1
|
Chen C, Ding Y, Huang Q, Zhang C, Zhao Z, Zhou H, Li D, Zhou G. Relationship between arginine methylation and vascular calcification. Cell Signal 2024; 119:111189. [PMID: 38670475 DOI: 10.1016/j.cellsig.2024.111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
In patients on maintenance hemodialysis (MHD), vascular calcification (VC) is an independent predictor of cardiovascular disease (CVD), which is the primary cause of death in chronic kidney disease (CKD). The main component of VC in CKD is the vascular smooth muscle cells (VSMCs). VC is an ordered, dynamic activity. Under the stresses of oxidative stress and calcium-‑phosphorus imbalance, VSMCs undergo osteogenic phenotypic transdifferentiation, which promotes the formation of VC. In addition to traditional epigenetics like RNA and DNA control, post-translational modifications have been discovered to be involved in the regulation of VC in recent years. It has been reported that the process of osteoblast differentiation is impacted by catalytic histone or non-histone arginine methylation. Its function in the osteogenic process is comparable to that of VC. Thus, we propose that arginine methylation regulates VC via many signaling pathways, including as NF-B, WNT, AKT/PI3K, TGF-/BMP/SMAD, and IL-6/STAT3. It might also regulate the VC-related calcification regulatory factors, oxidative stress, and endoplasmic reticulum stress. Consequently, we propose that arginine methylation regulates the calcification of the arteries and outline the regulatory mechanisms involved.
Collapse
Affiliation(s)
- Chen Chen
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Yuanyuan Ding
- Department of Pain Management, Shengjing Hospital, China Medical University, China
| | - Qun Huang
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Chen Zhang
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Detian Li
- Department of Nephrology, Shengjing Hospital, China Medical University, China
| | - Guangyu Zhou
- Department of Nephrology, Shengjing Hospital, China Medical University, China.
| |
Collapse
|
2
|
Gogiraju R, Renner L, Bochenek ML, Zifkos K, Molitor M, Danckwardt S, Wenzel P, Münzel T, Konstantinides S, Schäfer K. Arginase-1 Deletion in Erythrocytes Promotes Vascular Calcification via Enhanced GSNOR (S-Nitrosoglutathione Reductase) Expression and NO Signaling in Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2022; 42:e291-e310. [PMID: 36252109 DOI: 10.1161/atvbaha.122.318338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Erythrocytes (red blood cells) participate in the control of vascular NO bioavailability. The purpose of this study was to determine whether and how genetic deletion of ARG1 (arginase-1) affects vascular smooth muscle cell NO signaling, osteoblastic differentiation, and atherosclerotic lesion calcification. METHODS Atherosclerosis-prone mice with conditional, erythrocyte-restricted deletion of ARG1 (apoE-/- red blood cell.ARG1 knockout) were generated and vascular calcification studied using molecular imaging of the osteogenic activity agent OsteoSense, Alizarin staining or immunohistochemistry, qPCR of osteogenic markers and ex vivo assays. RESULTS Atherosclerotic lesion size at the aortic root did not differ, but calcification was significantly more pronounced in apoE-/- mice lacking erythrocyte ARG1. Incubation of murine and human VSMCs with lysed erythrocyte membranes from apoE-/- red blood cell. ARG1-knockout mice accelerated their osteogenic differentiation, and mRNA transcripts of osteogenic markers decreased following NO scavenging. In addition to NO signaling via sGC (soluble guanylyl cyclase), overexpression of GSNOR (S-nitrosoglutathione reductase) enhanced degradation of S-nitrosoglutathione to glutathione and reduced protein S-nitrosation of HSP (heat shock protein)-70 were identified as potential mechanisms of vascular smooth muscle cell calcification in mice lacking ARG1 in erythrocytes, and calcium phosphate deposition was enhanced by heat shock and prevented by GSNOR inhibition. Messenger RNA levels of enzymes metabolizing the arginase products L-ornithine and L-proline also were elevated in VSMCs, paralleled by increased proliferation, myofibroblast marker and collagen type 1 expression. CONCLUSIONS Our findings support an important role of erythrocyte ARG1 for NO bioavailability and L-arginine metabolism in VSMCs, which controls atherosclerotic lesion composition and calcification.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Luisa Renner
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Magdalena L Bochenek
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Konstantinos Zifkos
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Michael Molitor
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Sven Danckwardt
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany.,Institute for Clinical Chemistry (S.D.), University Medical Center Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany.,Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| | - Stavros Konstantinides
