decreased the phosphorylation level of MYPT1pT696, which was accompanied by prominent dephosphorylation of pRb. In addition, significant dephosphorylation of merlin was observed when EGCG and DNR were applied together. CONCLUSION Our results suggest that EGCG-induced activation of MP might have a regulatory function in mediating the chemosensitivity of leukemic cells via dephosphorylation of tumor suppressor proteins.
Collapse
Affiliation(s)
- Emese Tóth
- Department of Medical Chemistry and MTA-DE Cell Biology and Signalling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry and MTA-DE Cell Biology and Signalling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Kiss
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Luo L, Liu S, Zhang D, Wei F, Gu N, Zeng Y, Chen X, Xu S, Liu S, Xiang T. Chromogranin A (CGA)-derived polypeptide (CGA 47-66) inhibits TNF-α-induced vascular endothelial hyper-permeability through SOC-related Ca 2+ signaling. Peptides 2020; 131:170297. [PMID: 32380199 DOI: 10.1016/j.peptides.2020.170297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 02/01/2023]
Abstract
CGA1-78 (Vasostatin-1, VS-1) a N-terminal Chromogranin A (CGA)-derived peptide, has been shown to have a protective effect against TNF-α-induced impairment of endothelial cell integrity. However, the mechanisms of this effect have not yet been clarified. CGA47-66 (Chromofungin, CHR) is an important bioactive fragment of CGA1-78. The present study aims to explore the protective effects of CHR on the vascular endothelial cell barrier response to TNF-α and its related Ca2+ signaling mechanisms. EA.hy926 cells were used as a vascular endothelial culture model. The synthetic peptides CHR and CGA4-16 were assessed for their ability to suppress TNF-α-induced EA.hy926 cells hyper-permeability through Transwell® and TEER assays. Changes in [Ca2+]i were measured through confocal laser scanning microscopy. SOC channel currents (Isoc) were measured via patch-clamp analysis. RT-PCR and western blot were used to analyze mRNA and protein expression of the transient receptor potential channels TRPC1 and TRPC4, respectively. FITC and rhodamine-phalloidin fluorescence were used to assess cell morphology and the distribution of MyPT-1 and F-actin. Compared to untreated cells, TNF-α increased the permeability of EA.hy926 cells that was inhibited by pre-treatment with CHR (10-1000 nM) in concentration-dependent manner, and the effect was most obvious at 100 nM, but CGA4-16 (100 nM) had no effect. TNF-α treatment increased the phosphorylation of MyPT-1 and stress fiber formation. CHR (10-1000 nM) pretreatment inhibited the cytoskeletal rearrangements and increased [Ca2+]i in response to TNF-α treatment. CHR also reduced TRPC1 expression following TNF-α induction. Similar to SOC inhibitor 2-APB, CHR suppressed IP3 mediated SOC activation. These findings suggest that CHR inhibits TNF-α-induced Ca2+ influx and protects the barrier function of vascular endothelial cells, and that these effects are related to the inhibition of SOC and Ca2+ signaling by CHR.
Collapse
Affiliation(s)
- Li Luo
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Emergency, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Chengdu, Sichuan 610031, PR China
| | - SiYi Liu
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Dan Zhang
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Fu Wei
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - NiNa Gu
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Zeng
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - XiaoYing Chen
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Shan Xu
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - ShuKe Liu
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Tao Xiang
- Department of Emergency, The Third People's Hospital of Chengdu, The Second Affiliated Chengdu Clinical College of Chongqing Medical University, Chengdu, Sichuan 610031, PR China
| |
Collapse
|
8
|
Seccia TM, Rigato M, Ravarotto V, Calò LA. ROCK (RhoA/Rho Kinase) in Cardiovascular-Renal Pathophysiology: A Review of New Advancements. J Clin Med 2020; 9:jcm9051328. [PMID: 32370294 PMCID: PMC7290501 DOI: 10.3390/jcm9051328] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Rho-associated, coiled-coil containing kinases (ROCK) were originally identified as effectors of the RhoA small GTPase and found to belong to the AGC family of serine/threonine kinases. They were shown to be downstream effectors of RhoA and RhoC activation. They signal via phosphorylation of proteins such as MYPT-1, thereby regulating many key cellular functions including proliferation, motility and viability and the RhoA/ROCK signaling has been shown to be deeply involved in arterial hypertension, cardiovascular–renal remodeling, hypertensive nephropathy and posttransplant hypertension. Given the deep involvement of ROCK in cardiovascular–renal pathophysiology and the interaction of ROCK signaling with other signaling pathways, the reports of trials on the clinical beneficial effects of ROCK’s pharmacologic targeting are growing. In this current review, we provide a brief survey of the current understanding of ROCK-signaling pathways, also integrating with the more novel data that overall support a relevant role of ROCK for the cardiovascular–renal physiology and pathophysiology.
