1
|
Magalhães FDM, Oliveira EF, Garda AA, Burbrink FT, Gehara M. Genomic data support reticulate evolution in whiptail lizards from the Brazilian Caatinga. Mol Phylogenet Evol 2025; 204:108280. [PMID: 39725181 DOI: 10.1016/j.ympev.2024.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Species relationships have traditionally been represented by phylogenetic trees, but not all evolutionary histories fit into bifurcating divergence models. Introgressive hybridization challenges this assumption by sometimes [or maybe often] leading to mitochondrial introgression, wherein one species' mitochondrial genome is entirely replaced by another's (mitochondrial capture). Such processes result in mitonuclear discrepancies, complicating species delimitation and phylogenetic inference. In our study, we used ultraconserved elements (UCE) and mitogenomic data to investigate the evolutionary history of the Ameivula ocellifera complex, a group of South American whiptail lizards widely distributed in semiarid environments of the Caatinga Domain in Brazil. We examine mitonuclear discordances, assessing reticulate evolution, evaluating species limits, and testing for adaptive mitochondrial capture that could explain higher introgression in the mitochondrial genome compared to nuclear DNA. Our findings support the occurrence of an ancient reticulation event during the diversification of these lizards, driven by introgressive hybridization, leading to mitochondrial capture, and explaining mitonuclear discrepancies. Overall, we did not find clear evidence of positive selection across mitochondrial protein-coding genes suggesting adaptive mitochondrial capture of individuals with introgressed mtDNA. Thus, the genetic diversification and mitogenome evolution could be neutral, with selection against hybridization in the autosomal loci only, or even mediated by mitonuclear incompatibilities. Analyses of mtDNA genomes alongside network and species delimitation methods were crucial for identifying and validating individuals with introgressed mtDNA as a distinct species, demonstrating the potential of genome sampling, and using innovative analytical techniques for elucidating speciation processes in the presence of introgressive hybridization.
Collapse
Affiliation(s)
- Felipe de M Magalhães
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA; Programa de Pós-Graduação em Ciências Biológicas, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
| | - Eliana F Oliveira
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Adrian A Garda
- Laboratório de Anfíbios e Répteis (LAR), Departamento de Botânica e Zoologia da Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Frank T Burbrink
- Department of Herpetology, The American Museum of Natural History, New York, NY, USA
| | - Marcelo Gehara
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA
| |
Collapse
|
2
|
Nielsen TL, Nielsen SH, Novosolov M, Gravlund P, Allentoft ME. Deeply Diverged but Morphologically Conserved Lineages in Tornier's Cat Snake ( Crotaphopeltis tornieri) of the Eastern Arc Mountains. Ecol Evol 2025; 15:e70452. [PMID: 40008059 PMCID: PMC11850987 DOI: 10.1002/ece3.70452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 02/27/2025] Open
Abstract
The Eastern Arc Mountain (EAM) forests in Tanzania have remarkably high endemism. Closely-related forest-adapted species are found isolated on different "sky islands" testifying to allopatry as a major driver for speciation in this region. However, some species defy this pattern. Tornier's cat snake (Crotaphopeltis tornieri) occupies most of the isolated mountain rainforest, despite presumably not being able to move across the arid savannah landscape that separates them. To test contrasting hypotheses of recent dispersal vs morphological conservatism we examined scale characters of 218 C. tornieri individuals and sequenced 80 full mitochondrial genomes covering populations from eight mountain blocks across the EAM and Southern Highlands of Tanzania (SHT). The morphological examination revealed no differentiation between populations except the Usambara Mountain populations showing significant differences in some scale characters. This was in stark contrast to the genetic analyses showing very high divergence between mountain populations. On average the mitochondrial genome showed > 12% genetic differentiation with cytB and COI showing interpopulation distances of up to 28.5% and 15.1%, respectively. Both Bayesian coalescent and maximum-likelihood based phylogenies, uncovered a highly distinct clade structure in C. tornieri defined by the mountains. Divergence times were estimated at c. 21 million years for the split between the EAM and SHT populations and 5.4-1.4 millions years for population splits within EAM. Our results point towards old isolation events but with a highly conserved morphology resulting in just one recognized species. By including presumed outgroups of C. degeni and C. hotamboeia in the phylogeny we found C. tornieri to be paraphyletic. These results have implications for understanding evolution in the EAM and warrant a revision of the number of species in this genus.
