1
|
He Q, Wang M, Zhu H, Xiao Y, Wen R, Liu X, Shi Y, Zhang L, Xu B. Nomogram to predict 3 month prognosis of acute ischemic stroke among young adults. Front Neurol 2025; 15:1487248. [PMID: 39949532 PMCID: PMC11822686 DOI: 10.3389/fneur.2024.1487248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
Objective This study aimed to develop and validate a nomogram for predicting the risk of 3 months adverse outcomes among young adults with acute ischemic stroke (AIS). Methods Patients aged between 18 and 50 with acute ischemic stroke (AIS) at the Shenyang First's People Hospital, between January 1st 2017 to May 30th 2023 were included in this retrospective study. The primary outcome was a three-month unfavorable outcome, evaluated with modified Rankin Scale (mRS > 2). Univariate logistic regression was used to select the independent factors of prognosis and multivariate logistic regression to establish a new nomogram model. We used the area under the receiver-operating characteristic curve (ROC) to evaluate the discriminative performance and used the calibration curve with Hosmer-Lemeshow goodness of fit test to assess the calibration performance of the risk prediction model. Decision curve analysis (DCA) was applied to assess the clinical utility of the nomogram. Results A total of 1,015 patients were enrolled. Gender (male vs. female; Odds ratio[OR], 0.5562[95% Confidence Interval (CI), 0.3104-1.0478]; p = 0.053), family history of stroke (OR, 3.5698[95%CI 1.5632-8.0329], p < 0.001), prior stroke (OR, 2.1509[95%CI 1.2610-3.6577], p < 0.001), previous heart disease (OR, 3.4047[95%CI, 1.7838-6.6976], p < 0.01) toast type (cardio-embolism stroke vs. large-artery atherosclerosis (LAA), OR, 0.0847[0.0043-0.5284], p < 0.01), toast type (stroke of undetermined etiology vs. LAA, OR, 0.0847[0.0439-0.5284], p < 0.01), mRS at admission (OR, 15.2446 [9.1447-26.3156], p < 0.0001), adherence to medication (OR, 2.1197[95%CI, 1.1924-3.7464], p < 0.001), systolic blood pressure (SBP; OR, 1.0145[1.0041-1.0250], p < 0.001), and lactate dehydrogenase (LDH; OR, 1.0060[1.0010-1.0111], p < 0.01) were related to 3 months adverse outcomes among young adults with AIS. The nomogram displayed excellent calibration and discrimination. DCA confirmed the clinical applicability of the model. Conclusion The nomogram comprised of gender, family history of stroke, prior stroke, previous heart disease, toast type, mRS score at admission, adherence to medication, SBP and LDH may predict 3 months adverse outcomes among young adults with AIS.
Collapse
Affiliation(s)
- Qian He
- Qionglai Traditional Chinese Medicine Hospital, Chengdu, China
- Shenyang Tenth People’s Hospital (Shenyang Chest Hospital), Shenyang, China
| | | | - Haoyue Zhu
- Shenyang Tenth People’s Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Ying Xiao
- Shenyang First People’s Hospital, Shenyang, China
| | - Rui Wen
- Shenyang Tenth People’s Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Xiaoqing Liu
- Shenyang Tenth People’s Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Yangdi Shi
- Shenyang Tenth People’s Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Linzhi Zhang
- Shenyang Tenth People’s Hospital (Shenyang Chest Hospital), Shenyang, China
| | - Bing Xu
- Shenyang Tenth People’s Hospital (Shenyang Chest Hospital), Shenyang, China
| |
Collapse
|
2
|
Morgan M, Yellapu V, Short D, Ruggeri C. Trends in In-Hospital Mortality in Patients Admitted With Cardiovascular Diseases in the United States With Demographics and Risk Factors of All Cardiovascular In-Hospital Mortality: Analysis of the 2021 National Inpatient Sample Database. Cureus 2024; 16:e70620. [PMID: 39483569 PMCID: PMC11526619 DOI: 10.7759/cureus.70620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction and background Cardiovascular diseases (CVDs) encompass a range of disorders involving coronary artery diseases, valvular heart diseases, myocardial diseases, pericardial diseases, hypertensive heart diseases, heart failure (HF), and pulmonary artery diseases. Given the high prevalence of CVDs, understanding both overall and in-hospital mortality rates from these diseases is crucial. Unsurprisingly, most research, procedures, and new pharmacological interventions aim to reduce these rates. No recent studies have comprehensively detailed in-hospital mortality rates, demographics, and risk factors for all CVDs combined. Yet, in-hospital mortality rates due to CVD significantly impact patients' families and healthcare teams and serve as a critical measure of healthcare system development and effectiveness. Therefore, analyzing in-hospital mortality rates is essential for filling the gap in the recent comprehensive analysis of in-hospital mortality rates, demographics, and risk factors of all CVDs. Method The study used data from the National Inpatient Sample and the Nationwide Inpatient Sample (NIS) Databases of 2021 and HCUP tools. The NIS database extrapolates national estimates based on a stratified sample of 20% of US hospital discharges. Results were expressed as probability and relative risk using the t-test, with a P-value <0.05 being statistically significant. Statistical analyses were done using Stata statistical software version 18 (StataCorp LLC, College Station, TX, US). Results This study included 6,666,752 hospital admissions in the United States. Of these, 2,337,589 patients were admitted with CVDs and related symptoms, with 70,552 deaths occurring during hospitalization, resulting in an in-hospital mortality rate of 3.01% due to CVDs. Our study showed all CVD-induced in-hospital mortality combined was found to have a higher association with diabetes but a lower association with hypertension, hyperlipidemia, alcohol, and smoking. Conclusion The highest rates of cardiovascular disease in-hospital mortality are cardiac arrest, rupture of the cardiac wall as a complication of acute myocardial infarction, cardiogenic shock, rupture of papillary muscle as a complication of acute myocardial infarction, and rupture of chorda tendinea as a complication of acute myocardial infarction. The most common causes of CVD in-hospital mortality are non-ST-elevation myocardial infarction (NSTEMI) (19.20%), ST-elevation myocardial infarction (STEMI) (17.80%), cardiac arrest (15.10%), hypertensive heart disease with heart failure (12.50%), ventricular fibrillation (4.70%), ventricular tachycardia (3.30%), and aortic stenosis (2.10%). The most common risk factors for CVD in-hospital mortality are age, male gender, and diabetes. Proper diabetes control and management might be the highest preventive measure for all CVD-induced in-hospital mortality.