Collapse
Affiliation(s)
- Teresa M. Seccia
- Department of Medicine, Hypertension Clinic, University of Padova, 35128 Padova, Italy;
| | - Matteo Rigato
- Department of Medicine, Nephrology, Dialysis and Transplantation Unit, University of Padova, 35128 Padova, Italy; (M.R.); (V.R.)
| | - Verdiana Ravarotto
- Department of Medicine, Nephrology, Dialysis and Transplantation Unit, University of Padova, 35128 Padova, Italy; (M.R.); (V.R.)
| | - Lorenzo A. Calò
- Department of Medicine, Nephrology, Dialysis and Transplantation Unit, University of Padova, 35128 Padova, Italy; (M.R.); (V.R.)
- Correspondence: ; Tel.: +39-049-8213071; Fax: +39-049-8217921
| |
Collapse
|
9
|
Buckley C, Wilson C, McCarron JG. FK506 regulates Ca 2+ release evoked by inositol 1,4,5-trisphosphate independently of FK-binding protein in endothelial cells. Br J Pharmacol 2020; 177:1131-1149. [PMID: 31705533 PMCID: PMC7042112 DOI: 10.1111/bph.14905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose FK506 and rapamycin are modulators of FK‐binding proteins (FKBP) that are used to suppress immune function after organ and hematopoietic stem cell transplantations. The drugs share the unwanted side‐effect of evoking hypertension that is associated with reduced endothelial function and nitric oxide production. The underlying mechanisms are not understood. FKBP may regulate IP3 receptors (IP3R) and ryanodine receptors (RyR) to alter Ca2+ signalling in endothelial cells. Experimental Approach We investigated the effects of FK506 and rapamycin on Ca2+ release via IP3R and RyR in hundreds of endothelial cells, using the indicator Cal‐520, in intact mesenteric arteries from male Sprague‐Dawley rats. IP3Rs were activated by acetylcholine or localised photo‐uncaging of IP3, and RyR by caffeine. Key Results While FKBPs were present, FKBP modulation with rapamycin did not alter IP3‐evoked Ca2+ release. Conversely, FK506, which modulates FKBP and blocks calcineurin, increased IP3‐evoked Ca2+ release. Inhibition of calcineurin (okadiac acid or cypermethrin) also increased IP3‐evoked Ca2+ release and blocked FK506 effects. When calcineurin was inhibited, FK506 reduced IP3‐evoked Ca2+ release. These findings suggest that IP3‐evoked Ca2+ release is not modulated by FKBP, but by FK506‐mediated calcineurin inhibition. The RyR modulators caffeine and ryanodine failed to alter Ca2+ signalling suggesting that RyR is not functional in native endothelium. Conclusion and Implications The hypertensive effects of the immunosuppressant drugs FK506 and rapamycin, while mediated by endothelial cells, do not appear to be exerted at the documented cellular targets of Ca2+ release and altered FKBP binding to IP3 and RyR.
Collapse
Affiliation(s)
- Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| |
Collapse
|
10
|
MLCK and ROCK mutualism in endothelial barrier dysfunction. Biochimie 2020; 168:83-91. [DOI: 10.1016/j.biochi.2019.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/22/2019] [Indexed: 01/15/2023]
|
11
|
Hough RF, Islam MN, Gusarova GA, Jin G, Das S, Bhattacharya J. Endothelial mitochondria determine rapid barrier failure in chemical lung injury. JCI Insight 2019; 4:124329. [PMID: 30728333 DOI: 10.1172/jci.insight.124329] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022] Open
Abstract
Acid aspiration, which can result from several etiologies, including postoperative complications, leads to direct contact of concentrated hydrochloric acid (HCl) with the alveolar epithelium. As a result, rapid endothelial activation induces alveolar inflammation, leading to life-threatening pulmonary edema. Because mechanisms underlying the rapid endothelial activation are not understood, here we determined responses in real time through optical imaging of alveoli of live mouse lungs. By alveolar micropuncture, we microinfused concentrated HCl in the alveolar lumen. As expected, acid contact with the epithelium caused rapid, but transient, apical injury. However, there was no concomitant membrane injury to the endothelium. Nevertheless, H2O2-mediated epithelial-endothelial paracrine signaling induced endothelial barrier failure, as detected by microvascular dextran leakage and lung water quantification. Remarkably, endothelial mitochondria regulated the barrier failure by activating uncoupling protein 2 (UCP2), thereby inducing transient mitochondrial depolarization that led to cofilin-induced actin depolymerization. Knockdown, or endothelium-targeted deletion of UCP2 expression, blocked these responses, including pulmonary edema. To our knowledge, these findings are the first to mechanistically implicate endothelial mitochondria in acid-induced barrier deterioration and pulmonary edema. We suggest endothelial UCP2 may be a therapeutic target for acid-induced acute lung injury.
