1
|
Davies SR. Working in biocuration: contemporary experiences and perspectives. Database (Oxford) 2025; 2025:baaf003. [PMID: 39937660 PMCID: PMC11817794 DOI: 10.1093/database/baaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 02/14/2025]
Abstract
This perspective article synthesizes current knowledge regarding what is known regarding biocuration as a career and the challenges facing the field. It draws on existing literature and ongoing qualitative research to discuss the nature of biocuration, biocurators' career trajectories, key challenges that biocurators face, and strategies for overcoming these. Overall, biocurators express a high degree of satisfaction with their work and see it as central to the wider biosciences. The central challenges that they face relate to the underfunding and under-recognition of this work, meaning that there is minimal stable funding for the field and that the work of human biocurators is often invisible to those who use curated resources. The article closes by critically discussing existing and potential strategies for responding to these challenges.
Collapse
Affiliation(s)
- Sarah R Davies
- Department of Science and Technology Studies, University of Vienna, Universitätsstraße 7, 6. Stock (NIG), Vienna, 1010, Austria
| |
Collapse
|
2
|
Raciti D, Van Auken KM, Arnaboldi V, Tabone CJ, Muller HM, Sternberg PW. Characterization and automated classification of sentences in the biomedical literature: a case study for biocuration of gene expression and protein kinase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631539. [PMID: 39829858 PMCID: PMC11741306 DOI: 10.1101/2025.01.06.631539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Biological knowledgebases are essential resources for biomedical researchers, providing ready access to gene function and genomic data. Professional, manual curation of knowledgebases, however, is labor-intensive and thus high-performing machine learning methods that improve biocuration efficiency are needed. Here we report on sentence-level classification to identify biocuration-relevant sentences in the full text of published references for two gene function data types: gene expression and protein kinase activity. We performed a detailed characterization of sentences from references in the WormBase bibliography and used this characterization to define three tasks for classifying sentences as either 1) fully curatable, 2) fully and partially curatable, or 3) all language-related. We evaluated various machine learning (ML) models applied to these tasks and found that GPT and BioBERT achieve the highest average performance, resulting in F1 performance scores ranging from 0.89 to 0.99 depending upon the task. Our findings demonstrate the feasibility of extracting biocuration-relevant sentences from full text. Integrating these models into professional biocuration workflows, such as those used by the Alliance of Genome Resources and the ACKnowledge community curation platform, might well facilitate efficient and accurate annotation of the biomedical literature.
Collapse
Affiliation(s)
- Daniela Raciti
- Division of Biology and Biological Engineering, 1200 E. California Boulevard, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kimberly M. Van Auken
- Division of Biology and Biological Engineering, 1200 E. California Boulevard, California Institute of Technology, Pasadena, CA 91125, USA
| | - Valerio Arnaboldi
- Division of Biology and Biological Engineering, 1200 E. California Boulevard, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Hans-Michael Muller
- Division of Biology and Biological Engineering, 1200 E. California Boulevard, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, 1200 E. California Boulevard, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
3
|
Reiser L, Bakker E, Subramaniam S, Chen X, Sawant S, Khosa K, Prithvi T, Berardini TZ. The Arabidopsis Information Resource in 2024. Genetics 2024; 227:iyae027. [PMID: 38457127 PMCID: PMC11075553 DOI: 10.1093/genetics/iyae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Since 1999, The Arabidopsis Information Resource (www.arabidopsis.org) has been curating data about the Arabidopsis thaliana genome. Its primary focus is integrating experimental gene function information from the peer-reviewed literature and codifying it as controlled vocabulary annotations. Our goal is to produce a "gold standard" functional annotation set that reflects the current state of knowledge about the Arabidopsis genome. At the same time, the resource serves as a nexus for community-based collaborations aimed at improving data quality, access, and reuse. For the past decade, our work has been made possible by subscriptions from our global user base. This update covers our ongoing biocuration work, some of our modernization efforts that contribute to the first major infrastructure overhaul since 2011, the introduction of JBrowse2, and the resource's role in community activities such as organizing the structural reannotation of the genome. For gene function assessment, we used gene ontology annotations as a metric to evaluate: (1) what is currently known about Arabidopsis gene function and (2) the set of "unknown" genes. Currently, 74% of the proteome has been annotated to at least one gene ontology term. Of those loci, half have experimental support for at least one of the following aspects: molecular function, biological process, or cellular component. Our work sheds light on the genes for which we have not yet identified any published experimental data and have no functional annotation. Drawing attention to these unknown genes highlights knowledge gaps and potential sources of novel discoveries.