Collapse
Affiliation(s)
- Tejs L. Nielsen
- Section for GeoGeneticsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | | | - Maria Novosolov
- Section for GeoGeneticsGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Peter Gravlund
- Natural History Museum of Denmark, University of CopenhagenCopenhagenDenmark
| | - Morten E. Allentoft
- Section for GeoGeneticsGlobe Institute, University of CopenhagenCopenhagenDenmark
- Trace and Environmental DNA (TrEnD) LaboratorySchool of Molecular and Life Sciences, Curtin UniversityPerthAustralia
| |
Collapse
|
3
|
Jablonski D, Ribeiro-Júnior MA, Simonov E, Šoltys K, Meiri S. A new, rare, small-ranged, and endangered mountain snake of the genus Elaphe from the Southern Levant. Sci Rep 2023; 13:4839. [PMID: 36964263 PMCID: PMC10038995 DOI: 10.1038/s41598-023-30878-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/02/2023] [Indexed: 03/26/2023] Open
Abstract
The genus Elaphe Fitzinger, 1833 includes 17 species of charismatic, large-sized, non-venomous, Eurasian snakes. In the Western Palearctic, the genus is represented by three species from the Elaphe quatuorlineata group ranging from the Apennine peninsula to Central Asia. The southernmost population of this group is distributed in the mountains of the Southern Levant, with more than 400 km gap to other Elaphe populations. This population has been known to science for only 50 years and is virtually unstudied due to its extreme rarity. We studied these snakes' morphological and genetic variation from the three countries where they are known to occur, i.e., Israel (Hermon, the Israeli-controlled Golan Heights), Lebanon, and Syria. We used nine mitochondrial and nuclear genes, complete mitogenome sequences, and a comprehensive morphological examination including published data, our own field observations, and museum specimens, to study its relationship to other species in the group. The three currently recognized species of the group (E. quatuorlineata, E. sauromates, E. urartica), and the Levant population, form four deeply divergent, strongly supported clades. Three of these clades correspond to the abovementioned species while the Southern Levant clade, which is genetically and morphologically distinct from all named congeners, is described here as a new species, Elaphe druzei sp. nov. The basal divergence of this group is estimated to be the Late Miocene with subsequent radiation from 5.1 to 3.9 Mya. The revealed biogeography of the E. quatuorlineata group supports the importance of the Levant as a major center of endemism and diversity of biota in Eurasia. The new species is large-sized and is one of the rarest snakes in the Western Palearctic. Because of its small mountain distribution range, in an area affected by land use and climate change, the new Elaphe urgently needs strict protection. Despite political issues, we hope this will be based on the cooperation of all countries where the new species occurs.
Collapse
Affiliation(s)
- Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia.
| | | | - Evgeniy Simonov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Katarína Šoltys
- Department of Microbiology and Virology, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Bratislava, Slovakia
| | - Shai Meiri
- The School of Zoology and The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Burbrink FT, Ruane S. Contemporary Philosophy and Methods for Studying Speciation and Delimiting Species. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/h2020073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Frank T. Burbrink
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024; . Send reprint requests to this address
| | - Sara Ruane
- Earth and Environmental Sciences: Ecology and Evolution, Rutgers University–Newark, 195 University Avenue, Newark, New Jersey 07102
| |
Collapse
|
5
|
Thanou E, Kypraios-Skrekas V, Kornilios P, Giokas S. Ecomorphological divergence and lack of gene flow in two sympatric Balkan slow worms (Squamata: Anguidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The slow-worm lizards of the genus Anguis show significant morphological, behavioural and ecological uniformity owing to their limbless, elongated bodies and semifossorial lifestyle. This makes the delimitation of species challenging. Five monophyletic, deeply divergent and mostly parapatric mitochondrial lineages are currently recognized, although hybridization occurs along contact zones. In the southern edge of the range of the genus, two endemic Balkan Anguis (Anguis graeca and Anguis cephallonica) share a broad area of co-distribution and intermediate morphological characteristics. Expecting to retrieve hybrids within the overlap in their distributions, we used genome-wide single nucleotide polymorphisms but did not recover any evidence of interspecific gene flow. Within each species, genomic data revealed shallow population structuring influenced by spatial isolation, with the exception of the southernmost population of A. cephallonica from the Mani Peninsula. Species distribution modelling showed a lack of strong niche overlap and specific environmental preferences; both species showed a precipitation dependence, but A. cephallonica was better acclimatized to high temperatures. Finally, geometric morphometrics of the head shape suggested morphological divergence, mostly seen in the elongation of the head of A. cephallonica. All the evidence supports a long and complete reproductive isolation between the two southern slow worms and raises questions about how ecomorphological divergence might have acted to promote their speciation.