- Center for Thrombosis and Hemostasis (M.L.B., K.Z., M.M., S.D., P.W., S.K.), University Medical Center Mainz, Germany
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I (R.G., L.R., M.L.B., M.M., P.W., T.M., K.S.), University Medical Center Mainz, Germany
| |
Collapse
|
3
|
Shen Q, Chen Q, Liu Y, Xue X, Shen X, He Q, Wang G, Han F. Aspirin relieves the calcification of aortic smooth muscle cells by enhancing the heat shock response. PHARMACEUTICAL BIOLOGY 2022; 60:17-24. [PMID: 34846265 PMCID: PMC8635617 DOI: 10.1080/13880209.2021.2007268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Vascular calcification is a major complication of chronic renal failure, which has been identified as an active process partly driven by osteogenic transition of vascular smooth muscle cells (VSMCs). Aspirin could prevent cardiomyocyte damage by inducing heat shock response. OBJECTIVE This study investigates the effect of aspirin on alleviating VSMC calcification. MATERIALS AND METHODS An in vitro VSMC calcification model was established by 10-day calcification induction in osteogenic medium. VSMCs were grouped as following: control group (normal medium), calcified group (osteogenic medium) and treated group (osteogenic medium with 1 or 4 mmol/L aspirin). VSMC calcification was evaluated by calcified nodules formation, intracellular calcium concentration and osteoblastic marker (OPN and Runx2) expression. RESULTS After 10-day culture, the intracellular calcium concentration in calcified group was significantly higher than that in control group (1.16 ± 0.04 vs. 0.14 ± 0.01 μg/mg, p < 0.01), but significantly reduced in 1 mmol/L aspirin treated group (0.74 ± 0.05 μg/mg, p < 0.01), and 4 mmol/L aspirin treated group (0.93 ± 0.03 μg/mg, p < 0.01). The elevated expression of OPN and Runx2 induced by osteogenic medium was significantly relieved after 1 or 4 mmol/L aspirin treatment. The expression of HSF1, HSP70 and HSP90 was decreased in calcification-induced VSMCs, but significantly increased after treatment of aspirin. Furthermore, inhibition of HSP70 (or HSP90) by small-molecule inhibitor or small interfering RNA could partially abolish the anti-calcification effect of aspirin, proved by the changes of intracellular calcium concentration and osteoblastic marker expression. DISCUSSION AND CONCLUSIONS Aspirin could relieve the calcification of VSMCs partially through HSP70- or HSP90-mediated heat shock response. These findings expanded the understanding of aspirin pharmacology, and imply that local induction expression of HSPs might be a potential therapeutic strategy for the prevention and therapy of vascular calcification.
Collapse
Affiliation(s)
- Quanquan Shen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qian Chen
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiang Xue
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaogang Shen
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Guokun Wang
- Department of Cardiovascular Surgery, Institute of Cardiac Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| |
Collapse
|
4
|
Junho CVC, Azevedo CAB, da Cunha RS, de Yurre AR, Medei E, Stinghen AEM, Carneiro-Ramos MS. Heat Shock Proteins: Connectors between Heart and Kidney. Cells 2021; 10:cells10081939. [PMID: 34440708 PMCID: PMC8391307 DOI: 10.3390/cells10081939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Over the development of eukaryotic cells, intrinsic mechanisms have been developed in order to provide the ability to defend against aggressive agents. In this sense, a group of proteins plays a crucial role in controlling the production of several proteins, guaranteeing cell survival. The heat shock proteins (HSPs), are a family of proteins that have been linked to different cellular functions, being activated under conditions of cellular stress, not only imposed by thermal variation but also toxins, radiation, infectious agents, hypoxia, etc. Regarding pathological situations as seen in cardiorenal syndrome (CRS), HSPs have been shown to be important mediators involved in the control of gene transcription and intracellular signaling, in addition to be an important connector with the immune system. CRS is classified as acute or chronic and according to the first organ to suffer the injury, which can be the heart (CRS type 1 and type 2), kidneys (CRS type 3 and 4) or both (CRS type 5). In all types of CRS, the immune system, redox balance, mitochondrial dysfunction, and tissue remodeling have been the subject of numerous studies in the literature in order to elucidate mechanisms and propose new therapeutic strategies. In this sense, HSPs have been targeted by researchers as important connectors between kidney and heart. Thus, the present review has a focus to present the state of the art regarding the role of HSPs in the pathophysiology of cardiac and renal alterations, as well their role in the kidney–heart axis.