Collapse
|
4
|
Aleksander SA, Anagnostopoulos AV, Antonazzo G, Arnaboldi V, Attrill H, Becerra A, Bello SM, Blodgett O, Bradford YM, Bult CJ, Cain S, Calvi BR, Carbon S, Chan J, Chen WJ, Cherry JM, Cho J, Crosby MA, De Pons JL, D’Eustachio P, Diamantakis S, Dolan ME, dos Santos G, Dyer S, Ebert D, Engel SR, Fashena D, Fisher M, Foley S, Gibson AC, Gollapally VR, Gramates LS, Grove CA, Hale P, Harris T, Hayman GT, Hu Y, James-Zorn C, Karimi K, Karra K, Kishore R, Kwitek AE, Laulederkind SJF, Lee R, Longden I, Luypaert M, Markarian N, Marygold SJ, Matthews B, McAndrews MS, Millburn G, Miyasato S, Motenko H, Moxon S, Muller HM, Mungall CJ, Muruganujan A, Mushayahama T, Nash RS, Nuin P, Paddock H, Pells T, Perrimon N, Pich C, Quinton-Tulloch M, Raciti D, Ramachandran S, Richardson JE, Gelbart SR, Ruzicka L, Schindelman G, Shaw DR, Sherlock G, Shrivatsav A, Singer A, Smith CM, Smith CL, Smith JR, Stein L, Sternberg PW, Tabone CJ, Thomas PD, Thorat K, Thota J, Tomczuk M, Trovisco V, Tutaj MA, Urbano JM, Van Auken K, Van Slyke CE, Vize PD, Wang Q, Weng S, Westerfield M, Wilming LG, Wong ED, Wright A, Yook K, Zhou P, Zorn A, et alAleksander SA, Anagnostopoulos AV, Antonazzo G, Arnaboldi V, Attrill H, Becerra A, Bello SM, Blodgett O, Bradford YM, Bult CJ, Cain S, Calvi BR, Carbon S, Chan J, Chen WJ, Cherry JM, Cho J, Crosby MA, De Pons JL, D’Eustachio P, Diamantakis S, Dolan ME, dos Santos G, Dyer S, Ebert D, Engel SR, Fashena D, Fisher M, Foley S, Gibson AC, Gollapally VR, Gramates LS, Grove CA, Hale P, Harris T, Hayman GT, Hu Y, James-Zorn C, Karimi K, Karra K, Kishore R, Kwitek AE, Laulederkind SJF, Lee R, Longden I, Luypaert M, Markarian N, Marygold SJ, Matthews B, McAndrews MS, Millburn G, Miyasato S, Motenko H, Moxon S, Muller HM, Mungall CJ, Muruganujan A, Mushayahama T, Nash RS, Nuin P, Paddock H, Pells T, Perrimon N, Pich C, Quinton-Tulloch M, Raciti D, Ramachandran S, Richardson JE, Gelbart SR, Ruzicka L, Schindelman G, Shaw DR, Sherlock G, Shrivatsav A, Singer A, Smith CM, Smith CL, Smith JR, Stein L, Sternberg PW, Tabone CJ, Thomas PD, Thorat K, Thota J, Tomczuk M, Trovisco V, Tutaj MA, Urbano JM, Van Auken K, Van Slyke CE, Vize PD, Wang Q, Weng S, Westerfield M, Wilming LG, Wong ED, Wright A, Yook K, Zhou P, Zorn A, Zytkovicz M. Updates to the Alliance of Genome Resources central infrastructure. Genetics 2024; 227:iyae049. [PMID: 38552170 PMCID: PMC11075569 DOI: 10.1093/genetics/iyae049] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024] Open
Abstract
The Alliance of Genome Resources (Alliance) is an extensible coalition of knowledgebases focused on the genetics and genomics of intensively studied model organisms. The Alliance is organized as individual knowledge centers with strong connections to their research communities and a centralized software infrastructure, discussed here. Model organisms currently represented in the Alliance are budding yeast, Caenorhabditis elegans, Drosophila, zebrafish, frog, laboratory mouse, laboratory rat, and the Gene Ontology Consortium. The project is in a rapid development phase to harmonize knowledge, store it, analyze it, and present it to the community through a web portal, direct downloads, and application programming interfaces (APIs). Here, we focus on developments over the last 2 years. Specifically, we added and enhanced tools for browsing the genome (JBrowse), downloading sequences, mining complex data (AllianceMine), visualizing pathways, full-text searching of the literature (Textpresso), and sequence similarity searching (SequenceServer). We enhanced existing interactive data tables and added an interactive table of paralogs to complement our representation of orthology. To support individual model organism communities, we implemented species-specific "landing pages" and will add disease-specific portals soon; in addition, we support a common community forum implemented in Discourse software. We describe our progress toward a central persistent database to support curation, the data modeling that underpins harmonization, and progress toward a state-of-the-art literature curation system with integrated artificial intelligence and machine learning (AI/ML).