Collapse
Affiliation(s)
- Evanthia Thanou
- Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Patras, Greece
- The Molecular Ecology Backshop, Panagiotis Kornilios, Evanthia Thanou, G. Lekka 16,GR-20300 Loutraki, Greece
| | - Vassilis Kypraios-Skrekas
- Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Patras, Greece
| | - Panagiotis Kornilios
- Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Patras, Greece
- The Molecular Ecology Backshop, Panagiotis Kornilios, Evanthia Thanou, G. Lekka 16,GR-20300 Loutraki, Greece
| | - Sinos Giokas
- Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Patras, Greece
| |
Collapse
|
6
|
Qi S, Shi JS, Ma YB, Gao YF, Bu SH, Grismer LL, Li PP, Wang YY. A sheep in wolf's clothing: Elaphe xiphodonta sp. nov. (Squamata, Colubridae) and its possible mimicry to Protobothrops jerdonii. Zookeys 2021; 1048:23-47. [PMID: 34295215 PMCID: PMC8277656 DOI: 10.3897/zookeys.1048.65650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 11/12/2022] Open
Abstract
Based on combined morphological and osteological characters and molecular phylogenetics, we describe a new species of the genus Elaphe that was discovered from the south slope of the Qinling Mountains, Shaanxi, China, namely Elaphe xiphodonta sp. nov. It is distinguished from the other congeners by a combination of the following characters: dorsal scales in 21-21-17 rows, the medial 11 rows keeled; 202-204 ventral scales, 67-68 subcaudals; two preoculars (including one subpreocular); two postoculars; two anterior temporals, three posterior temporals; reduced numbers of maxillary teeth (9+2) and dentary teeth (12); sharp cutting edges on the posterior or posterolateral surface of the rear maxillary teeth and dentary teeth; dorsal head yellow, three distinct markings on the head and neck; a distinct black labial spot present in supralabials; dorsum yellow, 46-49 complete (or incomplete) large black-edged reddish brown blotches on the body and 12-19 on the tail, two rows of smaller blotches on each ventrolateral side; ventral scales yellow with mottled irregular black blotches, a few irregular small red spots dispersed on the middle of the ventral. Based on molecular phylogenetic analyses, the new species forms the sister taxon to E. zoigeensis. The discovery of this new species increases the number of the recognized species in the genus Elaphe to 17.
Collapse
Affiliation(s)
- Shuo Qi
- State Key Laboratory of Biocontrol/ The Museum of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China Sun Yat-sen University Guangzhou China.,Institute of Herpetology, Shenyang Normal University, Shenyang 110034, China Shenyang Normal University Shenyang China
| | - Jing-Song Shi
- Institute of Herpetology, Shenyang Normal University, Shenyang 110034, China Shenyang Normal University Shenyang China
| | - Yan-Bo Ma
- Institute of Herpetology, Shenyang Normal University, Shenyang 110034, China Shenyang Normal University Shenyang China.,College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, 712100, China Northwest Agriculture and Forestry University Yangling China
| | - Yi-Fei Gao
- Institute of Herpetology, Shenyang Normal University, Shenyang 110034, China Shenyang Normal University Shenyang China.,College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, 712100, China Northwest Agriculture and Forestry University Yangling China
| | - Shu-Hai Bu
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, 712100, China Northwest Agriculture and Forestry University Yangling China
| | - L Lee Grismer
- Herpetology Laboratory, Department of Biology, La Sierra University, Riverside, California 92515, USA La Sierra Univer-sity Riverside United States of America
| | - Pi-Peng Li
- Institute of Herpetology, Shenyang Normal University, Shenyang 110034, China Shenyang Normal University Shenyang China
| | - Ying-Yong Wang
- State Key Laboratory of Biocontrol/ The Museum of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China Sun Yat-sen University Guangzhou China
| |
Collapse
|
7
|
Hammoud C, Kougioumoutzis K, Rijsdijk KF, Simaiakis SM, Norder SJ, Foufopoulos J, Georgopoulou E, Van Loon EE. Past connections with the mainland structure patterns of insular species richness in a continental-shelf archipelago (Aegean Sea, Greece). Ecol Evol 2021; 11:5441-5458. [PMID: 34026019 PMCID: PMC8131802 DOI: 10.1002/ece3.7438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/18/2022] Open
Abstract
