1
|
Elizondo-Benedetto S, Sultan D, Wahidi R, Hamdi M, Zaghloul MS, Hafezi S, Arif B, McDonald LK, Harrison K, Thies D, Heo GS, Luehmann H, Detering L, Ohman JW, Wanken ZJ, Sanchez LA, Ippolito JE, Zheng J, Gropler RJ, Laforest R, Liu Y, Zayed MA. Pilot first-in-human CCR2 PET/CT to detect abdominal aortic aneurysm wall instability. Theranostics 2025; 15:5518-5528. [PMID: 40365294 PMCID: PMC12068289 DOI: 10.7150/thno.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/12/2025] [Indexed: 05/15/2025] Open
Abstract
Objective: In a pilot first-in-human study, we aimed to evaluate the feasibility of Positron Emission Tomography/Computed Tomography (PET/CT) imaging of C-C chemokine receptor type 2 (CCR2) to aid in the diagnosis of abdominal aortic aneurysm (AAA) instability. Rationale: Risk stratification of AAAs is an unmet clinical need. Patients often remain asymptomatic until they acutely rupture. Current imaging techniques focus on AAA diameter and growth rate, neglecting key cellular and molecular processes. Methods: A pilot, prospective, single-center, case-control study evaluated patients with and without AAAs. The study subjects received intravenous administration of a CCR2-specific radiotracer, followed by PET/CT assessment. Surgical AAA specimens were collected to evaluate CCR2 content and extracellular matrix integrity. PET/CT signals were evaluated in the AAA wall in the para-renal, mid-infrarenal, and aneurysm sac, and analyzed relative to patient demographics, AAA anatomical segmentation, and wall rupture potential index (RPI). Results: The AAA group was elderly (70.7 ± 7.3), with an aneurysm diameter of 4.86 ± 0.75 cm, and a higher prevalence of hyperlipidemia and statin use. Regardless of the anatomical segment analyzed, AAA surgical patients demonstrated a higher CCR2 radiotracer signal in the aortic tissue than others. However, no correlation was observed between the radiotracer signal and the AAA diameter. Patients with a higher radiotracer signal, particularly in the AAA posterior wall of the maximum-diameter region, were significantly correlated with RPI (P = 0.03). Histomorphic analysis demonstrated significantly elevated CCR2 levels, along with increased macrophage infiltration, matrix metalloproteinase activity, and severe elastin degradation. Conclusions: This first-in-human study demonstrated that CCR2 PET/CT molecular imaging is feasible and can identify increased wall instability in individuals with AAAs, especially in those at higher risk of disease progression.
Collapse
Affiliation(s)
- Santiago Elizondo-Benedetto
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Deborah Sultan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Wahidi
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Mahdjoub Hamdi
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed S. Zaghloul
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Shahab Hafezi
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Batool Arif
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura K. McDonald
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kitty Harrison
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dakkota Thies
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gyu Seong Heo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa Detering
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - J. Westley Ohman
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Zachary J. Wanken
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Luis A. Sanchez
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph E. Ippolito
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jie Zheng
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert J. Gropler
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard Laforest
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed A. Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Surgical Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University School of Medicine, St. Louis, MO, USA
- Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA
| |
Collapse
|
2
|
Elizondo-Benedetto S, Sastriques-Dunlop S, Detering L, Arif B, Heo GS, Sultan D, Luehmann H, Zhang X, Gao X, Bredemeyer A, Zaghloul MS, Harrison K, Thies D, McDonald L, Combadière C, Lin CY, Kang Y, Zheng J, Ippolito J, Laforest R, Lavine K, Gropler RJ, English SJ, Zayed MA, Liu Y. Chemokine Receptor 2 Is a Theranostic Biomarker for Abdominal Aortic Aneurysms. JACC Basic Transl Sci 2025:S2452-302X(25)00067-1. [PMID: 40272356 DOI: 10.1016/j.jacbts.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 04/25/2025]
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative vascular disease with a high mortality upon rupture. There is no diagnosis to predict the rupture nor effective medical therapies to prevent rupture. Here we demonstrate that the C-C chemokine receptor type 2 (CCR2) is a theranostic biomarker for AAA. In rat AAA models, we determined the potential of a CCR2-targeted positron emission tomography radiotracer [64Cu]Cu-DOTA-ECL1i predicting AAA rupture. Using a CCR2 inhibitor, we observed the effective prevention of rupture in AAA rat models. In humans, CCR2 positron emission tomography showed intense radiotracer uptake along the AAA wall in patients while little signal was observed in healthy volunteers.
Collapse
Affiliation(s)
- Santiago Elizondo-Benedetto
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sergio Sastriques-Dunlop
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lisa Detering
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Batool Arif
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gyu Seong Heo
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Deborah Sultan
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiaohui Zhang
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xuefeng Gao
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea Bredemeyer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mohamed S Zaghloul
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kitty Harrison
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dakkota Thies
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laura McDonald
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christophe Combadière
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yeona Kang
- Department of Mathematics, Howard University, Washington, DC, USA
| | - Jie Zheng
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph Ippolito
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard Laforest
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sean J English
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mohamed A Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA; Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Biomedical Engineering; Washington University School of Medicine, St. Louis, Missouri, USA; Veterans Affairs St. Louis Health Care System, St. Louis, Missouri, USA; Division of Surgical Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
3
|
Wang M, McGraw KR, Monticone RE, Pintus G. Unraveling Elastic Fiber-Derived Signaling in Arterial Aging and Related Arterial Diseases. Biomolecules 2025; 15:153. [PMID: 40001457 PMCID: PMC11853455 DOI: 10.3390/biom15020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Arterial stiffening is a significant risk factor for the development of cardiovascular diseases, including hypertension, atherosclerosis, and arteriopathy. The destruction of elastic fibers, accompanied by vascular inflammatory remodeling, is a key process in the progression of arterial stiffening and related pathologies. In young, healthy arteries, intact elastic fibers create a resilient microenvironment that maintains the quiescence of arterial cells. However, with advancing age, these elastic fibers undergo post-translational modifications, such as oxidation, glycosylation, and calcification, leading to their eventual degeneration. This degeneration results in the release of degraded peptides and the formation of an inflammatory, stiffened niche. Elastic fiber degeneration profoundly impacts the proinflammatory phenotypes and behaviors of various arterial cells, including endothelial cells, smooth muscle cells, macrophages, fibroblasts, and mast cells. Notably, the degraded elastic fibers release elastin-derived peptides (EDPs), which act as potent inflammatory molecules. EDPs activate various arterial cellular processes, including inflammatory secretion, cell migration, proliferation, and calcification, by interacting with the elastin receptor complex (ERC). These elastin-related cellular events are commonly observed with aging and in diseased arteries. These findings suggest that the degeneration of the elastic fiber meshwork is a primary event driving arterial inflammation, stiffening, and adverse remodeling with advancing age. Therefore, preserving elastic fibers and blocking the EDP/ERC signaling pathways may offer promising therapeutic strategies for mitigating age-related arterial remodeling and related arterial diseases.