Collapse
Affiliation(s)
| | | | | | - Giulia Antonazzo
- Department of Physiology, Development and Neuroscience , University of Cambridge, Downing Street, Cambridge CB2 3DY , UK
| | - Valerio Arnaboldi
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Helen Attrill
- Department of Physiology, Development and Neuroscience , University of Cambridge, Downing Street, Cambridge CB2 3DY , UK
| | - Andrés Becerra
- European Molecular Biology Laboratory, European Bioinformatics Institute , Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD , UK
| | - Susan M Bello
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Olin Blodgett
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | | | - Carol J Bult
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Scott Cain
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research , Toronto, ON M5G0A3 , Canada
| | - Brian R Calvi
- Department of Biology, Indiana University , Bloomington, IN 47408 , USA
| | - Seth Carbon
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory , Berkeley, CA
| | - Juancarlos Chan
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Wen J Chen
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - J Michael Cherry
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - Jaehyoung Cho
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Madeline A Crosby
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Jeffrey L De Pons
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | | | - Stavros Diamantakis
- European Molecular Biology Laboratory, European Bioinformatics Institute , Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD , UK
| | - Mary E Dolan
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Gilberto dos Santos
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Sarah Dyer
- European Molecular Biology Laboratory, European Bioinformatics Institute , Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD , UK
| | - Dustin Ebert
- Department of Population and Public Health Sciences, University of Southern California , Los Angeles, CA 90033 , USA
| | - Stacia R Engel
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - David Fashena
- Institute of Neuroscience, University of Oregon , Eugene, OR 97403
| | - Malcolm Fisher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center , 3333 Burnet Ave, Cincinnati, OH 45229 , USA
| | - Saoirse Foley
- Department of Biological Sciences, Carnegie Mellon University , 5000 Forbes Ave, Pittsburgh, PA 15203
| | - Adam C Gibson
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Varun R Gollapally
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - L Sian Gramates
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Christian A Grove
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Paul Hale
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Todd Harris
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research , Toronto, ON M5G0A3 , Canada
| | - G Thomas Hayman
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Yanhui Hu
- Department of Genetics, Howard Hughes Medical Institute , Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115 , USA
| | - Christina James-Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center , 3333 Burnet Ave, Cincinnati, OH 45229 , USA
| | - Kamran Karimi
- Department of Biological Sciences, University of Calgary , 507 Campus Dr NW, Calgary, AB T2N 4V8 , Canada
| | - Kalpana Karra
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - Ranjana Kishore
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Anne E Kwitek
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Stanley J F Laulederkind
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Raymond Lee
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Ian Longden
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Manuel Luypaert
- European Molecular Biology Laboratory, European Bioinformatics Institute , Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD , UK
| | - Nicholas Markarian
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Steven J Marygold
- Department of Physiology, Development and Neuroscience , University of Cambridge, Downing Street, Cambridge CB2 3DY , UK
| | - Beverley Matthews
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Monica S McAndrews
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Gillian Millburn
- Department of Physiology, Development and Neuroscience , University of Cambridge, Downing Street, Cambridge CB2 3DY , UK
| | - Stuart Miyasato
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - Howie Motenko
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Sierra Moxon
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory , Berkeley, CA
| | - Hans-Michael Muller
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Christopher J Mungall
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory , Berkeley, CA
| | - Anushya Muruganujan
- Department of Population and Public Health Sciences, University of Southern California , Los Angeles, CA 90033 , USA
| | - Tremayne Mushayahama
- Department of Population and Public Health Sciences, University of Southern California , Los Angeles, CA 90033 , USA
| | - Robert S Nash
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - Paulo Nuin
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research , Toronto, ON M5G0A3 , Canada
| | - Holly Paddock
- Institute of Neuroscience, University of Oregon , Eugene, OR 97403
| | - Troy Pells
- Department of Biological Sciences, University of Calgary , 507 Campus Dr NW, Calgary, AB T2N 4V8 , Canada
| | - Norbert Perrimon
- Department of Genetics, Howard Hughes Medical Institute , Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115 , USA
| | - Christian Pich
- Institute of Neuroscience, University of Oregon , Eugene, OR 97403
| | - Mark Quinton-Tulloch
- European Molecular Biology Laboratory, European Bioinformatics Institute , Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD , UK
| | - Daniela Raciti
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | | | | | - Susan Russo Gelbart
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Leyla Ruzicka
- Institute of Neuroscience, University of Oregon , Eugene, OR 97403
| | - Gary Schindelman
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - David R Shaw
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - Ajay Shrivatsav
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - Amy Singer
- Institute of Neuroscience, University of Oregon , Eugene, OR 97403
| | - Constance M Smith
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Cynthia L Smith
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Jennifer R Smith
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Lincoln Stein
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research , Toronto, ON M5G0A3 , Canada
| | - Paul W Sternberg
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Christopher J Tabone