Collapse
Affiliation(s)
| | - Vikas Yellapu
- Cardiology, St. Luke's University Health Network, Bethlehem, USA
| | - Daryn Short
- Medicine, Temple University, Philadelphia, USA
| | - Cara Ruggeri
- Internal Medicine, St. Luke's University Health Network, Bethlehem, USA
| |
Collapse
|
3
|
Ciaccio AM, Tuttolomondo A. Epigenetics of cerebrovascular diseases: an update review of clinical studies. Epigenomics 2024; 16:1043-1055. [PMID: 39072474 PMCID: PMC11404611 DOI: 10.1080/17501911.2024.2377947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
Cerebrovascular diseases, especially stroke, are critical and heterogenous clinical conditions associated with high mortality and chronic disability. Genome-wide association studies reveal substantial stroke heritability, though specific genetic variants account for a minor fraction of stroke risk, suggesting an essential role for the epigenome. Epigenome-wide association studies and candidate gene approaches show that DNA methylation patterns significantly influence stroke susceptibility. Additionally, chromatin remodelers and non-coding RNA regulate gene expression in response to ischemic conditions. In this updated review, we summarized the progress of knowledge on epigenetics in the field of ischemic stroke underlying opportunities and challenges.
Collapse
Affiliation(s)
- Anna Maria Ciaccio
- Internal Medicine & Stroke Care Ward, PROMISE Department, University of Palermo, Piazza delle Cliniche n.2, 90127, Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine & Stroke Care Ward, PROMISE Department, University of Palermo, Piazza delle Cliniche n.2, 90127, Palermo, Italy
| |
Collapse
|
4
|
Zhao L, Li T, Dang M, Li Y, Fan H, Hao Q, Song D, Lu J, Lu Z, Jian Y, Wang H, Wang X, Wu Y, Zhang G. Association of methylenetetrahydrofolate reductase (MTHFR) rs1801133 (677C>T) gene polymorphism with ischemic stroke risk in different populations: An updated meta-analysis. Front Genet 2023; 13:1021423. [PMID: 36685916 PMCID: PMC9845415 DOI: 10.3389/fgene.2022.1021423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/29/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Recently, increasing evidence has implicated methylenetetrahydrofolate reductase (MTHFR) gene mutation as a risk factor for ischemic stroke (IS) in the general population. However, studies have been inconclusive and lack evidence on specific populations. We aim to determine whether the rs1801133 (NC_000001.11 (MTHFR):g. 677C>T (p.Ala222Val) variant, we termed as MTHFR rs1801133 (677 C>T), is linked to an increased risk of IS in different age groups and ancestry groups. Methods: The literature relevant to our study was found by searching the PubMed, Cochrane Library, Web of Science, EMBASE, and CNKI databases. A random effect model analysis was used to calculate the pooled odds ratio (OR) and 95% confidence interval (CI) to evaluate any possible association. We conducted a subgroup analysis based on the age and ancestry groups of the included populations. Results: As of March 2022, 1,925 citations had been identified in electronic databases, of which 96 studies involving 34,814 subjects met our eligibility criteria. A strong link was found between IS and the MTHFR gene rs1801133 (677C>T) polymorphism in all genetic models [dominant genetic model (OR = 1.47; 95%CI = 1.33-1.61; p < 0.001), recessive genetic model (OR = 1.52; 95%CI = 1.36-1.71; p < 0.001), heterozygous model (OR = 1.36; 95%CI = 1.24-1.48; p < 0.001), homozygous model (OR = 1.82; 95%CI = 1.58-2.11; p < 0.001), and T allelic genetic model (OR = 1.37; 95%CI = 1.27-1.48; p < 0.001)]. Further subgroup analyses indicated that the MTHFR rs1801133 (677C>T) variant may increase the risk of IS in Asian, Hispanic, or Latin population, middle-aged, and elderly populations (p < 0.001). Conclusion: Our results implied that mutation of the T allele of MTHFR rs1801133 (677C>T) could be a risk factor for IS. A significant association was found among Asian, Hispanic, or Latin population, middle-aged, and elderly people.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tao Li
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meijuan Dang
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ye Li
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dingli Song
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jialiang Lu
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ziwei Lu
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yating Jian
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Heying Wang
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoya Wang
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yulun Wu
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Guilian Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Guilian Zhang,
| |
Collapse
|
5
|
Li J, Abedi V, Zand R. Dissecting Polygenic Etiology of Ischemic Stroke in the Era of Precision Medicine. J Clin Med 2022; 11:jcm11205980. [PMID: 36294301 PMCID: PMC9604604 DOI: 10.3390/jcm11205980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
Ischemic stroke (IS), the leading cause of death and disability worldwide, is caused by many modifiable and non-modifiable risk factors. This complex disease is also known for its multiple etiologies with moderate heritability. Polygenic risk scores (PRSs), which have been used to establish a common genetic basis for IS, may contribute to IS risk stratification for disease/outcome prediction and personalized management. Statistical modeling and machine learning algorithms have contributed significantly to this field. For instance, multiple algorithms have been successfully applied to PRS construction and integration of genetic and non-genetic features for outcome prediction to aid in risk stratification for personalized management and prevention measures. PRS derived from variants with effect size estimated based on the summary statistics of a specific subtype shows a stronger association with the matched subtype. The disruption of the extracellular matrix and amyloidosis account for the pathogenesis of cerebral small vessel disease (CSVD). Pathway-specific PRS analyses confirm known and identify novel etiologies related to IS. Some of these specific PRSs (e.g., derived from endothelial cell apoptosis pathway) individually contribute to post-IS mortality and, together with clinical risk factors, better predict post-IS mortality. In this review, we summarize the genetic basis of IS, emphasizing the application of methodologies and algorithms used to construct PRSs and integrate genetics into risk models.