Collapse
Affiliation(s)
- Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.R.M.)
| | - Kimberly R. McGraw
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.R.M.)
| | - Robert E. Monticone
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (K.R.M.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
- Department of Medical Laboratory Sciences, College of Health Sciences, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
4
|
Kim EN, Seok HY, Lim JS, Koh J, Bae JM, Kim CJ, Ryu GH, Ok YJ, Choi JS, Cho CH, Oh SJ. CRP deposition in human abdominal aortic aneurysm is associated with transcriptome alterations toward aneurysmal pathogenesis: insights from in situ spatial whole transcriptomic analysis. Front Immunol 2024; 15:1475051. [PMID: 39737187 PMCID: PMC11682986 DOI: 10.3389/fimmu.2024.1475051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Background We investigated the effects of C-reactive protein (CRP) deposition on the vessel walls in abdominal aortic aneurysm (AAA) by analyzing spatially resolved changes in gene expression. Our aim was to elucidate the pathways that contribute to disease progression. Methods AAA specimens from surgically resected formalin-fixed paraffin-embedded tissues were categorized into the AAA-high CRP [serum CRP ≥ 0.1 mg/dL, diffuse and strong immunohistochemistry (IHC); n = 7 (12 cores)] and AAA-low-CRP [serum CRP < 0.1 mg/dL, weak IHC; n = 3 (5 cores)] groups. Normal aorta specimens obtained during heart transplantation were used as the control group [n = 3 (6 cores)]. Spatially resolved whole transcriptomic analysis was performed, focusing on CD68-positive macrophages, CD45-positive lymphocytes, and αSMA-positive vascular smooth muscle cells. Results Spatial whole transcriptomic analysis revealed significant differential expression of 1,086, 1,629, and 1,281 genes between high-CRP and low-CRP groups within CD68-, CD45-, and αSMA-positive cells, respectively. Gene ontology (GO) analysis of CD68-positive macrophages identified clusters related to inflammation, apoptosis, and immune response, with signal transducer and activator of transcription 3 implicated across three processes. Notably, genes involved in blood vessel diameter maintenance were significantly downregulated in the high-CRP group. GO analysis of lymphocytes showed upregulation of leukocyte rolling and the apoptosis pathway, whereas, in smooth muscle cells, genes associated with Nuclear factor kappa B (NF-κB) signaling and c-Jun N-terminal Kinase (JNK) pathway were upregulated, and those related to blood pressure regulation were downregulated in the high-CRP group. Discussion CRP deposition was associated with significant transcriptomic changes in macrophages, lymphocytes, and vascular smooth muscle cells in AAA, suggesting its potential role in promoting pro-inflammatory and apoptotic processes, as well as contributing to the degradation of vascular structure and elasticity.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/immunology
- Transcriptome
- Male
- Gene Expression Profiling
- C-Reactive Protein/genetics
- C-Reactive Protein/analysis
- C-Reactive Protein/metabolism
- Female
- Aged
- Macrophages/metabolism
- Macrophages/immunology
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Eun Na Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Young Seok
- Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ga-Hyeon Ryu
- Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - You Jung Ok
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Sung Choi
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chung-Hyun Cho
- Department of Biomedical Sciences and Pharmacology , College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Se Jin Oh
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
6
|
Gibson Hughes TA, Dona MSI, Sobey CG, Pinto AR, Drummond GR, Vinh A, Jelinic M. Aortic Cellular Heterogeneity in Health and Disease: Novel Insights Into Aortic Diseases From Single-Cell RNA Transcriptomic Data Sets. Hypertension 2024; 81:738-751. [PMID: 38318714 DOI: 10.1161/hypertensionaha.123.20597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Aortic diseases such as atherosclerosis, aortic aneurysms, and aortic stiffening are significant complications that can have significant impact on end-stage cardiovascular disease. With limited pharmacological therapeutic strategies that target the structural changes in the aorta, surgical intervention remains the only option for some patients with these diseases. Although there have been significant contributions to our understanding of the cellular architecture of the diseased aorta, particularly in the context of atherosclerosis, furthering our insight into the cellular drivers of disease is required. The major cell types of the aorta are well defined; however, the advent of single-cell RNA sequencing provides unrivaled insights into the cellular heterogeneity of each aortic cell type and the inferred biological processes associated with each cell in health and disease. This review discusses previous concepts that have now been enhanced with recent advances made by single-cell RNA sequencing with a focus on aortic cellular heterogeneity.
Collapse
Affiliation(s)
- Tayla A Gibson Hughes
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Malathi S I Dona
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (M.S.I.D., A.R.P.)
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Alexander R Pinto
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (M.S.I.D., A.R.P.)
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| |
Collapse
|
7
|
Sastriques-Dunlop S, Elizondo-Benedetto S, Arif B, Meade R, Zaghloul MS, Luehmann H, Heo GS, English SJ, Liu Y, Zayed MA. Ketosis prevents abdominal aortic aneurysm rupture through C-C chemokine receptor type 2 downregulation and enhanced extracellular matrix balance. Sci Rep 2024; 14:1438. [PMID: 38228786 PMCID: PMC10791699 DOI: 10.1038/s41598-024-51996-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
Abdominal aortic aneurysms (AAAs) are prevalent with aging, and AAA rupture is associated with increased mortality. There is currently no effective medical therapy to prevent AAA rupture. The monocyte chemoattractant protein (MCP-1)/C-C chemokine receptor type 2 (CCR2) axis critically regulates AAA inflammation, matrix-metalloproteinase (MMP) production, and extracellular matrix (ECM) stability. We therefore hypothesized that a diet intervention that can modulate CCR2 axis may therapeutically impact AAA risk of rupture. Since ketone bodies (KBs) can trigger repair mechanisms in response to inflammation, we evaluated whether systemic ketosis in vivo could reduce CCR2 and AAA progression. Male Sprague-Dawley rats underwent surgical AAA formation using porcine pancreatic elastase and received daily β-aminopropionitrile to promote AAA rupture. Rats with AAAs received either a standard diet, ketogenic diet (KD), or exogenous KBs (EKB). Rats receiving KD and EKB reached a state of ketosis and had significant reduction in AAA expansion and incidence of rupture. Ketosis also led to significantly reduced aortic CCR2 content, improved MMP balance, and reduced ECM degradation. Consistent with these findings, we also observed that Ccr2-/- mice have significantly reduced AAA expansion and rupture. In summary, this study demonstrates that CCR2 is essential for AAA expansion, and that its modulation with ketosis can reduce AAA pathology. This provides an impetus for future clinical studies that will evaluate the impact of ketosis on human AAA disease.
Collapse
Affiliation(s)
- Sergio Sastriques-Dunlop
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Santiago Elizondo-Benedetto
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Batool Arif
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Rodrigo Meade
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed S Zaghloul
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gyu S Heo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sean J English
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed A Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, MO, USA.
- Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
| |
Collapse
|
8
|
Guo Y, Wang B, Gao H, He C, Xin S, Hua R, Liu X, Zhang S, Xu J. Insights into the Characteristics and Functions of Mast Cells in the Gut. GASTROENTEROLOGY INSIGHTS 2023; 14:637-652. [DOI: 10.3390/gastroent14040043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Mast cells have vital functions in allergic responses and parasite ejection, while the underlying mechanisms remain unclear. Meanwhile, MCs are essential for the maintenance of GI barrier function, and their interactions with neurons, immune cells, and epithelial cells have been related to various gastrointestinal (GI) disorders. An increasing number of investigations are being disclosed, with a lack of inner connections among them. This review aims to highlight their properties and categorization and further delve into their participation in GI diseases via interplay with neurons and immune cells. We also discuss their roles in diseases like inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Based on the evidence, we advocated for their potential application in clinical practices and advocated future research prospects.