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Paul D Thomas
- Department of Population and Public Health Sciences, University of Southern California , Los Angeles, CA 90033 , USA
| | - Ketaki Thorat
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Jyothi Thota
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Monika Tomczuk
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Vitor Trovisco
- Department of Physiology, Development and Neuroscience , University of Cambridge, Downing Street, Cambridge CB2 3DY , UK
| | - Marek A Tutaj
- Medical College of Wisconsin—Rat Genome Database, Departments of Physiology and Biomedical Engineering , Medical College of Wisconsin, Milwaukee, WI 53226 , USA
| | - Jose-Maria Urbano
- Department of Physiology, Development and Neuroscience , University of Cambridge, Downing Street, Cambridge CB2 3DY , UK
| | - Kimberly Van Auken
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Ceri E Van Slyke
- Institute of Neuroscience, University of Oregon , Eugene, OR 97403
| | - Peter D Vize
- Department of Biological Sciences, University of Calgary , 507 Campus Dr NW, Calgary, AB T2N 4V8 , Canada
| | - Qinghua Wang
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Shuai Weng
- Department of Genetics, Stanford University , Stanford, CA 94305
| | | | - Laurens G Wilming
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor , ME 04609 , USA
| | - Edith D Wong
- Department of Genetics, Stanford University , Stanford, CA 94305
| | - Adam Wright
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research , Toronto, ON M5G0A3 , Canada
| | - Karen Yook
- Division of Biology and Biological Engineering 140-18, California Institute of Technology , Pasadena, CA 91125 , USA
| | - Pinglei Zhou
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | - Aaron Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center , 3333 Burnet Ave, Cincinnati, OH 45229 , USA
| | - Mark Zytkovicz
- The Biological Laboratories, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| |
Collapse
|
5
|
Di Lieto E, Serra A, Inkala SI, Saarimäki LA, del Giudice G, Fratello M, Hautanen V, Annala M, Federico A, Greco D. ESPERANTO: a GLP-field sEmi-SuPERvised toxicogenomics metadAta curatioN TOol. Bioinformatics 2023; 39:btad405. [PMID: 37354497 PMCID: PMC10313344 DOI: 10.1093/bioinformatics/btad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023] Open
Abstract
SUMMARY Biological data repositories are an invaluable source of publicly available research evidence. Unfortunately, the lack of convergence of the scientific community on a common metadata annotation strategy has resulted in large amounts of data with low FAIRness (Findable, Accessible, Interoperable and Reusable). The possibility of generating high-quality insights from their integration relies on data curation, which is typically an error-prone process while also being expensive in terms of time and human labour. Here, we present ESPERANTO, an innovative framework that enables a standardized semi-supervised harmonization and integration of toxicogenomics metadata and increases their FAIRness in a Good Laboratory Practice-compliant fashion. The harmonization across metadata is guaranteed with the definition of an ad hoc vocabulary. The tool interface is designed to support the user in metadata harmonization in a user-friendly manner, regardless of the background and the type of expertise. AVAILABILITY AND IMPLEMENTATION ESPERANTO and its user manual are freely available for academic purposes at https://github.com/fhaive/esperanto. The input and the results showcased in Supplementary File S1 are available at the same link.
Collapse
Affiliation(s)
- Emanuele Di Lieto
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Angela Serra
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
- Tampere Institute for Advanced Study, Tampere, 33520, Finland
| | - Simo Iisakki Inkala
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Laura Aliisa Saarimäki
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Giusy del Giudice
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Michele Fratello
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Veera Hautanen
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Maria Annala
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Antonio Federico
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
- Tampere Institute for Advanced Study, Tampere, 33520, Finland
| | - Dario Greco
- FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLife), University of Helsinki, Helsinki 00790, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00790, Finland
| |
Collapse
|
6
|
“KRiShI”: a manually curated knowledgebase on rice sheath blight disease. Funct Integr Genomics 2022; 22:1403-1410. [DOI: 10.1007/s10142-022-00899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/28/2022] [Accepted: 09/04/2022] [Indexed: 11/04/2022]
|
7
|
de Crécy-lagard V, Amorin de Hegedus R, Arighi C, Babor J, Bateman A, Blaby I, Blaby-Haas C, Bridge AJ, Burley SK, Cleveland S, Colwell LJ, Conesa A, Dallago C, Danchin A, de Waard A, Deutschbauer A, Dias R, Ding Y, Fang G, Friedberg I, Gerlt J, Goldford J, Gorelik M, Gyori BM, Henry C, Hutinet G, Jaroch M, Karp PD, Kondratova L, Lu Z, Marchler-Bauer A, Martin MJ, McWhite C, Moghe GD, Monaghan P, Morgat A, Mungall CJ, Natale DA, Nelson WC, O’Donoghue S, Orengo C, O’Toole KH, Radivojac P, Reed C, Roberts RJ, Rodionov D, Rodionova IA, Rudolf JD, Saleh L, Sheynkman G, Thibaud-Nissen F, Thomas PD, Uetz P, Vallenet D, Carter EW, Weigele PR, Wood V, Wood-Charlson EM, Xu J. A roadmap for the functional annotation of protein families: a community perspective. Database (Oxford) 2022; 2022:baac062. [PMID: 35961013 PMCID: PMC9374478 DOI: 10.1093/database/baac062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 12/23/2022]
Abstract
Over the last 25 years, biology has entered the genomic era and is becoming a science of 'big data'. Most interpretations of genomic analyses rely on accurate functional annotations of the proteins encoded by more than 500 000 genomes sequenced to date. By different estimates, only half the predicted sequenced proteins carry an accurate functional annotation, and this percentage varies drastically between different organismal lineages. Such a large gap in knowledge hampers all aspects of biological enterprise and, thereby, is standing in the way of genomic biology reaching its full potential. A brainstorming meeting to address this issue funded by the National Science Foundation was held during 3-4 February 2022. Bringing together data scientists, biocurators, computational biologists and experimentalists within the same venue allowed for a comprehensive assessment of the current state of functional annotations of protein families. Further, major issues that were obstructing the field were identified and discussed, which ultimately allowed for the proposal of solutions on how to move forward.
