1
|
Benjelloun B, Leempoel K, Boyer F, Stucki S, Streeter I, Orozco-terWengel P, Alberto FJ, Servin B, Biscarini F, Alberti A, Engelen S, Stella A, Colli L, Coissac E, Bruford MW, Ajmone-Marsan P, Negrini R, Clarke L, Flicek P, Chikhi A, Joost S, Taberlet P, Pompanon F. Multiple genomic solutions for local adaptation in two closely related species (sheep and goats) facing the same climatic constraints. Mol Ecol 2024; 33:e17257. [PMID: 38149334 DOI: 10.1111/mec.17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/18/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
The question of how local adaptation takes place remains a fundamental question in evolutionary biology. The variation of allele frequencies in genes under selection over environmental gradients remains mainly theoretical and its empirical assessment would help understanding how adaptation happens over environmental clines. To bring new insights to this issue we set up a broad framework which aimed to compare the adaptive trajectories over environmental clines in two domesticated mammal species co-distributed in diversified landscapes. We sequenced the genomes of 160 sheep and 161 goats extensively managed along environmental gradients, including temperature, rainfall, seasonality and altitude, to identify genes and biological processes shaping local adaptation. Allele frequencies at putatively adaptive loci were rarely found to vary gradually along environmental gradients, but rather displayed a discontinuous shift at the extremities of environmental clines. Of the 430 candidate adaptive genes identified, only 6 were orthologous between sheep and goats and those responded differently to environmental pressures, suggesting different putative mechanisms involved in local adaptation in these two closely related species. Interestingly, the genomes of the 2 species were impacted differently by the environment, genes related to signatures of selection were most related to altitude, slope and rainfall seasonality for sheep, and summer temperature and spring rainfall for goats. The diversity of candidate adaptive pathways may result from a high number of biological functions involved in the adaptations to multiple eco-climatic gradients, and a differential role of climatic drivers on the two species, despite their co-distribution along the same environmental gradients. This study describes empirical examples of clinal variation in putatively adaptive alleles with different patterns in allele frequency distributions over continuous environmental gradients, thus showing the diversity of genetic responses in adaptive landscapes and opening new horizons for understanding genomics of adaptation in mammalian species and beyond.
Collapse
Affiliation(s)
- Badr Benjelloun
- Livestock Genomics Laboratory, Regional Center of Agricultural Research Tadla, National Institute of Agricultural Research INRA, Rabat, Morocco
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Kevin Leempoel
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Frédéric Boyer
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Sylvie Stucki
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Wales, UK
- Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Florian J Alberto
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, Castanet-Tolosan, France
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stefan Engelen
- Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- BioDNA - Centro di Ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Eric Coissac
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Wales, UK
- Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Paolo Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- BioDNA - Centro di Ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Riccardo Negrini
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- AIA Associazione Italiana Allevatori, Roma, Italy
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Abdelkader Chikhi
- Livestock Genomics Laboratory, Regional Center of Agricultural Research Tadla, National Institute of Agricultural Research INRA, Rabat, Morocco
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Taberlet
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - François Pompanon
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
2
|
Lowe WH, Addis BR, Cochrane MM. Outbreeding reduces survival during metamorphosis in a headwater stream salamander. Mol Ecol 2024; 33:e17375. [PMID: 38699973 DOI: 10.1111/mec.17375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 05/05/2024]
Abstract
Assessing direct fitness effects of individual genetic diversity is challenging due to the intensive and long-term data needed to quantify survival and reproduction in the wild. But resolving these effects is necessary to determine how inbreeding and outbreeding influence eco-evolutionary processes. We used 8 years of capture-recapture data and single nucleotide polymorphism genotypes for 1906 individuals to test for effects of individual heterozygosity on stage-specific survival probabilities in the salamander Gyrinophilus porphyriticus. The life cycle of G. porphyriticus includes an aquatic larval stage followed by metamorphosis into a semi-aquatic adult stage. In our study populations, the larval stage lasts 6-10 years, metamorphosis takes several months, and lifespan can reach 20 years. Previous studies showed that metamorphosis is a sensitive life stage, leading us to predict that fitness effects of individual heterozygosity would occur during metamorphosis. Consistent with this prediction, monthly probability of survival during metamorphosis declined with multi-locus heterozygosity (MLH), from 0.38 at the lowest MLH (0.10) to 0.06 at the highest MLH (0.38), a reduction of 84%. Body condition of larvae also declined significantly with increasing MLH. These relationships were consistent in the three study streams. With evidence of localised inbreeding within streams, these results suggest that outbreeding disrupts adaptations in pre-metamorphic and metamorphic individuals to environmental gradients along streams, adding to evidence that headwater streams are hotspots of microgeographic adaptation. Our results also underscore the importance of incorporating life history in analyses of the fitness effects of individual genetic diversity and suggest that metamorphosis and similar discrete life stage transitions may be critical periods of viability selection.