Recent research in island biogeography has highlighted the important role of late Quaternary sea-level fluctuations in shaping biogeographic patterns in insular systems but focused on oceanic systems. Through this study, we aim investigate how late Quaternary sea-level fluctuations shaped species richness patterns in continental-shelf island systems. Focusing on the Aegean archipelago, we first compiled maps of the area's geography using published data, under three sea-level stands: (a) current; (b) median sea-level over the last nine glacial-interglacial cycles (MSL); and (c) Last Glacial Maximum (LGM). We gathered taxon-island occurrences for multiple chorotypes of angiosperms, butterflies, centipedes, and reptiles. We investigated the impact of present-day and past geographic settings on chorological groups by analyzing island species-area relationships (ISARs) and using generalized linear mixed models (GLMMs) selection based on multiple metrics of goodness of fit. Our results confirm that the Aegean's geography has changed dramatically since the LGM, whereas the MSL only modestly differs from the present configuration. Apart for centipedes, paleogeographic changes affected both native and endemic species diversity through altering connections between land-bridge islands and the mainland. On land-bridge islands, we detected over-representation of native species and under-representation of endemics. Unlike oceanic islands, sea-level-driven increase of isolation and area contraction did not strongly shape patterns of species richness. Furthermore, the LGM configurations rather than the MSL configuration shaped patterns of endemic species richness. This suggests that even short episodes of increased connectivity with continental populations are sufficient to counteract the genetic differentiation of insular populations. On the other hand, the over-representation of native nonendemic species on land-bridge islands reflected MSL rather than LGM mainland connections. Our study shows that in terms of processes affecting species richness patterns, continental archipelagos differ fundamentally from oceanic systems because episodic connections with the mainland have profound effects on the biota of land-bridge islands.
Collapse
Affiliation(s)
- Cyril Hammoud
- Invertebrate UnitDepartment of BiologyRoyal Museum for Central AfricaTervurenBelgium
- Limnology UnitDepartment of BiologyGhent UniversityGhentBelgium
| | - Konstantinos Kougioumoutzis
- Department of BiologySection of Ecology and TaxonomyNational & Kapodistrian University of AthensAthensGreece
| | - Kenneth F. Rijsdijk
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Sietze J. Norder
- Leiden University Centre for LinguisticsLeiden UniversityLeidenThe Netherlands
| | | | | | - Emiel E. Van Loon
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
8
|
Ortiz D, Pekár S, Bilat J, Alvarez N. Poor performance of DNA barcoding and the impact of RAD loci filtering on the species delimitation of an Iberian ant-eating spider. Mol Phylogenet Evol 2020; 154:106997. [PMID: 33164854 DOI: 10.1016/j.ympev.2020.106997] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/28/2022]
Abstract
Genomic data provide unprecedented power for species delimitation. However, current implementations are still time and resource consuming. In addition, bioinformatic processing is contentious and its impact on downstream analyses is insufficiently understood. Here we employ ddRAD sequencing and a thorough sampling for species delimitation in Zodarion styliferum, a widespread Iberian ant-eating spider. We explore the influence of the loci filtering strategy on the downstream phylogenetic analyses, genomic clustering and coalescent species delimitation. We also assess the accuracy of one mitochondrial (COI) and one nuclear (ITS) barcode for fast and inexpensive species delineation in the group. Our genomic data strongly support two morphologically cryptic but ecologically divergent lineages, mainly restricted to the central-eastern and western parts of the Iberian Peninsula, respectively. Larger matrices with more missing data showed increased genomic diversity, supporting that bioinformatic strategies to maximize matrix completion disproportionately exclude loci with the highest mutation rates. Moderate loci filtering gave the best results across analyses: although larger matrices returned concatenated phylogenies with higher support, middle-sized matrices performed better in genetic structure analyses. COI displayed high diversity and a conspicuous barcode gap, revealing 13 mitochondrial lineages. Mitonuclear discordance is consistent with ancestral isolation in multiple groups, probably in glacial refugia, followed by range expansion and secondary contact that produced genomic homogenization. Several apparently (unidirectionally) introgressed specimens further challenge the accuracy of species identification through mitochondrial barcodes in the group. Conversely, ITS failed to separate both lineages of Z. styliferum. This study shows an extreme case of mitonuclear discordance that highlights the limitations of single molecular barcodes for species delimitation, even in presence of distinct barcode gaps, and brings new light on the effects of parameterization on shallow-divergence studies using RAD data.