Collapse
Affiliation(s)
- Yuexin Guo
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Clinical Laboratory, Aerospace Center Hospital, Peking University, Beijing 100049, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Rongxuan Hua
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Sitian Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
9
|
Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med 2023; 55:2519-2530. [PMID: 38036736 PMCID: PMC10766996 DOI: 10.1038/s12276-023-01130-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Aortic aneurysm is a chronic disease characterized by localized expansion of the aorta, including the ascending aorta, arch, descending aorta, and abdominal aorta. Although aortic aneurysms are generally asymptomatic, they can threaten human health by sudden death due to aortic rupture. Aortic aneurysms are estimated to lead to 150,000 ~ 200,000 deaths per year worldwide. Currently, there are no effective drugs to prevent the growth or rupture of aortic aneurysms; surgical repair or endovascular repair is the only option for treating this condition. The pathogenic mechanisms and therapeutic targets for aortic aneurysms have been examined over the past decade; however, there are unknown pathogenic mechanisms involved in cellular heterogeneity and plasticity, the complexity of the transforming growth factor-β signaling pathway, inflammation, cell death, intramural neovascularization, and intercellular communication. This review summarizes the latest research findings and current pathogenic mechanisms of aortic aneurysms, which may enhance our understanding of aortic aneurysms.
Collapse
Affiliation(s)
- Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mi-Ran Lee
- Department of Biomedical Laboratory Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 28024, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
10
|
Elizondo-Benedetto S, Sastriques-Dunlop S, Detering L, Arif B, Heo GS, Sultan D, Luehmann H, Zhang X, Gao X, Harrison K, Thies D, McDonald L, Combadière C, Lin CY, Kang Y, Zheng J, Ippolito J, Laforest R, Gropler RJ, English SJ, Zayed MA, Liu Y. Chemokine Receptor 2 Is A Theranostic Biomarker for Abdominal Aortic Aneurysms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.06.23298031. [PMID: 37986880 PMCID: PMC10659515 DOI: 10.1101/2023.11.06.23298031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative vascular disease impacting aging populations with a high mortality upon rupture. There are no effective medical therapies to prevent AAA expansion and rupture. We previously demonstrated the role of the monocyte chemoattractant protein-1 (MCP-1) / C-C chemokine receptor type 2 (CCR2) axis in rodent AAA pathogenesis via positron emission tomography/computed tomography (PET/CT) using CCR2 targeted radiotracer 64 Cu-DOTA-ECL1i. We have since translated this radiotracer into patients with AAA. CCR2 PET showed intense radiotracer uptake along the AAA wall in patients while little signal was observed in healthy volunteers. AAA tissues collected from individuals scanned with 64 Cu-DOTA-ECL1i and underwent open-repair later demonstrated more abundant CCR2+ cells compared to non-diseased aortas. We then used a CCR2 inhibitor (CCR2i) as targeted therapy in our established male and female rat AAA rupture models. We observed that CCR2i completely prevented AAA rupture in male rats and significantly decreased rupture rate in female AAA rats. PET/CT revealed substantial reduction of 64 Cu-DOTA-ECL1i uptake following CCR2i treatment in both rat models. Characterization of AAA tissues demonstrated decreased expression of CCR2+ cells and improved histopathological features. Taken together, our results indicate the potential of CCR2 as a theranostic biomarker for AAA management.
Collapse
|
11
|
Jia Y, Li D, Yu J, Jiang W, Liu Y, Li F, Zeng R, Wan Z, Liao X. Angiogenesis in Aortic Aneurysm and Dissection: A Literature Review. Rev Cardiovasc Med 2023; 24:223. [PMID: 39076698 PMCID: PMC11266809 DOI: 10.31083/j.rcm2408223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 03/06/2023] [Indexed: 07/31/2024] Open
Abstract
Aortic aneurysm and aortic dissection (AA/AD) are critical aortic diseases with a hidden onset and sudden rupture, usually resulting in an inevitable death. Several pro- and anti-angiogenic factors that induce new capillary formation in the existing blood vessels regulate angiogenesis. In addition, aortic disease mainly manifests as the proliferation and migration of endothelial cells of the adventitia vasa vasorum. An increasing number of studies have shown that angiogenesis is a characteristic change that may promote AA/AD occurrence, progression, and rupture. Furthermore, neocapillaries are leaky and highly susceptible to injury by cytotoxic agents, which promote extracellular matrix remodeling, facilitate inflammatory cell infiltration, and release coagulation factors and proteases within the wall. Mechanistically, inflammation, hypoxia, and angiogenic factor signaling play important roles in angiogenesis in AA/AD under the complex interaction of multiple cell types, such as smooth muscle cells, fibroblasts, macrophages, mast cells, and neutrophils. Therefore, based on current evidence, this review aims to discuss the manifestation, pathological role, and underlying mechanisms of angiogenesis involved in AA/AD, providing insights into the prevention and treatment of AA/AD.
Collapse
Affiliation(s)
- Yu Jia
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Dongze Li
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Jing Yu
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yi Liu
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Fanghui Li
- Department of Cardiology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Rui Zeng
- Department of Cardiology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Zhi Wan
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, 610044 Chengdu, Sichuan, China
| | - Xiaoyang Liao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| |
Collapse
|
12
|
Li C, Liu Z, Yuan G, Liu Y, Wang W. Abdominal Aortic Aneurysm and PET/CT: From Molecular Mechanisms to Potential Molecular Imaging Targets. Rev Cardiovasc Med 2023; 24:132. [PMID: 39076752 PMCID: PMC11273052 DOI: 10.31083/j.rcm2405132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 07/31/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is the most common and critical aortic disease. Bleeding is the most serious complication from a ruptured AAA, which often results in death. Therefore, early diagnosis and treatment are the only effective means to reduce AAA associated mortality. Positron emission tomography/computed tomography (PET/CT) combines functional and anatomical imaging. The expanded application of PET/CT in the medical field could have benefits for the diagnosis and treatment of patients with AAA. This review explores the efficiency of PET/CT in the diagnosis of AAA based on our understanding of the underlying molecular mechanisms of AAA development.