Collapse
Affiliation(s)
- Winsor H Lowe
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Brett R Addis
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Madaline M Cochrane
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
3
|
Bertinetti C, Härer A, Karagic N, Meyer A, Torres-Dowdall J. Repeated Divergence in Opsin Gene Expression Mirrors Photic Habitat Changes in Rapidly Evolving Crater Lake Cichlid Fishes. Am Nat 2024; 203:604-617. [PMID: 38635367 DOI: 10.1086/729420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractSelection pressures differ along environmental gradients, and traits tightly linked to fitness (e.g., the visual system) are expected to track such variation. Along gradients, adaptation to local conditions might be due to heritable and nonheritable environmentally induced variation. Disentangling these sources of phenotypic variation requires studying closely related populations in nature and in the laboratory. The Nicaraguan lakes represent an environmental gradient in photic conditions from clear crater lakes to very turbid great lakes. From two old, turbid great lakes, Midas cichlid fish (Amphilophus cf. citrinellus) independently colonized seven isolated crater lakes of varying light conditions, resulting in a small adaptive radiation. We estimated variation in visual sensitivities along this photic gradient by measuring cone opsin gene expression among lake populations. Visual sensitivities observed in all seven derived crater lake populations shifted predictably in direction and magnitude, repeatedly mirroring changes in photic conditions. Comparing wild-caught and laboratory-reared fish revealed that 48% of this phenotypic variation is genetically determined and evolved rapidly. Decreasing intrapopulation variation as environments become spectrally narrower suggests that different selective landscapes operate along the gradient. We conclude that the power to predict phenotypic evolution along gradients depends on both the magnitude of environmental change and the selective landscape shape.
Collapse
|
4
|
Schweizer RM, Jones MR, Bradburd GS, Storz JF, Senner NR, Wolf C, Cheviron ZA. Broad Concordance in the Spatial Distribution of Adaptive and Neutral Genetic Variation across an Elevational Gradient in Deer Mice. Mol Biol Evol 2021; 38:4286-4300. [PMID: 34037784 PMCID: PMC8476156 DOI: 10.1093/molbev/msab161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
When species are continuously distributed across environmental gradients, the relative strength of selection and gene flow shape spatial patterns of genetic variation, potentially leading to variable levels of differentiation across loci. Determining whether adaptive genetic variation tends to be structured differently than neutral variation along environmental gradients is an open and important question in evolutionary genetics. We performed exome-wide population genomic analysis on deer mice sampled along an elevational gradient of nearly 4,000 m of vertical relief. Using a combination of selection scans, genotype-environment associations, and geographic cline analyses, we found that a large proportion of the exome has experienced a history of altitude-related selection. Elevational clines for nearly 30% of these putatively adaptive loci were shifted significantly up- or downslope of clines for loci that did not bear similar signatures of selection. Many of these selection targets can be plausibly linked to known phenotypic differences between highland and lowland deer mice, although the vast majority of these candidates have not been reported in other studies of highland taxa. Together, these results suggest new hypotheses about the genetic basis of physiological adaptation to high altitude, and the spatial distribution of adaptive genetic variation along environmental gradients.
Collapse
Affiliation(s)
- Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Matthew R Jones
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Southwest Biological Science Center, U.S. Geological Survey, Flagstaff, AZ, USA
| | - Gideon S Bradburd
- Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Nathan R Senner
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Cole Wolf
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
5
|
Borisov RR, Chertoprud ES, Palatov DM, Novichkova AA. Variability in macrozoobenthic assemblages along a gradient of environmental conditions in the stream water of karst caves (Lower Shakuranskaya Cave, western Caucasus). SUBTERRANEAN BIOLOGY 2021. [DOI: 10.3897/subtbiol.39.65733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fauna of the stream water in the Lower Shakuranskaya Cave in central Abkhazia, western Caucasus, was studied. This cave has a large inlet and an extended entrance ecotone area of approximately 60 m, which makes it a convenient area for studying macrozoobenthic assemblages across a gradient of environmental factors. The cave has 13 species of stygobionts, 10 species of stygophiles and 18 species of stygoxenes. The number of species and the abundance and biomass of stygobionts per station were the highest near the boundary of the photic zone, at a distance of 50–60 m from the entrance to the cave, and gradually decreased toward both the remote parts of the cavity and the cave exit. The most abundant stygobionts were gastropod mollusks of the Hydrobiidae family, and Xiphocaridinella shrimp comprised the main part of the biomass. It has been shown that the main environmental factors determining the distribution of macrozoobenthos are luminosity and distance from the entrance to a cave. According to the differences in their reactions to these environmental factors, several groups of species were identified. In addition, three main assemblages of macrozoobenthic species were described: (1) an assemblage of epigean species near the cave entrance area; (2) stygobionts in remote parts of the cave outside the photic zone; and (3) a mixed assemblage in the cave ecotone, where a faint light penetrates. The specific details related to the faunal structure in the ecotone of the cave are discussed, as well as active and passive methods by which stygoxenes invade underground cavities.