Collapse
Affiliation(s)
- Rebecca F Hough
- Lung Biology Lab, Department of Medicine, and.,Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | - Shonit Das
- Lung Biology Lab, Department of Medicine, and
| | | |
Collapse
|
12
|
Kiss A, Erdődi F, Lontay B. Myosin phosphatase: Unexpected functions of a long-known enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:2-15. [PMID: 30076859 DOI: 10.1016/j.bbamcr.2018.07.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/09/2018] [Accepted: 07/26/2018] [Indexed: 01/08/2023]
Abstract
Myosin phosphatase (MP) holoenzyme is a Ser/Thr specific enzyme, which is the member of protein phosphatase type 1 (PP1) family and composed of a PP1 catalytic subunit (PP1c/PPP1CB) and a myosin phosphatase targeting subunit (MYPT1/PPP1R12A). PP1c is required for the catalytic activity of the holoenzyme, while MYPT1 regulates MP through targeting the holoenzyme to its substrates. Above the well-characterized function of MP, as the major regulator of smooth muscle contractility mediating the dephosphorylation of 20 kDa myosin light chain, accumulating data support its role in other, non-contractile functions. In this review, we summarize the scaffold function of MP holoenzyme and its roles in processes such as cell cycle, development, gene expression regulation and neurotransmitter release. In particular, we highlight novel interacting proteins of MYPT1 and pathophysiological functions of MP relevant to tumorigenesis, insulin resistance and neurodegenerative disorders. This article is part of a Special Issue entitled: Protein Phosphatases as Critical Regulators for Cellular Homeostasis edited by Prof. Peter Ruvolo and Dr. Veerle Janssens.
Collapse
Affiliation(s)
- Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
13
|
Zhou ZY, Huang B, Li S, Huang XH, Tang JY, Kwan YW, Hoi PM, Lee SMY. Sodium tanshinone IIA sulfonate promotes endothelial integrity via regulating VE-cadherin dynamics and RhoA/ROCK-mediated cellular contractility and prevents atorvastatin-induced intracerebral hemorrhage in zebrafish. Toxicol Appl Pharmacol 2018; 350:32-42. [PMID: 29730311 DOI: 10.1016/j.taap.2018.04.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023]
Abstract
Impaired vascular integrity leads to serious cerebral vascular diseases such as intracerebral hemorrhage (ICH). In addition, high-dose statin therapy is suggested to cause increased ICH risk due to unclear effects of general inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) on the vascular system. Here we evaluated the protective effects of sodium tanshinone IIA sulfonate (STS), which has high efficacy and safety in clinical studies of ischemic stroke, by using atorvastatin (Ator) induced ICH zebrafish embryos and human umbilical vein endothelial cells (HUVECs). By using double transgenic Tg(fli1a:EGFP)y1 & Tg(gata1a:dsRed)sd2 zebrafish, we demonstrated that STS effectively reduced the occurrence and area of hemorrhage induced by Ator in zebrafish and restored impairment in motor function. We further demonstrated that Ator-induced disruption in VE-cadherin (VEC)-containing cell-cell adherens junctions (AJs) in HUVECs by enhancing Src-induced VEC internalization and RhoA/ROCK-mediated cellular contraction. STS inhibited Ator-induced Src activation and subsequent VEC internalization and actin depolymerization near cell borders, reducing lesions between neighboring cells and increasing barrier functions. STS also inhibited the Ator-induced RhoA/ROCK-mediated cellular contraction by regulating downstream LIMK/cofilin and MYPT1/MLC phosphatase signaling. These results showed that STS significantly promoted the stability of cell junctions and vascular integrity. Moreover, we observed that regulations of both Src and RhoA/ROCK are required for the maintenance of vascular integrity, and Src inhibitor (PP2) or ROCK inhibitors (fasudil and H1152) alone could not reduce the occurrence Ator-induced ICH. Taken together, we investigated the underlying mechanisms of Ator-induced endothelial instability, and provided scientific evidences of STS as potential ICH therapeutics by promoting vascular integrity.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Bin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiao-Hui Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jing-Yi Tang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yiu Wa Kwan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