Collapse
Affiliation(s)
- Chenhao Li
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Zhiyin Liu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Gang Yuan
- The State Key Laboratory of Quality Research in Chinese Medicine of Macau University of Science and Technology, Avenida Wai Long, 999078 Taipa, Macau
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Weiming Wang
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| |
Collapse
|
13
|
Zhang Y, Liu T, Deng Z, Fang W, Zhang X, Zhang S, Wang M, Luo S, Meng Z, Liu J, Sukhova GK, Li D, McKenzie ANJ, Libby P, Shi G, Guo J. Group 2 Innate Lymphoid Cells Protect Mice from Abdominal Aortic Aneurysm Formation via IL5 and Eosinophils. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206958. [PMID: 36592421 PMCID: PMC9982556 DOI: 10.1002/advs.202206958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Development of abdominal aortic aneurysms (AAA) enhances lesion group-2 innate lymphoid cell (ILC2) accumulation and blood IL5. ILC2 deficiency in Rorafl/fl Il7rCre/+ mice or induced ILC2 depletion in Icosfl-DTR-fl/+ Cd4Cre/+ mice expedites AAA growth, increases lesion inflammation, but leads to systemic IL5 and eosinophil (EOS) deficiency. Mechanistic studies show that ILC2 protect mice from AAA formation via IL5 and EOS. IL5 or ILC2 from wild-type (WT) mice, but not ILC2 from Il5-/- mice induces EOS differentiation in bone-marrow cells from Rorafl/fl Il7rCre/+ mice. IL5, IL13, and EOS or ILC2 from WT mice, but not ILC2 from Il5-/- and Il13-/- mice block SMC apoptosis and promote SMC proliferation. EOS but not ILC2 from WT or Il5-/- mice block endothelial cell (EC) adhesion molecule expression, angiogenesis, dendritic cell differentiation, and Ly6Chi monocyte polarization. Reconstitution of WT EOS and ILC2 but not Il5-/- ILC2 slows AAA growth in Rorafl/fl Il7rCre/+ mice by increasing systemic EOS. Besides regulating SMC pathobiology, ILC2 play an indirect role in AAA protection via the IL5 and EOS mechanism.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Tianxiao Liu
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Guangdong Provincial Geriatrics InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Zhiyong Deng
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Department of GeriatricsNational Key Clinic SpecialtyGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Wenqian Fang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesSchool of Life ScienceShanghai UniversityShanghai200444China
| | - Xian Zhang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Shuya Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Minjie Wang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Songyuan Luo
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Zhaojie Meng
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Jing Liu
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Galina K. Sukhova
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Dazhu Li
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Andrew N. J. McKenzie
- Division of Protein & Nucleic Acid ChemistryMRC Laboratory of Molecular BiologyCambridgeCB2 0QHUK
| | - Peter Libby
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Guo‐Ping Shi
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Junli Guo
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
| |
Collapse
|
14
|
Sastriques-Dunlop S, Elizondo-Benedetto S, Arif B, Meade R, Zaghloul MS, English SJ, Liu Y, Zayed MA. Ketosis Prevents Abdominal Aortic Aneurysm Rupture Through CCR2 Downregulation and Enhanced MMP Balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529460. [PMID: 36865192 PMCID: PMC9980063 DOI: 10.1101/2023.02.21.529460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Abdominal aortic aneurysms (AAAs) are common in aging populations, and AAA rupture is associated with high morbidity and mortality. There is currently no effective medical preventative therapy for AAAs to avoid rupture. It is known that the monocyte chemoattractant protein (MCP-1) / C-C chemokine receptor type 2 (CCR2) axis critically regulates AAA tissue inflammation, matrix-metalloproteinase (MMP) production, and in turn extracellular matrix (ECM) stability. However, therapeutic modulation of the CCR2 axis for AAA disease has so far not been accomplished. Since ketone bodies (KBs) are known to trigger repair mechanisms in response to vascular tissue inflammation, we evaluated whether systemic in vivo ketosis can impact CCR2 signaling, and therefore impact AAA expansion and rupture. To evaluate this, male Sprague-Dawley rats underwent surgical AAA formation using porcine pancreatic elastase (PPE), and received daily β-aminopropionitrile (BAPN) to promote AAA rupture. Animals with formed AAAs received either a standard diet (SD), ketogenic diet (KD), or exogenous KB supplements (EKB). Animals that received KD and EKB reached a state of ketosis, and had significantly reduced AAA expansion and incidence of rupture. Ketosis also led to significantly reduced CCR2, inflammatory cytokine content, and infiltrating macrophages in AAA tissue. Additionally, animals in ketosis had improved balance in aortic wall matrix-metalloproteinase (MMP), reduced extracellular matrix (ECM) degradation, and higher aortic media Collagen content. This study demonstrates that ketosis plays an important therapeutic role in AAA pathobiology, and provides the impetus for future studies investigating the role of ketosis as a preventative strategy for individuals with AAAs.
Collapse
|
15
|
Xu N, Yutzey KE. Therapeutic CCR2 Blockade Prevents Inflammation and Alleviates Myxomatous Valve Disease in Marfan Syndrome. JACC Basic Transl Sci 2022; 7:1143-1157. [PMID: 36687269 PMCID: PMC9849467 DOI: 10.1016/j.jacbts.2022.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/05/2022]
Abstract
Myxomatous valve disease (MVD) can lead to cardiac dysfunction and heart failure, yet medical therapies are lacking. C-C chemokine receptor type 2 (CCR2)+ immune cell infiltration promotes mitral valve inflammation in a Marfan syndrome (MFS) mouse model. The CCR2 genetic knockout reduces inflammation with downregulated proteases and improved extracellular matrix integrity. Pharmacological inhibition of CCR2+ cell infiltration by RS504393 prevents the initiation and progression of MVD, indicated by restored protease expression, improved extracellular matrix organization, and reduced valve leaflet thickness in MFS mice. Thus, the CCR2 antagonist RS504393 is a promising therapy for the treatment of MVD in MFS.
Collapse
Affiliation(s)
- Na Xu
- Division of Molecular Cardiovascular Biology, the Heart Institute, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, the Heart Institute, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
16
|
Liu R, Huang SS, Shi H, Chang S, Ge J. Alpha-lipoic acid protects against aortic aneurysm and dissection by improving vascular smooth muscle cell function. Life Sci 2022; 311:121159. [DOI: 10.1016/j.lfs.2022.121159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
17
|
Phosphodiesterase 4D contributes to angiotensin II-induced abdominal aortic aneurysm through smooth muscle cell apoptosis. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1201-1213. [PMID: 35999453 PMCID: PMC9440214 DOI: 10.1038/s12276-022-00815-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a permanent expansion of the abdominal aorta that has a high mortality but limited treatment options. Phosphodiesterase (PDE) 4 family members are cAMP-specific hydrolyzing enzymes and have four isoforms (PDE4A-PDE4D). Several pan-PDE4 inhibitors are used clinically. However, the regulation and function of PDE4 in AAA remain largely unknown. Herein, we showed that PDE4D expression is upregulated in human and angiotensin II-induced mouse AAA tissues using RT-PCR, western blotting, and immunohistochemical staining. Furthermore, smooth muscle cell (SMC)-specific Pde4d knockout mice showed significantly reduced vascular destabilization and AAA development in an experimental AAA model. The PDE4 inhibitor rolipram also suppressed vascular pathogenesis and AAA formation in mice. In addition, PDE4D deficiency inhibited caspase 3 cleavage and SMC apoptosis in vivo and in vitro, as shown by bulk RNA-seq, western blotting, flow cytometry and TUNEL staining. Mechanistic studies revealed that PDE4D promotes apoptosis by suppressing the activation of cAMP-activated protein kinase A (PKA) instead of the exchange protein directly activated by cAMP (Epac). Additionally, the phosphorylation of BCL2-antagonist of cell death (Bad) was reversed by PDE4D siRNA in vitro, which indicates that PDE4D regulates SMC apoptosis via the cAMP-PKA-pBad axis. Overall, these findings indicate that PDE4D upregulation in SMCs plays a causative role in AAA development and suggest that pharmacological inhibition of PDE4 may represent a potential therapeutic strategy.