Collapse
|
6
|
Wang L, Zhu L, Tang K, Liu M, Xue X, Wang G, Wang Z. Population genetic structure of sharpbelly Hemiculter leucisculus (Basilesky, 1855) and morphological diversification along climate gradients in China. Ecol Evol 2021; 11:6798-6813. [PMID: 34141257 PMCID: PMC8207360 DOI: 10.1002/ece3.7528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/08/2022] Open
Abstract
Sharpbelly Hemiculter leucisculus (Basilewski, 1855) is a small, widespread, and native cyprinid fish with prominent habitat suitability and high invasive potential and is becoming the dominant species in freshwater ecosystems under intensified environmental disturbances. But how H. leucisculus acclimates to extremely heterogeneous environments remains unclear. In current study, the genetic structure of H. leucisculus was analyzed using Bayesian phylogenetic inference, haplotype network, and STRUCTURE base on cytb gene across 18 populations spanning 20 degrees of latitude and 18 degrees of longitude in China. The morphological diversification of body size and shape for H. leucisculus along the climate gradient was studied. The results showed that the 18 H. leucisculus populations were divided into 3 clusters: one cluster mainly from Huanghe River Basin, another cluster mainly from Yangzi River Basin, and H cluster containing Hainan and Beihai populations. The fish from southern populations were deeper bodied while individuals from northern populations were more slender. Inland individuals were more streamlined while coastal individuals were of deeper body. The partial Mantel test predicts that the potential mechanism underlining the intraspecies morphological diversification along climate gradients is primarily the divergent selection pressures among different environments, while genetic variation had less contribution to morphological differentiation. The formation of the Nanling Mountain Range could drive genetic differentiation between Beihai population and those from Yangzi River Basin. The present results highlight strong selective pressures of climate on widespread species and enrich morphological differentiation basis of acclimation for species with high habitat suitability and invasive potential.
Collapse
Affiliation(s)
- Lihong Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Long Zhu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Kui Tang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Mengyu Liu
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xue Xue
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Gaoxue Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Zaizhao Wang
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
7
|
Underwood EC, Klinger RC, Brooks ML. Effects of invasive plants on fire regimes and postfire vegetation diversity in an arid ecosystem. Ecol Evol 2019; 9:12421-12435. [PMID: 31788187 PMCID: PMC6875662 DOI: 10.1002/ece3.5650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/19/2019] [Accepted: 08/03/2019] [Indexed: 11/09/2022] Open
Abstract
We assessed the impacts of co-occurring invasive plant species on fire regimes and postfire native communities in the Mojave Desert, western USA. We analyzed the distribution and co-occurrence patterns of three invasive annual grasses (Bromus rubens, Bromus tectorum, and Schismus spp.) known to alter fuel conditions and community structure, and an invasive forb (Erodium cicutarium) which dominates postfire sites. We developed species distribution models (SDMs) for each of the four taxa and analyzed field plot data to assess the relationship between invasives and fire frequency, years postfire, and the impacts on postfire native herbaceous diversity. Most of the Mojave Desert is highly suitable for at least one of the four invasive species, and 76% of the ecoregion is predicted to have high or very high suitability for the joint occurrence of B. rubens and B. tectorum and 42% high or very high suitability for the joint occurrence of the two Bromus species and E. cicutarium. Analysis of cover from plot data indicated two or more of the species occurred in 77% of the plots, with their cover doubling with each additional species. We found invasive cover in burned plots increased for the first 20 years postfire and recorded two to five times more cover in burned than unburned plots. Analysis also indicated that native species diversity and evenness as negatively associated with higher levels of relative cover of the four invasive taxa. Our findings revealed overlapping distributions of the four invasives; a strong relationship between the invasives and fire frequency; and significant negative impacts of invasives on native herbaceous diversity in the Mojave. This suggests predicting the distributions of co-occurring invasive species, especially transformer species, will provide a better understanding of where native-dominated communities are most vulnerable to transformations following fire or other disturbances.