14
|
Huang B, Zhou ZY, Li S, Huang XH, Tang JY, Hoi MPM, Lee SMY. Tanshinone I prevents atorvastatin-induced cerebral hemorrhage in zebrafish and stabilizes endothelial cell–cell adhesion by inhibiting VE-cadherin internalization and actin-myosin contractility. Pharmacol Res 2018; 128:389-398. [DOI: 10.1016/j.phrs.2017.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/19/2017] [Accepted: 09/30/2017] [Indexed: 12/19/2022]
|
15
|
Regulation of the phosphatase PP2B by protein-protein interactions. Biochem Soc Trans 2017; 44:1313-1319. [PMID: 27911714 DOI: 10.1042/bst20160150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/09/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
Protein dephosphorylation is important for regulating cellular signaling in a variety of contexts. Protein phosphatase-2B (PP2B), or calcineurin, is a widely expressed serine/threonine phosphatase that acts on a large cross section of potential protein substrates when activated by increased levels of intracellular calcium in concert with calmodulin. PxIxIT and LxVP targeting motifs are important for maintaining specificity in response to elevated calcium. In the present study, we describe the mechanism of PP2B activation, discuss its targeting by conserved binding motifs and review recent advances in the understanding of an A-kinase anchoring protein 79/PP2B/protein kinase A complex's role in synaptic long-term depression. Finally, we discuss potential for targeting PP2B anchoring motifs for therapeutic benefit.
Collapse
|
16
|
Interplay of myosin phosphatase and protein phosphatase-2A in the regulation of endothelial nitric-oxide synthase phosphorylation and nitric oxide production. Sci Rep 2017; 7:44698. [PMID: 28300193 PMCID: PMC5353758 DOI: 10.1038/srep44698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/13/2017] [Indexed: 01/07/2023] Open
Abstract
The inhibitory phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) at Thr497 (eNOSpThr497) by protein kinase C or RhoA-activated kinase is a major regulatory determinant of eNOS activity. The signalling mechanisms involved in the dephosphorylation of eNOSpThr497 have not yet been clarified. This study identifies myosin phosphatase (MP) holoenzyme consisting of protein phosphatase-1 catalytic subunit (PP1c) and MP target subunit-1 (MYPT1) as an eNOSpThr497 phosphatase. In support of this finding are: (i) eNOS and MYPT1 interacts in various endothelial cells (ECs) and in in vitro binding assays (ii) MYPT1 targets and stimulates PP1c toward eNOSpThr497 substrate (iii) phosphorylation of MYPT1 at Thr696 (MYPT1pThr696) controls the activity of MP on eNOSpThr497. Phosphatase inhibition suppresses both NO production and transendothelial resistance (TER) of ECs. In contrast, epigallocatechin-3-gallate (EGCG) signals ECs via the 67 kDa laminin-receptor (67LR) resulting in protein kinase A dependent activation of protein phosphatase-2A (PP2A). PP2A dephosphorylates MYPT1pThr696 and thereby stimulates MP activity inducing dephosphorylation of eNOSpThr497 and the 20 kDa myosin II light chains. Thus an interplay of MP and PP2A is involved in the physiological regulation of EC functions implying that an EGCG dependent activation of these phosphatases leads to enhanced NO production and EC barrier improvement.