Collapse
Affiliation(s)
- Carolina Victória Cruz Junho
- Center of Natural and Human Sciences (CCNH), Laboratory of Cardiovascular Immunology, Federal University of ABC, Santo André 09210-580, Brazil
| | - Carolina Amaral Bueno Azevedo
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Regiane Stafim da Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Ainhoa Rodriguez de Yurre
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Emiliano Medei
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- D'Or Institute for Research and Education, Rio de Janeiro 21941-902, Brazil
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro 22281-100, Brazil
| | - Andréa Emilia Marques Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | - Marcela Sorelli Carneiro-Ramos
- Center of Natural and Human Sciences (CCNH), Laboratory of Cardiovascular Immunology, Federal University of ABC, Santo André 09210-580, Brazil
| |
Collapse
|
5
|
Protective Effects of Fucoxanthin on Hydrogen Peroxide-Induced Calcification of Heart Valve Interstitial Cells. Mar Drugs 2021; 19:md19060307. [PMID: 34073219 PMCID: PMC8227531 DOI: 10.3390/md19060307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular diseases such as atherosclerosis and aortic valve sclerosis involve inflammatory reactions triggered by various stimuli, causing increased oxidative stress. This increased oxidative stress causes damage to the heart cells, with subsequent cell apoptosis or calcification. Currently, heart valve damage or heart valve diseases are treated by drugs or surgery. Natural antioxidant products are being investigated in related research, such as fucoxanthin (Fx), which is a marine carotenoid extracted from seaweed, with strong antioxidant, anti-inflammatory, and anti-tumor properties. This study aimed to explore the protective effect of Fx on heart valves under high oxidative stress, as well as the underlying mechanism of action. Rat heart valve interstitial cells under H2O2-induced oxidative stress were treated with Fx. Fx improved cell survival and reduced oxidative stress-induced DNA damage, which was assessed by cell viability analysis and staining with propidium iodide. Alizarin Red-S analysis indicated that Fx has a protective effect against calcification. Furthermore, Western blotting revealed that Fx abrogates oxidative stress-induced apoptosis via reducing the expression of apoptosis-related proteins as well as modulate Akt/ERK-related protein expression. Notably, in vivo experiments using 26 dogs treated with 60 mg/kg of Fx in combination with medical treatment for 0.5 to 2 years showed significant recovery in their echocardiographic parameters. Collectively, these in vitro and in vivo results highlight the potential of Fx to protect heart valve cells from high oxidative stress-induced damage.