Collapse
Affiliation(s)
- Jiang Li
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, PA 17822, USA
| | - Vida Abedi
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Correspondence: (V.A.); (R.Z.)
| | - Ramin Zand
- Department of Neurology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Neuroscience Institute, Geisinger Health System, 100 North Academy Avenue, Danville, PA 17822, USA
- Correspondence: (V.A.); (R.Z.)
| |
Collapse
|
6
|
Li J, Chaudhary D, Griessenauer CJ, Carey DJ, Zand R, Abedi V. Predicting mortality among ischemic stroke patients using pathways-derived polygenic risk scores. Sci Rep 2022; 12:12358. [PMID: 35853973 PMCID: PMC9296485 DOI: 10.1038/s41598-022-16510-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/11/2022] [Indexed: 12/19/2022] Open
Abstract
We aim to determine whether ischemic stroke(IS)-related PRSs are also associated with and further predict 3-year all-cause mortality. 1756 IS patients with European ancestry were randomly split into training (n = 1226) and testing (n = 530) groups with 3-year post-event observations. Univariate Cox proportional hazards regression model (CoxPH) was used for primary screening of individual prognostic PRSs. Only the significantly associated PRSs and clinical risk factors with the same direction for a causal relationship with IS were used to construct a multivariate CoxPH. Feature selection was conducted by the LASSO method. After feature selection, a prediction model with 11 disease-associated pathway-specific PRSs outperformed the base model, as demonstrated by a higher concordance index (0.751, 95%CI [0.693–0.809] versus 0.729, 95%CI [0.676–0.782]) in the testing sample. A PRS derived from endothelial cell apoptosis showed independent predictability in the multivariate CoxPH (Hazard Ratio = 1.193 [1.027–1.385], p = 0.021). These PRSs fine-tuned the model by better stratifying high, intermediate, and low-risk groups. Several pathway-specific PRSs were associated with clinical risk factors in an age-dependent manner and further confirmed some known etiologies of IS and all-cause mortality. In conclusion, Pathway-specific PRSs for IS are associated with all-cause mortality, and the integrated multivariate risk model provides prognostic value in this context.
Collapse
Affiliation(s)
- Jiang Li
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, PA, 17822, USA
| | - Durgesh Chaudhary
- Neuroscience Institute, Geisinger Health System, Danville, PA, 17822, USA
| | - Christoph J Griessenauer
- Neuroscience Institute, Geisinger Health System, Danville, PA, 17822, USA.,Research Institute of Neurointervention, Paracelsus Medical University, Salzburg, Austria
| | - David J Carey
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, PA, 17822, USA
| | - Ramin Zand
- Neuroscience Institute, Geisinger Health System, Danville, PA, 17822, USA.
| | - Vida Abedi
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, PA, 17822, USA. .,Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, USA.
| |
Collapse
|
7
|
Kim S, Lee WJ, Moon J, Jung KH. Utility of the SERPINC1 Gene Test in Ischemic Stroke Patients With Antithrombin Deficiency. Front Neurol 2022; 13:841934. [PMID: 35720094 PMCID: PMC9203840 DOI: 10.3389/fneur.2022.841934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveAntithrombin (AT) plays a critical role in the coagulation system, and its deficiency induces hypercoagulability. AT deficiency is caused not only by inherited variants in the SERPINC1 gene but also by acquired conditions. Therefore, AT deficiency alone could not ensure the presence of the SERPINC1 mutation. We evaluated the utility of the SERPINC1 gene test in ischemic stroke, an important clinical type of arterial thrombosis.MethodsThis retrospective, observational study investigated symptomatic patients who underwent the SERPINC1 gene test because of decreased AT activity (<80%) during 2009-2021 at a tertiary hospital. For the detection of sequence variants in the SERPINC1 gene, direct Sanger sequencing and multiplex ligation-dependent probe amplification were performed. The phenotypes of patients with SERPINC1 gene mutations were examined, and the conditions associated with the pathogenic variants were analyzed.ResultsIn our cohort (n = 19), 13 of 19 patients (68.4%) had the pathogenic variant of the SERPINC1 gene. Ischemic stroke (n = 7) was significantly associated with the pathogenic variants (p = 0.044), and the pathogenicity detection rate was 100%. For any kind of arterial thrombosis (n = 8), the detection rate of the pathogenic variant was 87.5%, but was not statistically significant (p = 0.177). The detection rates of the pathogenic variant in ischemic stroke or arterial thrombosis groups were both higher than those in the venous thrombosis-only group (54.5%).ConclusionThe SERPINC1 gene test was useful in determining the cause of AT deficiency-related arterial thrombosis, especially ischemic stroke. We propose the diagnostic flow of SERPINC1-related ischemic stroke.