Collapse
Affiliation(s)
- David Ortiz
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Julia Bilat
- Geneva Natural History Museum, Geneva, Switzerland
| | - Nadir Alvarez
- Geneva Natural History Museum, Geneva, Switzerland; Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Ye Z, Chen D, Yuan J, Zheng C, Yang X, Wang W, Zhang Y, Wang S, Jiang K, Bu W. Are population isolations and declines a threat to island endemic water striders? A lesson from demographic and niche modelling of Metrocoris esakii (Hemiptera: Gerridae). Mol Ecol 2020; 29:4573-4587. [PMID: 33006793 DOI: 10.1111/mec.15669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
Genetic stochasticity and bottlenecking in the course of Pleistocene glaciations have been identified as threatening the survival of local endemics. However, the mechanisms by which local endemic species balance the influences of these two events remain poorly understood. Here, we generated a double-digest restriction site-associated DNA sequencing (ddRAD-seq) data set, mined mitochondrial sequences and constructed ecological niche models for the island endemic water strider Metrocoris esakii (Hemiptera: Gerridae). We found that M. esakii comprised three divergent lineages (i.e., north, central and south) isolated by geographical barriers and generally experienced population declines with the constriction of suitable areas during the Last Glacial Maximum (LGM). Further demographic model testing and stairway plots revealed a history of recent gene flow among the neighbouring lineages and rapid recovery at the end of the LGM, indicating that M. esakii at least had the potential for an adaptive response to population fragmentation and bottlenecking. The northern lineage did not show genetic bottlenecking during the LGM, which was probably due to its large effective population size (Ne ) from migration, which improved its adaptive potential. Relative to the ddRAD-seq data set, the demographic results based on mitochondrial sequences were less conclusive, showing weak differentiation and oversimplified demographic trajectories for the three genetic lineages. Overall, this study provides some degree of optimism for the survival of island endemic water striders from a demographic perspective, but further evaluation of their extinction risk under the impacts of human activities is required.
Collapse
Affiliation(s)
- Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Danyang Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Juanjuan Yuan
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenguang Zheng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xin Yang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenwu Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaoyao Zhang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Siqi Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Kun Jiang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Rengifo‐Correa L, Abad‐Franch F, Martínez‐Hernández F, Salazar‐Schettino PM, Téllez‐Rendón JL, Villalobos G, Morrone JJ. A biogeographic–ecological approach to disentangle reticulate evolution in the
Triatoma phyllosoma
species group (Heteroptera: Triatominae), vectors of Chagas disease. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Laura Rengifo‐Correa
- Departamento de Biología Evolutiva Facultad de Ciencias Museo de Zoología ‘Alfonso L. Herrera’Universidad Nacional Autónoma de México Mexico City Mexico
| | - Fernando Abad‐Franch
- Programa de Pós‐graduação em Medicina Tropical Núcleo de Medicina Tropical Facultade Medicina Universidade de Brasília Brasília Brazil
| | | | - Paz M. Salazar‐Schettino
- Laboratorio de Biología de Parásitos Departamento de Microbiología y Parasitología Facultad de Medicina Universidad Nacional Autónoma de México Mexico City Mexico
| | | | - Guiehdani Villalobos
- Departamento de Ecología de Agentes Patógenos Hospital General Dr. Manuel Gea González Mexico City Mexico
| | - Juan J. Morrone
- Departamento de Biología Evolutiva Facultad de Ciencias Museo de Zoología ‘Alfonso L. Herrera’Universidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|