Collapse
|
17
|
Myosin phosphatase and RhoA-activated kinase modulate arginine methylation by the regulation of protein arginine methyltransferase 5 in hepatocellular carcinoma cells. Sci Rep 2017; 7:40590. [PMID: 28074910 PMCID: PMC5225440 DOI: 10.1038/srep40590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022] Open
Abstract
Myosin phosphatase (MP) holoenzyme is a protein phosphatase-1 (PP1) type Ser/Thr specific enzyme that consists of a PP1 catalytic (PP1c) and a myosin phosphatase target subunit-1 (MYPT1). MYPT1 is an ubiquitously expressed isoform and it targets PP1c to its substrates. We identified the protein arginine methyltransferase 5 (PRMT5) enzyme of the methylosome complex as a MYPT1-binding protein uncovering the nuclear MYPT1-interactome of hepatocellular carcinoma cells. It is shown that PRMT5 is regulated by phosphorylation at Thr80 by RhoA-associated protein kinase and MP. Silencing of MYPT1 increased the level of the PRMT5-specific symmetric dimethylation on arginine residues of histone 2 A/4, a repressing gene expression mark, and it resulted in a global change in the expression of genes affecting cellular processes like growth, proliferation and cell death, also affecting the expression of the retinoblastoma protein and c-Myc. The phosphorylation of the MP inhibitory MYPT1T850 and the regulatory PRMT5T80 residues as well as the symmetric dimethylation of H2A/4 were elevated in human hepatocellular carcinoma and in other types of cancers. These changes correlated positively with the grade and state of the tumors. Our results suggest the tumor suppressor role of MP via inhibition of PRMT5 thereby regulating gene expression through histone arginine dimethylation.
Collapse
|
18
|
Characterization of isoform expression and subcellular distribution of MYPT1 in intestinal epithelial cells. Gene 2016; 588:1-6. [PMID: 27129938 DOI: 10.1016/j.gene.2016.04.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/07/2016] [Accepted: 04/23/2016] [Indexed: 11/21/2022]
Abstract
The regulation of intestinal epithelial permeability requires phosphorylation of myosin regulatory light chain (MLC). The phosphorylation status of MLC is regulated by myosin light chain phosphatase (MLCP) activities. The activity of the catalytic subunit of MLCP (PP1cδ) toward MLC depends on its regulatory subunit (MYPT1). In this study, we revealed the presence of two MYPT1 isoforms, full length and variant 2 in human intestinal (Caco-2) epithelial cells and isolated intestinal epithelial cells (IECs) from mice. In confluent Caco-2 cells, MYPT1 was distributed at cell-cell contacts and colocalized with F-actin. These results suggest that MYPT1 isoforms are expressed in intestinal epithelial cells and MYPT1 may be involved in the regulation of intestinal epithelial barrier function.
Collapse
|
19
|
Cell permeable peptide conjugated nanoerythrosomes of fasudil prolong pulmonary arterial vasodilation in PAH rats. Eur J Pharm Biopharm 2015; 88:1046-55. [PMID: 25460151 DOI: 10.1016/j.ejpb.2014.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 11/23/2022]
Abstract
In this study, we tested the hypothesis that a cell permeable peptide, CARSKNKDC (CAR), conjugated nanoerythrosomes (NERs) containing fasudil, a rho-kinase (ROCK) inhibitor, produces prolonged pulmonary preferential vasodilation. CAR conjugated NERs containing fasudil were prepared by hypotonic lysis and extrusion method, and optimized for various physicochemical properties in-vitro. The formulations were then used to study the hemodynamic efficacy in a monocrotaline-induced rodent model of pulmonary arterial hypertension (PAH). CAR-NERs-Fasudil was spherical in shape with an average vesicle size and entrapment efficiency of 161.3 ± 1.37 nm and 48.81 ± 1.96%, respectively. Formulations were stable for ~3 weeks when stored at 4 °C and the drug was released in a controlled fashion for >48 h. The uptake of CAR-NERs-Fasudil by TGF-b activated pulmonary arterial smooth muscle cell was ~1.5-fold greater than the uptake of NERs-Fasudil. CAR-NERs-Fasudil inhibited ROCK activity and 5-hydroxytryptamine induced cell proliferation. In terms of reduction of pulmonary arterial pressure, intratracheal administration of CAR-NERs-Fasudil was ~2-fold more specific to the lungs compared with plain fasudil. Overall,CAR peptide grafted nanoerythrosomes offers a new platform for improving the therapeutic efficacy ofa rho-kinase inhibitor, fasudil, without affecting peripheral vasodilation.