Collapse
Affiliation(s)
- Seondeuk Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Woo-Jin Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Jangsup Moon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, South Korea
- *Correspondence: Keun-Hwa Jung
| |
Collapse
|
8
|
ICA1L Is Associated with Small Vessel Disease: A Proteome-Wide Association Study in Small Vessel Stroke and Intracerebral Haemorrhage. Int J Mol Sci 2022; 23:ijms23063161. [PMID: 35328582 PMCID: PMC8951240 DOI: 10.3390/ijms23063161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/01/2022] Open
Abstract
Small vessel strokes (SVS) and intracerebral haemorrhages (ICH) are acute outcomes of cerebral small vessel disease (SVD). Genetic studies combining both phenotypes have identified three loci associated with both traits. However, the genetic cis-regulation at the protein level associated with SVD has not been studied before. We performed a proteome-wide association study (PWAS) using FUSION to integrate a genome-wide association study (GWAS) and brain proteomic data to discover the common mechanisms regulating both SVS and ICH. Dorsolateral prefrontal cortex (dPFC) brain proteomes from the ROS/MAP study (N = 376 subjects and 1443 proteins) and the summary statistics for the SVS GWAS from the MEGASTROKE study (N = 237,511) and multi-trait analysis of GWAS (MTAG)-ICH−SVS from Chung et al. (N = 240,269) were selected. We performed PWAS and then a co-localization analysis with COLOC. The significant and nominal results were validated using a replication dPFC proteome (N = 152). The replicated results (q-value < 0.05) were further investigated for the causality relationship using summary data-based Mendelian randomization (SMR). One protein (ICA1L) was significantly associated with SVS (z-score = −4.42 and p-value = 9.6 × 10−6) and non-lobar ICH (z-score = −4.8 and p-value = 1.58 × 10−6) in the discovery PWAS, with a high co-localization posterior probability of 4. In the validation PWAS, ICA1L remained significantly associated with both traits. The SMR results for ICA1L indicated a causal association of protein expression levels in the brain with SVS (p-value = 3.66 × 10−5) and non-lobar ICH (p-value = 1.81 × 10−5). Our results show that the association of ICA1L with SVS and non-lobar ICH is conditioned by the cis-regulation of its protein levels in the brain.
Collapse
|
9
|
Dong X, Wang J, Wang G, Wang J, Wang L, Du Y. MTHFR A1298C gene polymorphism on stroke risk: an updated meta-analysis. Genes Environ 2021; 43:40. [PMID: 34563265 PMCID: PMC8467014 DOI: 10.1186/s41021-021-00208-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/30/2021] [Indexed: 01/11/2023] Open
Abstract
Background Previous studies have shown the effect of MTHFR A1298C gene polymorphism on stroke risk. But the results of published studies remained inconclusive and controversial. So we conducted a meta-analysis to accurately estimate the potential association between MTHFR A1298C gene polymorphism and stroke susceptibility. Methods A systematic literature search on Embase, Pubmed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI) and WanFang electronic database identified 40 articles including 5725 cases and 8655 controls. Strength of association was evaluated by pooled odds ratio (OR), 95% confidence interval (CI) and p value. Funnel plots and Begger’s regression test were applied for testing the publication bias. Statistical analysis of all data was performed by Stata 12.0. Results The meta-analysis results indicated a significant relationship between MTHFR gene A1298C polymorphisms and stoke risk under the C allelic genetic model (OR = 1.19, 95%CI = 1.07–1.32, p = 0.001), dominant genetic model (OR = 1.19, 95%CI = 1.06–1.33, p = 0.004) and recessive genetic model (OR = 1.43, 95%CI =1.15–1.77, p = 0.001). In subgroup analysis, we discovered obvious correlation in three genetic model of Asian, stroke type, adult by ethnicity, population, stroke type, source of control and case size. Additionally, in studies of control from hospital and case size equal 100, obvious correlation was also found in the three genetic model. Conclusions Our meta-analysis results indicated that there was evidence to support the correlation between MTHFR A1298C polymorphism and stroke susceptibility, especially in adults and ischemic stroke.
Collapse
Affiliation(s)
- Xiaobo Dong
- The Third department of Encephalopathy, Dongfang Hospital Beijing University of Chinese Medicine, No. 6, Area 1, Fangxing Garden Fangzhuang, Fengtai District, Beijing, 100078, China
| | - Jun Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100039, China
| | - Gesheng Wang
- The Third department of Encephalopathy, Dongfang Hospital Beijing University of Chinese Medicine, No. 6, Area 1, Fangxing Garden Fangzhuang, Fengtai District, Beijing, 100078, China.