Collapse
|
18
|
FOS gene associated immune infiltration signature in perivascular adipose tissues of abdominal aortic aneurysm. Gene X 2022; 831:146576. [PMID: 35568340 DOI: 10.1016/j.gene.2022.146576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Abdominal aortic aneurysms (AAA) are pathological dilations in local aortic wall. The inflammatory infiltrates of the perivascular adipose tissue (PAT) surrounding AAAs were associated with AAAs and have been shown to contribute vascular pathology. However, the mechanism by which PAT inflammation contributes to vascular pathology in AAA remains to be clarified. This study aimed to explore the association between immune cell infiltration and key gene expression profile in PAT of AAA. For that, a gene expression dataset of human dilated perivascular adipose tissue (dPAT), non-dilated perivascular adipose tissue (ndPAT), subcutaneous abdominal fat (SAF) and omental-visceral fat (OVF) samples, as well as another microarray dataset of the abdominal perivascular adipose tissue in peripheral artery disease patients were downloaded from GEO database for analysis in this study. The CIBERSORT algorithm, weighted gene co-expression network analysis (WGCNA) and LASSO algorithm were used for the identification of immune infiltration, immune-related genes and the development of diagnostic signature. Our data discovered a significant higher proportion of activated mast cells and follicular helper T (Tfh) cells in dPAT than ndPAT, OVT and SAF samples. Moreover, AP-1 family members (FOS, FOSB, ATF3, JUN and JUNB) were found to compose the hub genes of purple module in WGCNA. Among them, FOS gene acts as a higher efficient marker to discriminate dPAT from ndPAT, OVT and SAF in AAA. Meanwhile, the expression profiles of the AP-1 family members are all significantly positive correlated with activated mast cell, plasma cell and Tfh cell infiltration in dPAT of AAA. Therefore, in the PAT surrounding AAA, the signature of inflammatory infiltration might be represented by a FOS-dominated cell network consist of activated mast cell, plasma cell and Tfh cell. Given the complicated etiology of AAA, our results are likely to shed new light on the pathophysiologic mechanism of AAA influenced by the local dPAT.
Collapse
|
19
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Shi J, Guo J, Li Z, Xu B, Miyata M. Importance of NLRP3 Inflammasome in Abdominal Aortic Aneurysms. J Atheroscler Thromb 2021; 28:454-466. [PMID: 33678767 PMCID: PMC8193780 DOI: 10.5551/jat.rv17048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic inflammatory degenerative aortic disease, which particularly affects older people. Nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome is a multi-protein complex and mediates inflammatory responses by activating caspase 1 for processing premature interleukin (IL)-1β and IL-18. In this review, we first summarize the principle of NLRP3 inflammasome activation and the functionally distinct classes of small molecule NLRP3 inflammasome inhibitors. Next, we provide a comprehensive literature review on the expression of NLRP3 inflammasome effector mediators (IL-1β and IL-18) and components (caspase 1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and NLRP3) in clinical and experimental AAAs. Finally, we discuss the influence of genetic deficiency or pharmacological inhibition of individual effector mediators and components of NLRP3 inflammasome on experimental AAAs. Accumulating clinical and experimental evidence suggests that NLRP3 inflammasome may be a promise therapeutic target for developing pharmacological strategies for clinical AAA management.
Collapse
Affiliation(s)
- Jinyun Shi
- Center for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan, Shanxi Province, P. R. China
| | - Jia Guo
- Center for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan, Shanxi Province, P. R. China
| | - Zhidong Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi Province, P. R. China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masaaki Miyata
- School of Health Science, Faculty of Medicine, Kagoshima University, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
21
|
Zhao H, Yang H, Geng C, Chen Y, Pang J, Shu T, Zhao M, Tang Y, Li Z, Li B, Hou C, Song X, Wu A, Guo X, Chen S, Liu B, Yan C, Wang J. Role of IgE-FcεR1 in Pathological Cardiac Remodeling and Dysfunction. Circulation 2020; 143:1014-1030. [PMID: 33305586 DOI: 10.1161/circulationaha.120.047852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Immunoglobulin E (IgE) belongs to a class of immunoglobulins involved in immune response to specific allergens. However, the roles of IgE and IgE receptor (FcεR1) in pathological cardiac remodeling and heart failure are unknown. METHODS Serum IgE levels and cardiac FcεR1 expression were assessed in diseased hearts from human and mouse. The role of FcεR1 signaling in pathological cardiac remodeling was explored in vivo by FcεR1 genetic depletion, anti-IgE antibodies, and bone marrow transplantation. The roles of the IgE-FcεR1 pathway were further evaluated in vitro in primary cultured rat cardiomyocytes and cardiac fibroblasts (CFs). RNA sequencing and bioinformatic analyses were used to identify biochemical changes and signaling pathways that are regulated by IgE/FcεR1. RESULTS Serum IgE levels were significantly elevated in patients with heart failure as well as in 2 mouse cardiac disease models induced by chronic pressure overload via transverse aortic constriction and chronic angiotensin II infusion. Interestingly, FcεR1 expression levels were also significantly upregulated in failing hearts from human and mouse. Blockade of the IgE-FcεR1 pathway by FcεR1 knockout alleviated transverse aortic constriction- or angiotensin II-induced pathological cardiac remodeling or dysfunction. Anti-IgE antibodies (including the clinical drug omalizumab) also significantly alleviated angiotensin II-induced cardiac remodeling. Bone marrow transplantation experiments indicated that IgE-induced cardiac remodeling was mediated through non-bone marrow-derived cells. FcεR1 was found to be expressed in both cardiomyocytes and CFs. In cultured rat cardiomyocytes, IgE-induced cardiomyocyte hypertrophy and hypertrophic marker expression were abolished by depleting FcεR1. In cultured rat CFs, IgE-induced CF activation and matrix protein production were also blocked by FcεR1 deficiency. RNA sequencing and signaling pathway analyses revealed that transforming growth factor-β may be a critical mediator, and blocking transforming growth factor-β indeed alleviated IgE-induced cardiomyocyte hypertrophy and cardiac fibroblast activation in vitro. CONCLUSIONS Our findings suggest that IgE induction plays a causative role in pathological cardiac remodeling, at least partially via the activation of IgE-FcεR1 signaling in cardiomyocytes and CFs. Therapeutic strategies targeting the IgE-FcεR1 axis may be effective for managing IgE-mediated cardiac remodeling.
Collapse
Affiliation(s)
- Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Hongqin Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Chi Geng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Yang Chen
- Department of Pharmacology, School of Basic Medical Sciences, Inner Mongolia Medical University, Huhhot, China (Y.C.)
| | - Junling Pang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Ting Shu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Meijun Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Yaqin Tang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Zhiwei Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Baicun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Cuiliu Hou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Aoxue Wu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing (A.W., X.G.)
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing (A.W., X.G.)
| | - Si Chen
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, NY (S.C., B.L., C.Y.)
| | - Bin Liu
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, NY (S.C., B.L., C.Y.)
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, NY (S.C., B.L., C.Y.)
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| |
Collapse
|
22
|
Jin J, Zhao Q. Emerging role of mTOR in tumor immune contexture: Impact on chemokine-related immune cells migration. Theranostics 2020; 10:6231-6244. [PMID: 32483450 PMCID: PMC7255024 DOI: 10.7150/thno.45219] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/17/2020] [Indexed: 12/27/2022] Open
Abstract
During the last few decades, cell-based anti-tumor immunotherapy emerged and it has provided us with a large amount of knowledge. Upon chemokines recognition, immune cells undergo rapid trafficking and activation in disease milieu, with immune cells chemotaxis being accompanied by activation of diverse intercellular signal transduction pathways. The outcome of chemokines-mediated immune cells chemotaxis interacts with the cue of mammalian target of rapamycin (mTOR) in the tumor microenvironment (TME). Indeed, the mTOR cascade in immune cells involves migration and infiltration. In this review, we summarize the available mTOR-related chemokines, as well as the characterized upstream regulators and downstream targets in immune cells chemotaxis and assign potential underlying mechanisms in each evaluated chemokine. Specifically, we focus on the involvement of mTOR in chemokine-mediated immune related cells in the balance between tumor immunity and malignancy.