Collapse
|
6
|
Chao CT, Yeh HY, Tsai YT, Chuang PH, Yuan TH, Huang JW, Chen HW. Natural and non-natural antioxidative compounds: potential candidates for treatment of vascular calcification. Cell Death Discov 2019; 5:145. [PMID: 31754473 PMCID: PMC6853969 DOI: 10.1038/s41420-019-0225-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification (VC) is highly prevalent in patients with advanced age, or those with chronic kidney disease and diabetes, accounting for substantial global cardiovascular burden. The pathophysiology of VC involves active mineral deposition by transdifferentiated vascular smooth muscle cells exhibiting osteoblast-like behavior, building upon cores with or without apoptotic bodies. Oxidative stress drives the progression of the cellular phenotypic switch and calcium deposition in the vascular wall. In this review, we discuss potential compounds that shield these cells from the detrimental influences of reactive oxygen species as promising treatment options for VC. A comprehensive summary of the current literature regarding antioxidants for VC is important, as no effective therapy is currently available for this disease. We systematically searched through the existing literature to identify original articles investigating traditional antioxidants and novel compounds with antioxidant properties with regard to their effectiveness against VC in experimental or clinical settings. We uncovered 36 compounds with antioxidant properties against VC pathology, involving mechanisms such as suppression of NADPH oxidase, BMP-2, and Wnt/β-catenin; anti-inflammation; and activation of Nrf2 pathways. Only two compounds have been tested clinically. These findings suggest that a considerable opportunity exists to harness these antioxidants for therapeutic use for VC. In order to achieve this goal, more translational studies are needed.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Department of Medicine, National Taiwan University Hospital BeiHu Branch, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Yeh
- School of Big Data Management, Soochow University, Taipei, Taiwan
| | - You-Tien Tsai
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Huan Chuang
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Hang Yuan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jenq-Wen Huang
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
7
|
Kim J, Jang SW, Park E, Oh M, Park S, Ko J. The role of heat shock protein 90 in migration and proliferation of vascular smooth muscle cells in the development of atherosclerosis. J Mol Cell Cardiol 2014; 72:157-67. [PMID: 24650873 DOI: 10.1016/j.yjmcc.2014.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 11/16/2022]
Abstract
The molecular chaperone heat shock protein 90 (HSP90) is overexpressed in plaques of atherosclerosis patients, and is associated with plaque instability. However, the role of HSP90 in atherosclerosis remains unclear. The present study investigated the effects of HSP90 inhibition on migration and proliferation of vascular smooth muscle cells (VSMCs) and involvement in atherosclerosis. To examine the role of HSP90 in VSMC migration, VSMCs were treated with the specific HSP90 inhibitors, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) and STA-9090. Results of a chemotaxis assay showed that the HSP90 inhibitors suppress migration of VSMCs. HSP90 inhibition also prevented invasion and sprout formation of VSMCs via inhibition of matrix metalloproteinase-2 proteolytic activity. Results of a flow cytometric analysis showed that HSP90 inhibition induces cell cycle arrest via regulation of cyclin D3, PCNA and pRb. To investigate the role of HSP90 in the development of atherosclerosis, low-density lipoprotein receptor (LDLR) deficient mice were fed with a high cholesterol diet for 4weeks and treated with 17-AAG for 8weeks. HSP90 inhibition suppressed migration of VSMCs into atherosclerotic plaque lesions in high cholesterol diet-stimulated LDLR(-/-) mice. Inhibition of HSP90 attenuates formation of atherosclerotic plaques via suppression of VSMC migration and proliferation, indicating that HSP90 inhibitors can be used as therapeutic agents for atherosclerosis and in stent restenosis.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Atherosclerosis/drug therapy
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Benzoquinones/pharmacology
- Cell Cycle Checkpoints/drug effects
- Cell Line
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cholesterol/administration & dosage
- Cholesterol/adverse effects
- Diet, High-Fat/adverse effects
- Gene Expression Regulation
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/genetics
- HSP90 Heat-Shock Proteins/metabolism
- Humans
- Lactams, Macrocyclic/pharmacology
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Primary Cell Culture
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Signal Transduction
- Triazoles/pharmacology
Collapse
Affiliation(s)
- Jeonghan Kim
- Division of Life Sciences, Korea University, Seoul 136-701, South Korea
| | - Sung-Wuk Jang
- Department of Medicine, Graduate School, University of Ulsan, Seoul 138-736, South Korea
| | - Eunsoo Park
- Division of Life Sciences, Korea University, Seoul 136-701, South Korea
| | - Minseok Oh
- Division of Life Sciences, Korea University, Seoul 136-701, South Korea
| | - Sodam Park
- Division of Life Sciences, Korea University, Seoul 136-701, South Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul 136-701, South Korea.
| |
Collapse
|