| | - Jiayue Wang
- The Third department of Encephalopathy, Dongfang Hospital Beijing University of Chinese Medicine, No. 6, Area 1, Fangxing Garden Fangzhuang, Fengtai District, Beijing, 100078, China
| | - Lei Wang
- The Third department of Encephalopathy, Dongfang Hospital Beijing University of Chinese Medicine, No. 6, Area 1, Fangxing Garden Fangzhuang, Fengtai District, Beijing, 100078, China
| | - Yong Du
- The Third department of Encephalopathy, Dongfang Hospital Beijing University of Chinese Medicine, No. 6, Area 1, Fangxing Garden Fangzhuang, Fengtai District, Beijing, 100078, China
| |
Collapse
|
10
|
Liu C, Chen S, Zhang H, Chen Y, Gao Q, Chen Z, Liu Z, Wang J. Bioinformatic analysis for potential biological processes and key targets of heart failure-related stroke. J Zhejiang Univ Sci B 2021; 22:718-732. [PMID: 34514752 DOI: 10.1631/jzus.b2000544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study aimed to uncover underlying mechanisms and promising intervention targets of heart failure (HF)-related stroke. HF-related dataset GSE42955 and stroke-related dataset GSE58294 were obtained from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was conducted to identify key modules and hub genes. Gene Ontology (GO) and pathway enrichment analyses were performed on genes in the key modules. Genes in HF- and stroke-related key modules were intersected to obtain common genes for HF-related stroke, which were further intersected with hub genes of stroke-related key modules to obtain key genes in HF-related stroke. Key genes were functionally annotated through GO in the Reactome and Cytoscape databases. Finally, key genes were validated in these two datasets and other datasets. HF- and stroke-related datasets each identified two key modules. Functional enrichment analysis indicated that protein ubiquitination, Wnt signaling, and exosomes were involved in both HF- and stroke-related key modules. Additionally, ten hub genes were identified in stroke-related key modules and 155 genes were identified as common genes in HF-related stroke. OTU deubiquitinase with linear linkage specificity(OTULIN) and nuclear factor interleukin 3-regulated(NFIL3) were determined to be the key genes in HF-related stroke. Through functional annotation, OTULIN was involved in protein ubiquitination and Wnt signaling, and NFIL3 was involved in DNA binding and transcription. Importantly, OTULIN and NFIL3 were also validated to be differentially expressed in all HF and stroke groups. Protein ubiquitination, Wnt signaling, and exosomes were involved in HF-related stroke. OTULIN and NFIL3 may play a key role in HF-related stroke through regulating these processes, and thus serve as promising intervention targets.
Collapse
Affiliation(s)
- Chiyu Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Sixu Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haifeng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou 510120, China
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou 510120, China
| | - Qingyuan Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou 510120, China
| | - Zhiteng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou 510120, China
| | - Zhaoyu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China. .,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou 510120, China.
| |
Collapse
|
11
|
Chen W, Xie L, Yu F, Li Y, Chen C, Xie W, Huang T, Zhang Y, Zhang S, Li P. Zebrafish as a Model for In-Depth Mechanistic Study for Stroke. Transl Stroke Res 2021; 12:695-710. [PMID: 34050491 DOI: 10.1007/s12975-021-00907-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Stroke is one of the world's leading causes of death and disability, posing enormous burden to the society. However, the pathogenesis and mechanisms that underlie brain injury and brain repair remain largely unknown. There's an unmet need of in-depth mechanistic research in this field. Zebrafish (Danio rerio) is a powerful tool in brain science research mainly due to its small size and transparent body, high genome synteny with human, and similar nervous system structures. It can be used to establish both hemorrhagic and ischemic stroke models easily and effectively through different ways. After the establishment of stroke model, research methods including behavioral test, in vivo imaging, and drug screening are available to explore mechanisms that underlie the brain injury and brain repair after stroke. This review focuses on the advantages and the feasibility of zebrafish stroke model, and will also introduce the key methods available for stroke studies in zebrafish, which may drive future mechanistic studies in the pursuit of discovering novel therapeutic targets for stroke patients.
Collapse
Affiliation(s)
- Weijie Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Lv Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Fang Yu
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yan Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Chen Chen
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Wanqing Xie
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Tingting Huang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Yueman Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Song Zhang
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| | - Peiying Li
- Department of Anesthesiology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine Shanghai Jiaotong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
12
|
Liu C, Yin Q, Li M, Fan Y, Shen C, Yang R. ACTB Methylation in Blood as a Potential Marker for the Pre-clinical Detection of Stroke: A Prospective Nested Case-Control Study. Front Neurosci 2021; 15:644943. [PMID: 34054407 PMCID: PMC8160447 DOI: 10.3389/fnins.2021.644943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Background Stroke is the second leading cause of death worldwide. If risk of stroke could be evaluated early or even at a preclinical stage, the mortality rate could be reduced dramatically. However, the identified genetic factors only account for 5-10% of the risk of stroke. Studies on the risk factors of stroke are urgently needed. We investigated the correlation between blood-based β-actin (ACTB) methylation and the risk of stroke in a prospective nested case-control study. Methods The methylation level of ACTB was quantitatively determined by mass spectrometry in 139 stroke cases who developed stroke within 2 years after recruitment and 147 age- and sex-matched controls who remained stroke-free in a median follow-up of 2.71 years. Results We observed a highly significant correlation between hypomethylation of one CpG site of ACTB and increased risk of stroke in an onset-time-dependent manner (for onset time ≤ 1.5 years: odds ratio (OR) per + 10% methylation = 0.76, P = 0.001; for onset time ≤ 1.32 years: OR per + 10% methylation = 0.59, P = 7.82 × 10-7; for onset time ≤ 1 year: OR per + 10% methylation = 0.43, P = 3.00 × 10-6), and the increased cumulative incidence of stroke (log-rank P = 3.13 × 10-7). Neighboring CpG sites showed an inverse correlation with age and drinking status in controls (P < 0.05) but not in stroke cases. Conclusion We firstly reported the blood-based ACTB methylation as a marker for the risk evaluation and preclinical detection of stroke, which can be further modified by age and drinking.