Collapse
|
20
|
Yi R, Xiao-Ping G, Hui L. Atorvastatin prevents angiotensin II-induced high permeability of human arterial endothelial cell monolayers via ROCK signaling pathway. Biochem Biophys Res Commun 2015; 459:94-9. [PMID: 25712521 DOI: 10.1016/j.bbrc.2015.02.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/14/2015] [Indexed: 10/24/2022]
Abstract
Intracranial aneurysm, as a common cause of cerebral hemorrhage, is often discovered when the aneurysm ruptures, causing subarachnoid hemorrhage. Unfortunately, the formation of cerebral aneurysm, which is associated with endothelial damage and macrophage migration, still cannot be prevented now. Tight junctions (TJs) open due to the disappearance of TJ proteins occludin and zona occludens-1 (ZO-1) in damaged endothelia, thus allowing macrophage migration and forming cerebral aneurysm. Therefore, cerebral aneurysm formation can be prevented by increasing TJs of the artery endothelium. Interestingly, statin, which can reduce saccular aneurysm, may prevent aneurysm formation through acting on different steps, but the underlying mechanism remains unclear. In this study, angiotensin II (Ang II) significantly increased the permeability of human arterial endothelial cell (HAEC). Moreover, the distribution of ZO-1 in cell-cell junction area and the total expression in HAECs were significantly decreased by Ang II treatment. However, the abnormal distribution and decreased expression of ZO-1 and hyperpermeability of HAECs were significantly reversed by pretreatment with atorvastatin. Furthermore, Ang II-induced phosphorylations of MYPT1, LIMK and MLC2 were significantly inhibited with atorvastatin or Rho kinase (ROCK) inhibitor (H1152) pretreatment. Knockdown of ROCK-II probably abolished Ang II-induced abnormal ZO-1 distribution and expression deficiency and hyperpermeability of HAECs. In conclusion, atorvastatin prevented Ang II-induced rupture of HAEC monolayers by suppressing the ROCK signaling pathway. Our results may explain, at least in part, some beneficial effects of statins on cardiovascular diseases such as intracranial aneurysm.
Collapse
Affiliation(s)
- Ren Yi
- Department of Neurology, People's Hospital of Hunan Province, Changsha, Hunan 410005, PR China
| | - Gao Xiao-Ping
- Department of Neurology, People's Hospital of Hunan Province, Changsha, Hunan 410005, PR China.
| | - Liang Hui
- Department of Neurology, People's Hospital of Hunan Province, Changsha, Hunan 410005, PR China
| |
Collapse
|
21
|
Dedinszki D, Kiss A, Márkász L, Márton A, Tóth E, Székely L, Erdődi F. Inhibition of protein phosphatase-1 and -2A decreases the chemosensitivity of leukemic cells to chemotherapeutic drugs. Cell Signal 2014; 27:363-72. [PMID: 25435424 DOI: 10.1016/j.cellsig.2014.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/21/2014] [Indexed: 01/27/2023]
Abstract
The phosphorylation of key proteins balanced by protein kinases and phosphatases are implicated in the regulation of cell cycle and apoptosis of malignant cells and influences anticancer drug actions. The efficacy of daunorubicin (DNR) in suppression of leukemic cell survival was investigated in the presence of tautomycin (TM) and calyculin A (CLA), specific membrane permeable inhibitors of protein phosphatase-1 (PP1) and -2A (PP2A), respectively. CLA (50 nM) or TM (1μM) suppressed viability of THP-1 and KG-1 myeloid leukemia cell lines to moderate extents; however, they significantly increased survival upon DNR-induced cell death. CLA increased the phosphorylation level of Erk1/2 and PKB/Akt kinases, the retinoblastoma protein (pRb), decreased caspase-3 activation by DNR and increased the phosphorylation level of the inhibitory sites (Thr696 and Thr853) in the myosin phosphatase (MP) target subunit (MYPT1) as well as in a 25kDa kinase-enhanced phosphatase inhibitor (KEPI)-like protein. TM induced enhanced phosphorylation of pRb only, suggesting that this event may be a common factor upon CLA-induced PP2A and TM-induced PP1 inhibitory influences on cell survival. Silencing PP1 by siRNA in HeLa cells, or overexpression of Flag-KEPI in MCF-7 cells coupled with inducing its phosphorylation by PMA or CLA, resulted in increased phosphorylation of pRb. Our results indicate that PP1 directly dephosphorylates pRb, while PP2A might have an indirect influence via mediating the phosphorylation level of PP1 inhibitory proteins. These data imply the importance of PP1 inhibitory proteins in controlling the phosphorylation state of key proteins and regulating drug sensitivity and apoptosis in leukemic cells.