Collapse
Affiliation(s)
- Valérie de Crécy-lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | - Cecilia Arighi
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19713, USA
| | - Jill Babor
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Ian Blaby
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Crysten Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Alan J Bridge
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva 4 CH-1211, Switzerland
| | - Stephen K Burley
- RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stacey Cleveland
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Lucy J Colwell
- Departmenf of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Ana Conesa
- Spanish National Research Council, Institute for Integrative Systems Biology, Paterna, Valencia 46980, Spain
| | - Christian Dallago
- TUM (Technical University of Munich) Department of Informatics, Bioinformatics & Computational Biology, i12, Boltzmannstr. 3, Garching/Munich 85748, Germany
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, SAR Hong Kong 999077, China
| | - Anita de Waard
- Research Collaboration Unit, Elsevier, Jericho, VT 05465, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Raquel Dias
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, USA
| | - Gang Fang
- NYU-Shanghai, Shanghai 200120, China
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - John Gerlt
- Institute for Genomic Biology and Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joshua Goldford
- Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark Gorelik
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin M Gyori
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Geoffrey Hutinet
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Marshall Jaroch
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Peter D Karp
- Bioinformatics Research Group, SRI International, Menlo Park, CA 94025, USA
| | | | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20817, USA
| | - Aron Marchler-Bauer
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20817, USA
| | - Maria-Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Claire McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Paul Monaghan
- Department of Agricultural Education and Communication, University of Florida, Gainesville, FL 32611, USA
| | - Anne Morgat
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva 4 CH-1211, Switzerland
| | - Christopher J Mungall
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Darren A Natale
- Georgetown University Medical Center, Washington, DC 20007, USA
| | - William C Nelson
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, WA 99354, USA
| | - Seán O’Donoghue
- School of Biotechnology and Biomolecular Sciences, University of NSW, Sydney, NSW 2052, Australia
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA
| | - Colbie Reed
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | - Dmitri Rodionov
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Irina A Rodionova
- Department of Bioengineering, Division of Engineering, University of California at San Diego, La Jolla, CA 92093-0412, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Lana Saleh
- New England Biolabs, Ipswich, MA 01938, USA
| | - Gloria Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Francoise Thibaud-Nissen
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20817, USA
| | - Paul D Thomas
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Peter Uetz
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry 91057, France
| | - Erica Watson Carter
- Department of Plant Pathology, University of Florida Citrus Research and Education Center, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
| | | | - Valerie Wood
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Elisha M Wood-Charlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jin Xu
- Department of Plant Pathology, University of Florida Citrus Research and Education Center, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA
| |
Collapse
|
8
|