Collapse
Affiliation(s)
- Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiming Yin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mengxia Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yao Fan
- Division of Clinical Epidemiology, Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Gago-Dominguez M, Sobrino T, Torres-Español M, Calaza M, Rodríguez-Castro E, Campos F, Redondo CM, Castillo J, Carracedo Á. Obesity-related genetic determinants of stroke. Brain Commun 2021; 3:fcab069. [PMID: 34550115 PMCID: PMC8126360 DOI: 10.1093/braincomms/fcab069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 11/12/2022] Open
Abstract
As obesity, circulating lipids and other vascular/metabolic factors influence the risk of stroke, we examined if genetic variants associated with these conditions are related to risk of stroke using a case-control study in Galicia, Spain. A selection of 200 single-nucleotide polymorphisms previously found to be related to obesity, body mass index, circulating lipids, type 2 diabetes, heart failure, obesity-related cancer and cerebral infarction were genotyped in 465 patients diagnosed with stroke and 480 population-based controls. An unsupervised Lasso regression procedure was carried out for single-nucleotide polymorphism selection based on their potential effect on stroke according to obesity. Selected genotypes were further analysed through multivariate logistic regression to study their association with risk of stroke. Using unsupervised selection procedures, nine single-nucleotide polymorphisms were found to be related to risk of stroke overall and after stratification by obesity. From these, rs10761731, rs2479409 and rs6511720 in obese subjects [odds ratio (95% confidence interval) = 0.61 (0.39-0.95) (P = 0.027); 0.54 (0.35-0.84) (P = 0.006) and 0.42 (0.22-0.80) (P = 0.0075), respectively], and rs865686 in non-obese subjects [odds ratio (95% confidence interval) = 0.67 (0.48-0.94) (P = 0.019)], were independently associated with risk of stroke after multivariate logistic regression procedures. The associations between the three single-nucleotide polymorphisms found to be associated with stroke risk in obese subjects were more pronounced among females; for rs10761731, odds ratios among obese males and females were 1.07 (0.58-1.97) (P = 0.84), and 0.31 (0.14-0.69) (P = 0.0018), respectively; for rs2479409, odd ratios were 0.66 (0.34-1.27) (P = 0.21), and 0.49 (0.24-0.99) (P = 0.04), for obese males and females, respectively; the stroke-rs6511720 association was also slightly more pronounced among obese females, odds ratios were 0.33 (0.13-0.87) (P = 0.022), and 0.28 (0.09-0.85) (P = 0.02) for obese males and females, respectively. The rs865686-stroke association was more pronounced among non-obese males [odds ratios = 0.61 (0.39-0.96) (P = 0.029) and 0.72 (0.42-1.22) (P = 0.21), for non-obese males and females, respectively]. A combined genetic score of variants rs10761731, rs2479409 and rs6511720 was highly predictive of stroke risk among obese subjects (P = 2.04 × 10-5), particularly among females (P = 4.28 × 10-6). In summary, single-nucleotide polymorphisms rs1076173, rs2479409 and rs6511720 were found to independently increase the risk of stroke in obese subjects after adjustment for established risk factors. A combined score with the three genomic variants was an independent predictor of risk of stroke among obese subjects in our population.
Collapse
Affiliation(s)
- Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina
Xenómica (FPGMX), Servicio Galego de Saúde (SERGAS), Health
Research Institute of Santiago de Compostela (IDIS), Santiago de
Compostela, Spain
- Grupo de Medicina Xenómica, Centro en Red de
Enfermedades Raras (CIBERER), Universidade de Santiago de
Compostela, Santiago de Compostela, Spain
- International Cancer Genetics and Epidemiology
Group, Health Research Institute of Santiago de Compostela (IDIS),
Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Health
Research Institute of Santiago de Compostela (IDIS), Hospital Clínico
Universitario, Universidade de Santiago de Compostela, Santiago de
Compostela, Spain
| | - María Torres-Español
- Fundación Pública Galega de Medicina
Xenómica (FPGMX), Servicio Galego de Saúde (SERGAS), Health
Research Institute of Santiago de Compostela (IDIS), Santiago de
Compostela, Spain
| | - Manuel Calaza
- Conselleria de Educación, Xunta de
Galicia, Santiago de Compostela, Spain
| | - Emilio Rodríguez-Castro
- Clinical Neurosciences Research Laboratory, Health
Research Institute of Santiago de Compostela (IDIS), Hospital Clínico
Universitario, Universidade de Santiago de Compostela, Santiago de
Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Health
Research Institute of Santiago de Compostela (IDIS), Hospital Clínico
Universitario, Universidade de Santiago de Compostela, Santiago de
Compostela, Spain
| | - Carmen M Redondo
- Oncology and Genetics Unit, Instituto de
Investigación Sanitaria Galicia Sur, Vigo, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Health
Research Institute of Santiago de Compostela (IDIS), Hospital Clínico
Universitario, Universidade de Santiago de Compostela, Santiago de
Compostela, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina
Xenómica (FPGMX), Servicio Galego de Saúde (SERGAS), Health
Research Institute of Santiago de Compostela (IDIS), Santiago de
Compostela, Spain
- Grupo de Medicina Xenómica, Centro en Red de
Enfermedades Raras (CIBERER), Universidade de Santiago de
Compostela, Santiago de Compostela, Spain
| |
Collapse
|
14
|
Nanomedicine for Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21207600. [PMID: 33066616 PMCID: PMC7590220 DOI: 10.3390/ijms21207600] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is a severe brain disease leading to disability and death. Ischemic stroke dominates in stroke cases, and there are no effective therapies in clinic, partly due to the challenges in delivering therapeutics to ischemic sites in the brain. This review is focused on the current knowledge of pathogenesis in ischemic stroke, and its potential therapies and diagnosis. Furthermore, we present recent advances in developments of nanoparticle-based therapeutics for improved treatment of ischemic stroke using polymeric NPs, liposomes and cell-derived nanovesicles. We also address several critical questions in ischemic stroke, such as understanding how nanoparticles cross the blood brain barrier and developing in vivo imaging technologies to address this critical question. Finally, we discuss new opportunities in developing novel therapeutics by targeting activated brain endothelium and inflammatory neutrophils to improve the current therapies for ischemic stroke.