Collapse
Affiliation(s)
- Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
- Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, PR China
| |
Collapse
|
23
|
English SJ, Sastriques SE, Detering L, Sultan D, Luehmann H, Arif B, Heo GS, Zhang X, Laforest R, Zheng J, Lin CY, Gropler RJ, Liu Y. CCR2 Positron Emission Tomography for the Assessment of Abdominal Aortic Aneurysm Inflammation and Rupture Prediction. Circ Cardiovasc Imaging 2020; 13:e009889. [PMID: 32164451 PMCID: PMC7101060 DOI: 10.1161/circimaging.119.009889] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The monocyte chemoattractant protein-1/CCR2 (chemokine receptor 2) axis plays an important role in abdominal aortic aneurysm (AAA) pathogenesis, with effects on disease progression and anatomic stability. We assessed the expression of CCR2 in a rodent model and human tissues, using a targeted positron emission tomography radiotracer (64Cu-DOTA-ECL1i). METHODS AAAs were generated in Sprague-Dawley rats by exposing the infrarenal, intraluminal aorta to PPE (porcine pancreatic elastase) under pressure to induce aneurysmal degeneration. Heat-inactivated PPE was used to generate a sham operative control. Rat AAA rupture was stimulated by the administration of β-aminopropionitrile, a lysyl oxidase inhibitor. Biodistribution was performed in wild-type rats at 1 hour post tail vein injection of 64Cu-DOTA-ECL1i. Dynamic positron emission tomography/computed tomography imaging was performed in rats to determine the in vivo distribution of radiotracer. RESULTS Biodistribution showed fast renal clearance. The localization of radiotracer uptake in AAA was verified with high-resolution computed tomography. At day 7 post-AAA induction, the radiotracer uptake (standardized uptake value [SUV]=0.91±0.25) was approximately twice that of sham-controls (SUV=0.47±0.10; P<0.01). At 14 days post-AAA induction, radiotracer uptake by either group did not significantly change (AAA SUV=0.86±0.17 and sham-control SUV=0.46±0.10), independent of variations in aortic diameter. Competitive CCR2 receptor blocking significantly decreased AAA uptake (SUV=0.42±0.09). Tracer uptake in AAAs that subsequently ruptured (SUV=1.31±0.14; P<0.005) demonstrated uptake nearly twice that of nonruptured AAAs (SUV=0.73±0.11). Histopathologic characterization of rat and human AAA tissues obtained from surgery revealed increased expression of CCR2 that was co-localized with CD68+ macrophages. Ex vivo autoradiography demonstrated specific binding of 64Cu-DOTA-ECL1i to CCR2 in both rat and human aortic tissues. CONCLUSIONS CCR2 positron emission tomography is a promising new biomarker for the noninvasive assessment of AAA inflammation that may aid in associated rupture prediction.
Collapse
MESH Headings
- Aneurysm, Ruptured/diagnosis
- Aneurysm, Ruptured/genetics
- Aneurysm, Ruptured/metabolism
- Animals
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/diagnosis
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Biomarkers/metabolism
- Fluorodeoxyglucose F18/pharmacology
- Gene Expression Regulation
- Male
- Positron-Emission Tomography/methods
- Prognosis
- RNA/genetics
- Radiopharmaceuticals/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, CCR2/biosynthesis
- Receptors, CCR2/genetics
Collapse
Affiliation(s)
- Sean J. English
- Department of Surgery, Section of Vascular Surgery, Washington University, St. Louis, MO
| | - Sergio E. Sastriques
- Department of Surgery, Section of Vascular Surgery, Washington University, St. Louis, MO
| | - Lisa Detering
- Department of Radiology, Washington University, St. Louis, MO
| | - Deborah Sultan
- Department of Radiology, Washington University, St. Louis, MO
| | - Hannah Luehmann
- Department of Radiology, Washington University, St. Louis, MO
| | - Batool Arif
- Department of Surgery, Section of Vascular Surgery, Washington University, St. Louis, MO
| | - Gyu Seong Heo
- Department of Radiology, Washington University, St. Louis, MO
| | - Xiaohui Zhang
- Department of Radiology, Washington University, St. Louis, MO
| | | | - Jie Zheng
- Department of Radiology, Washington University, St. Louis, MO
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | | | - Yongjian Liu
- Department of Radiology, Washington University, St. Louis, MO
| |
Collapse
|
24
|
Liu B, Granville DJ, Golledge J, Kassiri Z. Pathogenic mechanisms and the potential of drug therapies for aortic aneurysm. Am J Physiol Heart Circ Physiol 2020; 318:H652-H670. [PMID: 32083977 PMCID: PMC7099451 DOI: 10.1152/ajpheart.00621.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Aortic aneurysm is a permanent focal dilation of the aorta. It is usually an asymptomatic disease but can lead to sudden death due to aortic rupture. Aortic aneurysm-related mortalities are estimated at ∼200,000 deaths per year worldwide. Because no pharmacological treatment has been found to be effective so far, surgical repair remains the only treatment for aortic aneurysm. Aortic aneurysm results from changes in the aortic wall structure due to loss of smooth muscle cells and degradation of the extracellular matrix and can form in different regions of the aorta. Research over the past decade has identified novel contributors to aneurysm formation and progression. The present review provides an overview of cellular and noncellular factors as well as enzymes that process extracellular matrix and regulate cellular functions (e.g., matrix metalloproteinases, granzymes, and cathepsins) in the context of aneurysm pathogenesis. An update of clinical trials focusing on therapeutic strategies to slow abdominal aortic aneurysm growth and efforts underway to develop effective pharmacological treatments is also provided.
Collapse
Affiliation(s)
- Bo Liu
- University of Wisconsin, Madison, Department of Surgery, Madison Wisconsin
| | - David J Granville
- International Collaboration on Repair Discoveries Centre and University of British Columbia Centre for Heart Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Department of Vascular and Endovascular Surgery, Townsville Hospital and Health Services, Townsville, Queensland, Australia
| | - Zamaneh Kassiri
- University of Alberta, Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Gao R, Liu D, Guo W, Ge W, Fan T, Li B, Gao P, Liu B, Zheng Y, Wang J. Meprin-α (Mep1A) enhances TNF-α secretion by mast cells and aggravates abdominal aortic aneurysms. Br J Pharmacol 2020; 177:2872-2885. [PMID: 32072633 DOI: 10.1111/bph.15019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Abdominal aorticaneurysm (AAA) rupture is mainly due to elastic lamina degradation. As a metalloendopeptidase, meprin-α (Mep1A) critically modulates the activity of proteins and inflammatory cytokines in various diseases. Here, we sought to investigate the functional role of Mep1A in AAA formation and rupture. EXPERIMENTAL APPROACH AAA tissues were detected by using real-time PCR (RT-PCR), western blotting (WB), and immunohistochemistry. Further mechanistic studies used RT-PCR, WB, and enzyme-linked immunosorbent assays. KEY RESULTS Mep1A mediated AAA formation by regulating the mast cell (MC) secretion of TNF-α, which promoted matrix metalloproteinase (MMP) expression and apoptosis in smooth muscle cells (SMCs). Importantly, increased Mep1A expression was found in human AAA tissues and in angiotensin II-induced mouse AAA tissues. Mep1A deficiency reduced AAA formation and increased the survival rate of AAA mice. Pathological analysis showed that Mep1A deletion decreased elastic lamina degradation and SMC apoptosis in AAA tissues. Furthermore, Mep1A was expressed mainly in MCs, wherein it mediated TNF-α expression. Mep1A inhibitor actinonin significantly inhibited TNF-α secretion in MCs. TNF-α secreted by MCs enhanced MMP2 expression in SMCs and promoted SMC apoptosis. CONCLUSION AND IMPLICATIONS Taken together, these data suggest that Mep1A may be vital in AAA pathophysiology by regulating TNF-α production by MCs. Knocking out Mep1A significantly decreased AAA diameter and improved AAA stability in mice. Therefore, Mep1A is a potential new therapeutic target in the development of AAA.