Collapse
Affiliation(s)
- Dóra Dedinszki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Márkász
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Adrienn Márton
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Székely
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
22
|
Bécsi B, Dedinszki D, Gyémánt G, Máthé C, Vasas G, Lontay B, Erdődi F. Identification of protein phosphatase interacting proteins from normal and UVA-irradiated HaCaT cell lysates by surface plasmon resonance based binding technique using biotin-microcystin-LR as phosphatase capturing molecule. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 138:240-8. [PMID: 24993084 DOI: 10.1016/j.jphotobiol.2014.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 01/06/2023]
Abstract
Identification of the interacting proteins of protein phosphatases is crucial to understand the cellular roles of these enzymes. Microcystin-LR (MC-LR), a potent inhibitor of protein phosphatase-1 (PP1), -2A (PP2A), PP4, PP5 and PP6, was biotinylated, immobilized to streptavidin-coupled sensorchip surface and used in surface plasmon resonance (SPR) based binding experiments to isolate phosphatase binding proteins. Biotin-MC-LR captured PP1 catalytic subunit (PP1c) stably and the biotin-MC-LR-PP1c complex was able to further interact with the regulatory subunit (MYPT1) of myosin phosphatase. Increased biotin-MC-LR coated sensorchip surface in the Surface Prep unit of Biacore 3000 captured PP1c, PP2Ac and their regulatory proteins including MYPT1, MYPT family TIMAP, inhibitor-2 as well as PP2A-A and -Bα-subunits from normal and UVA-irradiated HaCaT cell lysates as revealed by dot blot analysis of the recovered proteins. Biotin-MC-LR was used for the subcellular localization of protein phosphatases in HaCaT cells by identification of phosphatase-bound biotin-MC-LR with fluorescent streptavidin conjugates. Partial colocalization of the biotin-MC-LR signals with those obtained using anti-PP1c and anti-PP2Ac antibodies was apparent as judged by confocal microscopy. Our results imply that biotin-MC-LR is a suitable capture molecule in SPR for isolation of protein phosphatase interacting proteins from cell lysates in sufficient amounts for immunological detection.
Collapse
Affiliation(s)
- Bálint Bécsi
- MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, Debrecen, Hungary; Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Dóra Dedinszki
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Gyöngyi Gyémánt
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Csaba Máthé
- Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Gábor Vasas
- Department of Botany, University of Debrecen, Debrecen, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, Debrecen, Hungary; Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
23
|
Gupta N, Patel B, Ahsan F. Nano-engineered erythrocyte ghosts as inhalational carriers for delivery of fasudil: preparation and characterization. Pharm Res 2014; 31:1553-65. [PMID: 24449438 DOI: 10.1007/s11095-013-1261-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/05/2013] [Indexed: 01/29/2023]
Abstract
PURPOSE Nanoerythrosomes (NERs), an engineered derivative of erythrocytes, have long been used as drug delivery carriers. These cell based carriers are biocompatible and biodegradable, and they exhibit efficient drug loading, targeting specificity and prolonged biological half-life. In this study, we have evaluated the feasibility of NERs as inhalable carriers for delivery of fasudil, an investigational drug for the treatment of pulmonary arterial hypertension. METHODS We prepared NERs by hypotonic lysis of erythrocytes derived from rat blood followed by extrusion through polycarbonate membranes. The formulations were optimized and characterized for size, morphology, entrapment efficiency, stability, cellular uptake and in-vitro release profiles followed by monitoring of drug absorption and safety evaluation after intratracheal administration of fasudil-loaded NERs into rats. RESULTS NERs were spherical in shape with an average size of 154.1 ± 1.31 nm and the drug loading efficiency was 48.76 ± 2.18%. Formulations were stable when stored at 4°C for 3 weeks. When incubated with rat pulmonary arterial smooth muscle cells (PASM), a significant amount of NERs was taken up by PASM cells. The drug encapsulated in NERs inhibited the rho-kinase activity upto 50%, which was comparable with the plain fasudil. A ~6-8 fold increase in the half-life of fasudil was observed when encapsulated in NERs. CONCLUSION This study suggests that nanoerythrosomes can be used as cell derived carriers for inhalational delivery of fasudil.
Collapse
Affiliation(s)
- Nilesh Gupta
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, Texas, 79106, USA
| | | | | |
Collapse
|