Collapse
|
15
|
Geronikolou S, Leontitsis A, Petropoulos V, Davos C, Cokkinos D, Chrousos G. Cyclic stroke mortality variations follow sunspot patterns. F1000Res 2020; 9:1088. [PMID: 33224479 PMCID: PMC7667520 DOI: 10.12688/f1000research.24794.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Mapping time-structures is a burgeoning scientific field enriching the (P4) medicine models. Local evidence in Mediterranean populations is underinvestigated. Methods: The Censused stroke-related death events (D) in the largest East-Mediterranean port (Piraeus), during (1985-1989), when local population had diet (low fat/sugar, proteins and vegetables/fruits daily, and pure olive oil almost exclusively) and genetic homogeneity-later interrupted by the immigration into Greece in 1990; and Sunspot numbers were indexed by Wolf numbers (Rz) (1944-2004), and evaluated using Fast Fourier Analysis and Singular Spectrum Analysis in MATLAB. Results: D were turned with fluctuations >35% in Rz. A non-anthropogenic 6.8 days cycle was recognized. Conclusions: This study may be taken into consideration in future public health planning and chronotherapy evaluations.
Collapse
Affiliation(s)
- Stella Geronikolou
- Clinical, Translational and Experimental Surgery, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | | | - Vasilis Petropoulos
- Research Center for Astronomy and Applied Mathematics, Academy of Athens, Athens, 11527, Greece
| | - Constantinos Davos
- Clinical, Translational and Experimental Surgery, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Dennis Cokkinos
- Clinical, Translational and Experimental Surgery, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - George Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Thivon and Levadeias, Athens, 11527, Greece
| |
Collapse
|
16
|
Schunkert H, Samani NJ. Into the great wide open: 10 years of genome-wide association studies. Cardiovasc Res 2019; 114:1189-1191. [PMID: 29688283 DOI: 10.1093/cvr/cvy100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Lazarettstr. 36, Munich, Germany
- DZHK (German Center for Cardiovascular Research) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
17
|
Zheng JH, Ning GL, Xu WH, Wu XC, Ma XC. Lack of association between ALOX5AP genetic polymorphisms and risk of ischemic stroke: evidence from meta-analyses. Neuropsychiatr Dis Treat 2019; 15:357-367. [PMID: 30774347 PMCID: PMC6354695 DOI: 10.2147/ndt.s182674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In recent years, there has been substantial research evaluating the relationship between arachidonate 5-lipoxygenase-activating protein (ALOX5AP) polymorphisms and ischemic stroke (IS). The objective of this study was to systematically review and analyze the existing evidence. METHODS A comprehensive search of major electronic databases for studies published between 1990 and 2018 was carried out. Data were synthesized as OR and 95% CI using fixed-effects and random-effects models. RESULTS A total of 30 studies were available for analysis. The aggregate sample size across all studies was 32,782 (16,294 cases and 16,488 controls). We found no association of the ALOX5AP rs10507391 (OR=1.03 for A allele vs T allele; 95% CI: 0.93-1.14; P=0.557), rs4769874 (OR=1.13 for A allele vs G allele; 95% CI: 1.00-1.28; P=0.050), rs9551963 (OR=1.03 for A allele vs C allele; 95% CI: 0.96-1.11; P=0.372), rs17222814 (OR=1.09 for A allele vs G allele; 95% CI: 0.96-1.24; P=0.195), rs17222919 (OR=0.89 for G allele vs T allele; 95% CI: 0.75-1.06; P=0.175), and rs4073259 (OR=1.20 for A allele vs G allele; 95% CI: 1.00-1.45; P=0.056) polymorphisms with IS risk. Haplotype analysis also did not yield significant findings for the HapA (rs17222814G-rs10507391T-rs4769874G-rs9551963A; OR=1.20; 95% CI: 0.91-1.56; P=0.192) and HapB (rs17216473A-rs10507391A-rs9315050A-rs17222842G; OR=1.11; 95% CI: 0.90-1.38; P=0.339) haplotypes. CONCLUSION Current evidence does not support an association of rs10507391, rs4769874, rs9551963, rs17222814, rs17222919, rs4073259, and HapA and HapB with IS risk.