Collapse
Affiliation(s)
- Ran Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Duan Liu
- Peking Union Medical College Hospital, Beijing, China
| | - Wenjun Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Weipeng Ge
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Tianfei Fan
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Pan Gao
- Department of Geriatrics, Southwest Hospital, The First Affiliated Hospital to Army Medical University, Chongqing, China
| | - Bin Liu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, USA
| | - Yuehong Zheng
- Peking Union Medical College Hospital, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Cheng Z, Zhou YZ, Wu Y, Wu QY, Liao XB, Fu XM, Zhou XM. Diverse roles of macrophage polarization in aortic aneurysm: destruction and repair. J Transl Med 2018; 16:354. [PMID: 30545380 PMCID: PMC6293547 DOI: 10.1186/s12967-018-1731-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
Aortic aneurysm (AA) is defined as an enlargement of the aorta greater than 1.5 times its normal size. Early diagnosis of AA is challenging and mortality of AA is high. Curative pharmacological treatments for AA are still lacking, highlighting the need for better understanding of the underlying mechanisms of AA progression. Accumulating studies have proven that the polarization state of circulating monocyte-derived macrophages plays a crucial role in regulating the development of AA. Distinct macrophage subtypes display different functions. Several studies targeting macrophage polarization during AA formation and progression showed potential treatment effects. In this review, we focus on the recent advances of research on macrophage polarization in the progression of AA and propose that targeting macrophage polarization could hold great promise for preventing and treating AA.
Collapse
Affiliation(s)
- Zhao Cheng
- Department of Hematology, Institute of Molecular Hematology, The Second Xiang-ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yang-Zhao Zhou
- Department of Cardiovascular Surgery, The Second Xiang-ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yin Wu
- Department of Cardiovascular Surgery, The Second Xiang-ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qi-Ying Wu
- Department of Cardiovascular Surgery, The Second Xiang-ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiang-ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xian-Ming Fu
- Department of Cardiovascular Surgery, The Second Xiang-ya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Xin-Min Zhou
- Department of Cardiovascular Surgery, The Second Xiang-ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
27
|
Modulation of Immune-Inflammatory Responses in Abdominal Aortic Aneurysm: Emerging Molecular Targets. J Immunol Res 2018; 2018:7213760. [PMID: 29967801 PMCID: PMC6008668 DOI: 10.1155/2018/7213760] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/18/2018] [Accepted: 03/31/2018] [Indexed: 12/24/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), a deadly vascular disease in human, is a chronic degenerative process of the abdominal aorta. In this process, inflammatory responses and immune system work efficiently by inflammatory cell attraction, proinflammatory factor secretion and subsequently MMP upregulation. Previous studies have demonstrated various inflammatory cell types in AAA of human and animals. The majority of cells, such as macrophages, CD4+ T cells, and B cells, play an important role in the diseased aortic wall through phenotypic modulation. Furthermore, immunoglobulins also greatly affect the functions and differentiation of immune cells in AAA. Recent evidence suggests that innate immune system, especially Toll-like receptors, chemokine receptors, and complements are involved in the progression of AAAs. We discussed the innate immune system, inflammatory cells, immunoglobulins, immune-mediated mechanisms, and key cytokines in the pathogenesis of AAA and particularly emphasis on a further trend and application of these interventions. This current understanding may offer new insights into the role of inflammation and immune response in AAA.
Collapse
|
28
|
Li H, Wang W, Zhang L, Lan Q, Wang J, Cao Y, Zhao J. Identification of a Long Noncoding RNA-Associated Competing Endogenous RNA Network in Intracranial Aneurysm. World Neurosurg 2017; 97:684-692.e4. [DOI: 10.1016/j.wneu.2016.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 02/01/2023]
|
29
|
SP600125 Attenuates Nicotine-Related Aortic Aneurysm Formation by Inhibiting Matrix Metalloproteinase Production and CC Chemokine-Mediated Macrophage Migration. Mediators Inflamm 2016; 2016:9142425. [PMID: 27688602 PMCID: PMC5023844 DOI: 10.1155/2016/9142425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/13/2016] [Indexed: 12/27/2022] Open
Abstract
Nicotine, a major chemical component of cigarettes, plays a pivotal role in the development of abdominal aortic aneurysm (AAA). c-Jun N-terminal kinase (JNK) has been demonstrated to participate in elastase-induced AAA. This study aimed to elucidate whether the JNK inhibitor SP600125 can attenuate nicotine plus angiotensin II- (AngII-) induced AAA formation and to assess the underlying molecular mechanisms. SP600125 significantly attenuated nicotine plus AngII-induced AAA formation. The expression of matrix metalloproteinase- (MMP-) 2, MMP-9, monocyte chemoattractant protein- (MCP-) 1, and regulated-on-activation, normal T-cells expressed and secreted (RANTES) was significantly upregulated in aortic aneurysm lesions but inhibited by SP600125. In vitro, nicotine induced the expression of MCP-1 and RANTES in both RAW264.7 (mouse macrophage) and MOVAS (mouse vascular smooth muscle) cells in a dose-dependent manner; expression was upregulated by 0.5 ng/mL nicotine but strongly downregulated by 500 ng/mL nicotine. SP600125 attenuated the upregulation of MCP-1 and RANTES expression and subsequent macrophage migration. In conclusion, SP600125 attenuates nicotine plus AngII-induced AAA formation likely by inhibiting MMP-2, MMP-9, MCP-1, and RANTES. The expression of chemokines in MOVAS cells induced by nicotine has an effect on RAW264.7 migration, which is likely to contribute to the development of nicotine-related AAA.
Collapse
|
30
|
Uemura K, Kondo H, Ishii Y, Kobukata M, Haraguchi M, Imamura T, Otsubo T, Ikebe-Ebata Y, Abe I, Ayabe R, Saito S, Aoki K, Nagano-Torigoe Y, Akioka H, Shinohara T, Teshima Y, Masaki T, Yufu K, Nakagawa M, Takahashi N. Mast Cells Play an Important Role in the Pathogenesis of Hyperglycemia-Induced Atrial Fibrillation. J Cardiovasc Electrophysiol 2016; 27:981-9. [PMID: 27097848 DOI: 10.1111/jce.12995] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/23/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Recently, it was reported that mast cells (MCs) could underlie the mechanisms of several cardiovascular diseases. However, the role of MCs in diabetes-induced atrial fibrillation (AF) has not been notably investigated. We tested the hypothesis that MC deficiency attenuates hyperglycemia-induced AF in mice. METHODS AND RESULTS Mast cell-deficient W/W(v) mice, and congenic +/+ littermates (WT) were divided into either the vehicle (VEH)-injection group or the streptozotocin (STZ)-injection group (MCKO-VEH, MCKO-STZ, WT-VEH, and WT-STZ groups). On day 28 of our studies, we observed that (1) STZ-induced hyperglycemia increased MC infiltration in the left atrium (LA) in WT mice (P < 0.01), (2) atrium isolated from the WT-STZ group showed inhomogeneous interstitial fibrosis, abundant infiltration of macrophages, and enhanced apoptosis compared to the WT-VEH group (P < 0.01, P < 0.01, P < 0.05, respectively). However, the changes observed in the WT-STZ group were significantly attenuated in the MCKO-STZ mice. In addition, we observed that (3) messenger RNA levels of tumor necrosis factor-α, monocyte chemoattractant protein-1, interleukin-1β, transforming growth factor-β, and collagen-1 in the LA were increased in the WT-STZ group, but not in the MCKO-STZ group, (4) STZ-induced hyperglycemia increased AF induction and prolonged interatrial conduction time in the WT mice, which were not observed in the MCKO mice, and that (5) hyperglycemia-enhanced atrial production of reactive oxygen species (ROS) was equally observed in the WT and MCKO mice. CONCLUSIONS Our results suggest that MCs contribute to the pathogenesis of hyperglycemia-induced AF via enhancement of inflammation and fibrosis.