Agapite J, Albou LP, Aleksander SA, Alexander M, Anagnostopoulos AV, Antonazzo G, Argasinska J, Arnaboldi V, Attrill H, Becerra A, Bello SM, Blake JA, Blodgett O, Bradford YM, Bult CJ, Cain S, Calvi BR, Carbon S, Chan J, Chen WJ, Michael Cherry J, Cho J, Christie KR, Crosby MA, Davis P, da Veiga Beltrame E, De Pons JL, D’Eustachio P, Diamantakis S, Dolan ME, dos Santos G, Douglass E, Dunn B, Eagle A, Ebert D, Engel SR, Fashena D, Foley S, Frazer K, Gao S, Gibson AC, Gondwe F, Goodman J, Sian Gramates L, Grove CA, Hale P, Harris T, Thomas Hayman G, Hill DP, Howe DG, Howe KL, Hu Y, Jha S, Kadin JA, Kaufman TC, Kalita P, Karra K, Kishore R, Kwitek AE, Laulederkind SJF, Lee R, Longden I, Luypaert M, MacPherson KA, Martin R, Marygold SJ, Matthews B, McAndrews MS, Millburn G, Miyasato S, Motenko H, Moxon S, Muller HM, Mungall CJ, Muruganujan A, Mushayahama T, Nalabolu HS, Nash RS, Ng P, Nuin P, Paddock H, Paulini M, Perrimon N, Pich C, Quinton-Tulloch M, Raciti D, Ramachandran S, Richardson JE, Gelbart SR, Ruzicka L, Schaper K, Schindelman G, Shimoyama M, Simison M, Shaw DR, Shrivatsav A, Singer A, Skrzypek M, Smith CM, Smith CL, et alAgapite J, Albou LP, Aleksander SA, Alexander M, Anagnostopoulos AV, Antonazzo G, Argasinska J, Arnaboldi V, Attrill H, Becerra A, Bello SM, Blake JA, Blodgett O, Bradford YM, Bult CJ, Cain S, Calvi BR, Carbon S, Chan J, Chen WJ, Michael Cherry J, Cho J, Christie KR, Crosby MA, Davis P, da Veiga Beltrame E, De Pons JL, D’Eustachio P, Diamantakis S, Dolan ME, dos Santos G, Douglass E, Dunn B, Eagle A, Ebert D, Engel SR, Fashena D, Foley S, Frazer K, Gao S, Gibson AC, Gondwe F, Goodman J, Sian Gramates L, Grove CA, Hale P, Harris T, Thomas Hayman G, Hill DP, Howe DG, Howe KL, Hu Y, Jha S, Kadin JA, Kaufman TC, Kalita P, Karra K, Kishore R, Kwitek AE, Laulederkind SJF, Lee R, Longden I, Luypaert M, MacPherson KA, Martin R, Marygold SJ, Matthews B, McAndrews MS, Millburn G, Miyasato S, Motenko H, Moxon S, Muller HM, Mungall CJ, Muruganujan A, Mushayahama T, Nalabolu HS, Nash RS, Ng P, Nuin P, Paddock H, Paulini M, Perrimon N, Pich C, Quinton-Tulloch M, Raciti D, Ramachandran S, Richardson JE, Gelbart SR, Ruzicka L, Schaper K, Schindelman G, Shimoyama M, Simison M, Shaw DR, Shrivatsav A, Singer A, Skrzypek M, Smith CM, Smith CL, Smith JR, Stein L, Sternberg PW, Tabone CJ, Thomas PD, Thorat K, Thota J, Toro S, Tomczuk M, Trovisco V, Tutaj MA, Tutaj M, Urbano JM, Van Auken K, Van Slyke CE, Wang Q, Wang SJ, Weng S, Westerfield M, Williams G, Wilming LG, Wong ED, Wright A, Yook K, Zarowiecki M, Zhou P, Zytkovicz M. Harmonizing model organism data in the Alliance of Genome Resources. Genetics 2022; 220:iyac022. [PMID: 35380658 PMCID: PMC8982023 DOI: 10.1093/genetics/iyac022] [Show More Authors] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
The Alliance of Genome Resources (the Alliance) is a combined effort of 7 knowledgebase projects: Saccharomyces Genome Database, WormBase, FlyBase, Mouse Genome Database, the Zebrafish Information Network, Rat Genome Database, and the Gene Ontology Resource. The Alliance seeks to provide several benefits: better service to the various communities served by these projects; a harmonized view of data for all biomedical researchers, bioinformaticians, clinicians, and students; and a more sustainable infrastructure. The Alliance has harmonized cross-organism data to provide useful comparative views of gene function, gene expression, and human disease relevance. The basis of the comparative views is shared calls of orthology relationships and the use of common ontologies. The key types of data are alleles and variants, gene function based on gene ontology annotations, phenotypes, association to human disease, gene expression, protein-protein and genetic interactions, and participation in pathways. The information is presented on uniform gene pages that allow facile summarization of information about each gene in each of the 7 organisms covered (budding yeast, roundworm Caenorhabditis elegans, fruit fly, house mouse, zebrafish, brown rat, and human). The harmonized knowledge is freely available on the alliancegenome.org portal, as downloadable files, and by APIs. We expect other existing and emerging knowledge bases to join in the effort to provide the union of useful data and features that each knowledge base currently provides.