Collapse
Affiliation(s)
- Emma C. Underwood
- Department of Environmental Science and PolicyUniversity of CaliforniaDavisCAUSA
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | | | | |
Collapse
|
8
|
Tsakalakis I, Blasius B, Ryabov A. Resource competition and species coexistence in a two-patch metaecosystem model. THEOR ECOL-NETH 2019. [DOI: 10.1007/s12080-019-00442-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Santi F, Petry AC, Plath M, Riesch R. Phenotypic differentiation in a heterogeneous environment: morphological and life‐history responses to ecological gradients in a livebearing fish. J Zool (1987) 2019. [DOI: 10.1111/jzo.12720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- F. Santi
- School of Biological Sciences Royal Holloway University of London Egham UK
| | - A. C. Petry
- Instituto de Biodiversidade e Sustentatibilidade – NUPEM Universidade Federal do Rio de Janeiro – UFRJ Macaé Brazil
| | - M. Plath
- College of Animal Science and Technology Northwest A&F University Yangling China
| | - R. Riesch
- School of Biological Sciences Royal Holloway University of London Egham UK
| |
Collapse
|
10
|
Jourdan J, Piro K, Weigand A, Plath M. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front Zool 2019; 16:29. [PMID: 31338113 PMCID: PMC6624920 DOI: 10.1186/s12983-019-0327-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/24/2019] [Indexed: 01/26/2023] Open
Abstract
Background Selective landscapes in rivers are made up by an array of selective forces that vary from source to downstream regions or between seasons, and local/temporal variation in fitness maxima can result in gradual spatio-temporal variation of phenotypic traits. This study aimed at establishing freshwater amphipods as future model organisms to study adaptive phenotypic diversification (evolutionary divergence and/or adaptive plasticity) along stream gradients. Methods We collected Gammarus roeselii from 16 sampling sites in the Rhine catchment during two consecutive seasons (summer and winter). Altogether, we dissected n = 1648 individuals and quantified key parameters related to morphological and life-history diversification, including naturally selected (e.g., gill surface areas) as well as primarily sexually selected traits (e.g., male antennae). Acknowledging the complexity of selective regimes in streams and the interrelated nature of selection factors, we assessed several abiotic (e.g., temperature, flow velocity) and biotic ecological parameters (e.g., conspecific densities, sex ratios) and condensed them into four principal components (PCs). Results Generalized least squares models revealed pronounced phenotypic differentiation in most of the traits investigated herein, and components of the stream gradient (PCs) explained parts of the observed differences. Depending on the trait under investigation, phenotypic differentiation could be ascribed to variation in abiotic conditions, anthropogenic disturbance (influx of thermally polluted water), or population parameters. For example, female fecundity showed altitudinal variation and decreased with increasing conspecific densities, while sexual dimorphism in the length of male antennae—used for mate finding and assessment—increased with increasing population densities and towards female-biased sex ratios. Conclusions We provide a comprehensive protocol for comparative analyses of intraspecific variation in life history traits in amphipods. Whether the observed phenotypic differentiation over small geographical distances reflects evolutionary divergence or plasticity (or both) remains to be investigated in future studies. Independent of the mechanisms involved, variation in several traits is likely to have consequences for ecosystem functions. For example, leaf-shredding in G. roeselii strongly depends on body size, which varied in dependence of several ecological parameters. Electronic supplementary material The online version of this article (10.1186/s12983-019-0327-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonas Jourdan
- 1Department of Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.,Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Kathrin Piro
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Alexander Weigand
- National Museum of Natural History Luxembourg, Luxembourg City, Luxembourg
| | - Martin Plath
- 4College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China.,5Shaanxi Key Laboratory for Molecular Biology for Agriculture, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
11
|
Banitz T. Spatially structured intraspecific trait variation can foster biodiversity in disturbed, heterogeneous environments. OIKOS 2019. [DOI: 10.1111/oik.05787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Thomas Banitz
- UFZ – Helmholtz Centre for Environmental Research, Dept of Ecological Modelling Permoserstraße 15 DE‐04318 Leipzig Germany
| |
Collapse
|
12
|
Riesch R, Martin RA, Diamond SE, Jourdan J, Plath M, Brian Langerhans R. Thermal regime drives a latitudinal gradient in morphology and life history in a livebearing fish. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rüdiger Riesch
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Ryan A Martin
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - R Brian Langerhans
- Department of Biological Sciences & W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
13
|
Zimmer C, Riesch R, Jourdan J, Bierbach D, Arias-Rodriguez L, Plath M. Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies ( Poecilia mexicana). Genes (Basel) 2018; 9:E232. [PMID: 29724050 PMCID: PMC5977172 DOI: 10.3390/genes9050232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022] Open
Abstract
Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI). Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage) suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel) pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system.
Collapse
Affiliation(s)
- Claudia Zimmer
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, China.
- Department of Ecology and Evolution, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Rüdiger Riesch
- Centre for Ecology, Evolution and Behaviour, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, D-63571 Gelnhausen, Germany.
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany.
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 86150 Villahermosa, Tabasco, Mexico.
| | - Martin Plath
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|