Collapse
Affiliation(s)
- Kenshi Uemura
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Hidekazu Kondo
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Yumi Ishii
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Mami Kobukata
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Miho Haraguchi
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Takaaki Imamura
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Toyokazu Otsubo
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Yuki Ikebe-Ebata
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Ichitaro Abe
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Reika Ayabe
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Shotaro Saito
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Kohei Aoki
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Oita University Faculty of Medicine, Oita, Japan
| | - Yasuko Nagano-Torigoe
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Hidefumi Akioka
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Yasushi Teshima
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Takayuki Masaki
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Oita University Faculty of Medicine, Oita, Japan
| | - Kunio Yufu
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Mikiko Nakagawa
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| |
Collapse
|
31
|
Wu J, Grassia G, Cambrook H, Ialenti A, MacRitchie N, Carberry J, Wadsworth RM, Lawrence C, Kennedy S, Maffia P. Perivascular mast cells regulate vein graft neointimal formation and remodeling. PeerJ 2015; 3:e1192. [PMID: 26312183 PMCID: PMC4548472 DOI: 10.7717/peerj.1192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/26/2015] [Indexed: 01/26/2023] Open
Abstract
Objective. Emerging evidence suggests an important role for mast cells in vein graft failure. This study addressed the hypothesis that perivascular mast cells regulate in situ vascular inflammatory and proliferative responses and subsequent vein graft neointimal lesion formation, using an optimized local mast cell reconstitution method. Methods and Results. Neointimal hyperplasia was induced by insertion of a vein graft into the right carotid artery in wild type and mast cell deficient KitW−sh/W−sh mice. In some experiments, mast cells were reconstituted systemically (tail vein injection of bone marrow-derived mast cells) or locally (directly into the right neck area) prior to vein grafting. Vein graft neointimal lesion formation was significantly (P < 0.05) reduced in KitW−sh/W−sh mice. Mast cell deficiency reduced the number of proliferating cells, and inhibited L-selectin, CCL2, M-CSF and MIP-3α expression in the vein grafts. Local but not systemic mast cell reconstitution restored a perivascular mast cell population that subsequently promoted neointimal formation in mast cell deficient mice. Conclusion. Our data demonstrate that perivascular mast cells play a key role in promoting neointima formation by inducing local acute inflammatory and proliferative responses. These results suggest that ex vivo intraoperative targeting of mast cells may have therapeutic potential for the prevention of pathological vein graft remodeling.
Collapse
Affiliation(s)
- Junxi Wu
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Gianluca Grassia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Helen Cambrook
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Armando Ialenti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Jaclyn Carberry
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Roger M Wadsworth
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Catherine Lawrence
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
32
|
|
33
|
|
34
|
Kritikou E, Kuiper J, Kovanen PT, Bot I. The impact of mast cells on cardiovascular diseases. Eur J Pharmacol 2015; 778:103-15. [PMID: 25959384 DOI: 10.1016/j.ejphar.2015.04.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 12/30/2022]
Abstract
Mast cells comprise an innate immune cell population, which accumulates in tissues proximal to the outside environment and, upon activation, augments the progression of immunological reactions through the release and diffusion of either pre-formed or newly generated mediators. The released products of mast cells include histamine, proteases, as well as a variety of cytokines, chemokines and growth factors, which act on the surrounding microenvironment thereby shaping the immune responses triggered in various diseased states. Mast cells have also been detected in the arterial wall and are implicated in the onset and progression of numerous cardiovascular diseases. Notably, modulation of distinct mast cell actions using genetic and pharmacological approaches highlights the crucial role of this cell type in cardiovascular syndromes. The acquired evidence renders mast cells and their mediators as potential prognostic markers and therapeutic targets in a broad spectrum of pathophysiological conditions related to cardiovascular diseases.
Collapse
Affiliation(s)
- Eva Kritikou
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
35
|
Wang J, Lindholt JS, Sukhova GK, Shi MA, Xia M, Chen H, Xiang M, He A, Wang Y, Xiong N, Libby P, Wang JA, Shi GP. IgE actions on CD4+ T cells, mast cells, and macrophages participate in the pathogenesis of experimental abdominal aortic aneurysms. EMBO Mol Med 2015; 6:952-69. [PMID: 24963147 PMCID: PMC4119357 DOI: 10.15252/emmm.201303811] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Immunoglobulin E (IgE) activates mast cells (MCs). It remains unknown whether IgE also activates other inflammatory cells, and contributes to the pathogenesis of abdominal aortic aneurysms (AAAs). This study demonstrates that CD4+ T cells express IgE receptor FcεR1, at much higher levels than do CD8+ T cells. IgE induces CD4+ T-cell production of IL6 and IFN-γ, but reduces their production of IL10. FcεR1 deficiency (Fcer1a−/−) protects apolipoprotein E-deficient (Apoe−/−) mice from angiotensin-II infusion-induced AAAs and reduces plasma IL6 levels. Adoptive transfer of CD4+ T cells (but not CD8+ T cells), MCs, and macrophages from Apoe−/− mice, but not those from Apoe−/−Fcer1a−/− mice, increases AAA size and plasma IL6 in Apoe−/−Fcer1a−/− recipient mice. Biweekly intravenous administration of an anti-IgE monoclonal antibody ablated plasma IgE and reduced AAAs in Apoe−/− mice. Patients with AAAs had significantly higher plasma IgE levels than those without AAAs. This study establishes an important role of IgE in AAA pathogenesis by activating CD4+ T cells, MCs, and macrophages and supports consideration of neutralizing plasma IgE in the therapeutics of human AAAs.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jes S Lindholt
- Department of Cardiovascular and Thoracic Surgery, Elitary Research Centre of Individualized Medicine in Arterial Diseases, University Hospital of Odense, Odense, Denmark
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael A Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mingcan Xia
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Han Chen
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, College of Medicine, The Second Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Meixiang Xiang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, College of Medicine, The Second Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Aina He
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yi Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Na Xiong
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jian-An Wang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, College of Medicine, The Second Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Abstract
Mast cells are increasingly being recognized as effector cells in many cardiovascular conditions. Many mast-cell-derived products such as tryptase and chymase can, through their enzymic action, have detrimental effects on blood vessel structure while mast cell-derived mediators such as cytokines and chemokines can perpetuate vascular inflammation. Mice lacking mast cells have been developed and these are providing an insight into how mast cells are involved in cardiovascular diseases and, as knowledge increase, mast cells may become a viable therapeutic target to slow progression of cardiovascular disease.
Collapse
|