Collapse
|
9
|
Davis P, Zarowiecki M, Arnaboldi V, Becerra A, Cain S, Chan J, Chen WJ, Cho J, da Veiga Beltrame E, Diamantakis S, Gao S, Grigoriadis D, Grove CA, Harris TW, Kishore R, Le T, Lee RYN, Luypaert M, Müller HM, Nakamura C, Nuin P, Paulini M, Quinton-Tulloch M, Raciti D, Rodgers FH, Russell M, Schindelman G, Singh A, Stickland T, Van Auken K, Wang Q, Williams G, Wright AJ, Yook K, Berriman M, Howe KL, Schedl T, Stein L, Sternberg PW. WormBase in 2022-data, processes, and tools for analyzing Caenorhabditis elegans. Genetics 2022; 220:6521733. [PMID: 35134929 PMCID: PMC8982018 DOI: 10.1093/genetics/iyac003] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023] Open
Abstract
WormBase (www.wormbase.org) is the central repository for the genetics and genomics of the nematode Caenorhabditis elegans. We provide the research community with data and tools to facilitate the use of C. elegans and related nematodes as model organisms for studying human health, development, and many aspects of fundamental biology. Throughout our 22-year history, we have continued to evolve to reflect progress and innovation in the science and technologies involved in the study of C. elegans. We strive to incorporate new data types and richer data sets, and to provide integrated displays and services that avail the knowledge generated by the published nematode genetics literature. Here, we provide a broad overview of the current state of WormBase in terms of data type, curation workflows, analysis, and tools, including exciting new advances for analysis of single-cell data, text mining and visualization, and the new community collaboration forum. Concurrently, we continue the integration and harmonization of infrastructure, processes, and tools with the Alliance of Genome Resources, of which WormBase is a founding member.
Collapse
Affiliation(s)
- Paul Davis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Magdalena Zarowiecki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Valerio Arnaboldi
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrés Becerra
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Scott Cain
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Juancarlos Chan
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wen J Chen
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jaehyoung Cho
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Eduardo da Veiga Beltrame
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Stavros Diamantakis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sibyl Gao
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Dionysis Grigoriadis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Christian A Grove
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Todd W Harris
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Ranjana Kishore
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tuan Le
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Raymond Y N Lee
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Manuel Luypaert
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Hans-Michael Müller
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cecilia Nakamura
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paulo Nuin
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Michael Paulini
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mark Quinton-Tulloch
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Daniela Raciti
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Faye H Rodgers
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Matthew Russell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Gary Schindelman
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Archana Singh
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Tim Stickland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kimberly Van Auken
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Qinghua Wang
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gary Williams
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Adam J Wright
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Karen Yook
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| | - Matt Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kevin L Howe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Lincoln Stein
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Paul W Sternberg
- Division of Biology and Biological Engineering 140-18, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
10
|
Wang Y, Wang Q, Huang H, Huang W, Chen Y, McGarvey PB, Wu CH, Arighi CN. A crowdsourcing open platform for literature curation in UniProt. PLoS Biol 2021; 19:e3001464. [PMID: 34871295 PMCID: PMC8675915 DOI: 10.1371/journal.pbio.3001464] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/16/2021] [Indexed: 11/29/2022] Open
Abstract
The UniProt Knowledgebase is a public database for protein sequence and function, covering the tree of life. This Community Page article present a community submission system to harness timely scientific knowledge via crowdsourcing of the literature, creating a research ecosystem where researchers play an active role in scaling up UniProt curation, while receiving proper attribution for their biocuration work.
Collapse
Affiliation(s)
- Yuqi Wang
- Protein Information Resource, University of Delaware, Newark, Delaware, United States of America
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Qinghua Wang
- Protein Information Resource, University of Delaware, Newark, Delaware, United States of America
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Hongzhan Huang
- Protein Information Resource, University of Delaware, Newark, Delaware, United States of America
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Wei Huang
- College of Agriculture and Natural Resource, University of Delaware, Newark, Delaware, United States of America
| | - Yongxing Chen
- Protein Information Resource, University of Delaware, Newark, Delaware, United States of America
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Peter B. McGarvey
- Protein Information Resource, Georgetown University Medical Center, District of Columbia, United States of America
| | - Cathy H. Wu
- Protein Information Resource, University of Delaware, Newark, Delaware, United States of America
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
- Protein Information Resource, Georgetown University Medical Center, District of Columbia, United States of America
| | - Cecilia N. Arighi
- Protein Information Resource, University of Delaware, Newark, Delaware, United States of America
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| | | |
Collapse
|
11
|
Abstract
The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this article, we describe significant updates that we have made over the last two years to the resource. The number of sequences in UniProtKB has risen to approximately 190 million, despite continued work to reduce sequence redundancy at the proteome level. We have adopted new methods of assessing proteome completeness and quality. We continue to extract detailed annotations from the literature to add to reviewed entries and supplement these in unreviewed entries with annotations provided by automated systems such as the newly implemented Association-Rule-Based Annotator (ARBA). We have developed a credit-based publication submission interface to allow the community to contribute publications and annotations to UniProt entries. We describe how UniProtKB responded to the COVID-19 pandemic through expert curation of relevant entries that were rapidly made available to the research community through a dedicated portal. UniProt resources are available under a CC-BY (4.0) license via the web at https://www.uniprot.org/.