Collapse
Affiliation(s)
- Jing-Hui Zheng
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China,
| | - Gui-Lan Ning
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China,
| | - Wen-Hua Xu
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China,
| | - Xin-Cheng Wu
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China,
| | - Xiao-Cong Ma
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China,
| |
Collapse
|
18
|
Huang S, Lv Z, Wen Y, Wei Y, Zhou L, Ke Y, Zhang Y, Xu Q, Li L, Guo Y, Li D, Xie C, Guo Y, Cheng J. miR-129-2-3p directly targets SYK gene and associates with the risk of ischaemic stroke in a Chinese population. J Cell Mol Med 2019; 23:167-176. [PMID: 30499219 PMCID: PMC6307781 DOI: 10.1111/jcmm.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/16/2018] [Indexed: 02/05/2023] Open
Abstract
Spleen tyrosine kinase (SYK) gene has been identified as novel susceptibility locus for ischaemic stroke (IS) previously. However, regulation of SYK gene remains unknown in IS. In this study, we aimed to identify miRNAs that might be involved in the development of IS by targeting SYK gene. miRNAs were firstly screened by bioinformatics predicting tool. The expression levels of SYK gene were detected by qRT-PCR and western blotting, respectively, after miRNA transfection. Luciferase reporter assay was applied to investigate the direct binding between miRNAs and target gene. miRNA levels were detected by miRNA TaqMan assays in the blood cells of 270 IS patients and 270 control volunteers. Results suggest that SYK gene might be a direct target of miR-129-2-3p. The blood level of miR-129-2-3p was significantly lower in IS patients (P < 0.05), and negatively associated with the risk of IS (adjusted OR: 0.88; 95% CI: 0.80-0.98; P = 0.021) by multivariable logistic regression analysis. The blood levels of SYK gene were significantly higher in IS patients, and miR-129-2-3p expression was negatively correlated with mean platelet volume. In summary, our study suggests that miR-129-2-3p might be involved in the pathogenesis of IS through interrupting SYK expression and the platelet function, and further investigation is needed to explore the underlying mechanism.
Collapse
Affiliation(s)
- Suli Huang
- Department of Molecular EpidemiologyShenzhen Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Ziquan Lv
- Department of Molecular EpidemiologyShenzhen Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Ying Wen
- Department of Molecular EpidemiologyShenzhen Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Yazhen Wei
- Department of Molecular EpidemiologyShenzhen Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Li Zhou
- Department of School HygieneShenzhen Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Yuebin Ke
- Department of Molecular EpidemiologyShenzhen Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Yanwei Zhang
- Department of Molecular EpidemiologyShenzhen Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Qianhui Xu
- Department of NeurologyPeople's Hospital of ShenzhenGuangdongChina
| | - Lu Li
- Research Center of Translational MedicineThe Second Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Yinsheng Guo
- Department of Molecular EpidemiologyShenzhen Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Di Li
- Department of NeurologyPeople's Hospital of ShenzhenGuangdongChina
| | - Changhui Xie
- Department of Molecular EpidemiologyShenzhen Center for Disease Control and PreventionShenzhenGuangdongChina
| | - Yi Guo
- Department of NeurologyPeople's Hospital of ShenzhenGuangdongChina
| | - Jinquan Cheng
- Department of Molecular EpidemiologyShenzhen Center for Disease Control and PreventionShenzhenGuangdongChina
| |
Collapse
|
19
|
Yamada Y, Kato K, Oguri M, Horibe H, Fujimaki T, Yasukochi Y, Takeuchi I, Sakuma J. Identification of nine genes as novel susceptibility loci for early-onset ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage. Biomed Rep 2018; 9:8-20. [PMID: 29930801 PMCID: PMC6006761 DOI: 10.3892/br.2018.1104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
Given that substantial genetic components have been shown in ischemic stroke, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH), heritability may be higher in early-onset than late-onset individuals with these conditions. Although genome-wide association studies (GWASs) have identified various genes and loci significantly associated with ischemic stroke, ICH, or intracranial aneurysm mainly in European ancestry populations, genetic variants that contribute to susceptibility to these disorders remain to be identified definitively. We performed exome-wide association studies (EWASs) to identify genetic variants that confer susceptibility to ischemic stroke, ICH, or SAH in early-onset subjects with these conditions. A total of 6,649 individuals aged ≤65 years were examined. For the EWAS of ischemic or hemorrhagic stroke, 6,224 individuals (450 subjects with ischemic stroke, 5,774 controls) or 6,179 individuals (261 subjects with ICH, 176 subjects with SAH, 5,742 controls), respectively, were examined. EWASs were performed with the use of Illumina Human Exome-12 v1.2 DNA Analysis BeadChip or Infinium Exome-24 v1.0 BeadChip. To compensate for multiple comparisons of allele frequencies with ischemic stroke, ICH, or SAH, we applied a false discovery rate (FDR) of <0.05 for statistical significance of association. The association of allele frequencies of 31,245 single nucleotide polymorphisms (SNPs) that passed quality control to ischemic stroke was examined with Fisher's exact test, and 31 SNPs were significantly (FDR <0.05) associated with ischemic stroke. The association of allele frequencies of 31,253 or 30,970 SNPs to ICH or SAH, respectively, was examined with Fisher's exact test, and six or two SNPs were significantly associated with ICH or SAH, respectively. Multivariable logistic regression analysis with adjustment for age, sex, and the prevalence of hypertension and diabetes mellitus revealed that 12 SNPs were significantly [P<0.0004 (0.05/124)] related to ischemic stroke. Similar analysis with adjustment for age, sex, and the prevalence of hypertension revealed that six or two SNPs were significantly [P<0.0016 (0.05/32)] related to ICH or SAH, respectively. After examination of linkage disequilibrium of identified SNPs and results of previous GWASs, we identified HHIPL2, CTNNA3, LOC643770, UTP20, and TRIB3 as susceptibility loci for ischemic stroke, DNTTIP2 and FAM205A as susceptibility loci for ICH, and FAM160A1 and OR52E4 as such loci for SAH. Therefore, to the best of our knowledge, we have newly identified nine genes that confer susceptibility to early-onset ischemic stroke, ICH, or SAH. Determination of genotypes for the SNPs in these genes may prove informative for assessment of the genetic risk for ischemic stroke, ICH, or SAH in Japanese.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Aichi 465-0025, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Aichi 486-8510, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu 507-8522, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Northern Mie Medical Center Inabe General Hospital, Inabe, Mie 511-0428, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|