Collapse
|
12
|
Bateman A, Martin MJ, Orchard S, Magrane M, Agivetova R, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Bursteinas B, Bye-A-Jee H, Coetzee R, Cukura A, Da Silva A, Denny P, Dogan T, Ebenezer T, Fan J, Castro LG, Garmiri P, Georghiou G, Gonzales L, Hatton-Ellis E, Hussein A, Ignatchenko A, Insana G, Ishtiaq R, Jokinen P, Joshi V, Jyothi D, Lock A, Lopez R, Luciani A, Luo J, Lussi Y, MacDougall A, Madeira F, Mahmoudy M, Menchi M, Mishra A, Moulang K, Nightingale A, Oliveira CS, Pundir S, Qi G, Raj S, Rice D, Lopez MR, Saidi R, Sampson J, Sawford T, Speretta E, Turner E, Tyagi N, Vasudev P, Volynkin V, Warner K, Watkins X, Zaru R, Zellner H, Bridge A, Poux S, Redaschi N, Aimo L, Argoud-Puy G, Auchincloss A, Axelsen K, Bansal P, Baratin D, Blatter MC, Bolleman J, Boutet E, Breuza L, Casals-Casas C, de Castro E, Echioukh KC, Coudert E, Cuche B, Doche M, Dornevil D, Estreicher A, Famiglietti ML, Feuermann M, Gasteiger E, Gehant S, Gerritsen V, Gos A, Gruaz-Gumowski N, Hinz U, Hulo C, Hyka-Nouspikel N, Jungo F, Keller G, Kerhornou A, Lara V, Le Mercier P, Lieberherr D, Lombardot T, Martin X, Masson P, et alBateman A, Martin MJ, Orchard S, Magrane M, Agivetova R, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Bursteinas B, Bye-A-Jee H, Coetzee R, Cukura A, Da Silva A, Denny P, Dogan T, Ebenezer T, Fan J, Castro LG, Garmiri P, Georghiou G, Gonzales L, Hatton-Ellis E, Hussein A, Ignatchenko A, Insana G, Ishtiaq R, Jokinen P, Joshi V, Jyothi D, Lock A, Lopez R, Luciani A, Luo J, Lussi Y, MacDougall A, Madeira F, Mahmoudy M, Menchi M, Mishra A, Moulang K, Nightingale A, Oliveira CS, Pundir S, Qi G, Raj S, Rice D, Lopez MR, Saidi R, Sampson J, Sawford T, Speretta E, Turner E, Tyagi N, Vasudev P, Volynkin V, Warner K, Watkins X, Zaru R, Zellner H, Bridge A, Poux S, Redaschi N, Aimo L, Argoud-Puy G, Auchincloss A, Axelsen K, Bansal P, Baratin D, Blatter MC, Bolleman J, Boutet E, Breuza L, Casals-Casas C, de Castro E, Echioukh KC, Coudert E, Cuche B, Doche M, Dornevil D, Estreicher A, Famiglietti ML, Feuermann M, Gasteiger E, Gehant S, Gerritsen V, Gos A, Gruaz-Gumowski N, Hinz U, Hulo C, Hyka-Nouspikel N, Jungo F, Keller G, Kerhornou A, Lara V, Le Mercier P, Lieberherr D, Lombardot T, Martin X, Masson P, Morgat A, Neto TB, Paesano S, Pedruzzi I, Pilbout S, Pourcel L, Pozzato M, Pruess M, Rivoire C, Sigrist C, Sonesson K, Stutz A, Sundaram S, Tognolli M, Verbregue L, Wu CH, Arighi CN, Arminski L, Chen C, Chen Y, Garavelli JS, Huang H, Laiho K, McGarvey P, Natale DA, Ross K, Vinayaka CR, Wang Q, Wang Y, Yeh LS, Zhang J, Ruch P, Teodoro D. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 2021; 49:D480-D489. [PMID: 33237286 PMCID: PMC7778908 DOI: 10.1093/nar/gkaa1100] [Show More Authors] [Citation(s) in RCA: 4173] [Impact Index Per Article: 1043.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this article, we describe significant updates that we have made over the last two years to the resource. The number of sequences in UniProtKB has risen to approximately 190 million, despite continued work to reduce sequence redundancy at the proteome level. We have adopted new methods of assessing proteome completeness and quality. We continue to extract detailed annotations from the literature to add to reviewed entries and supplement these in unreviewed entries with annotations provided by automated systems such as the newly implemented Association-Rule-Based Annotator (ARBA). We have developed a credit-based publication submission interface to allow the community to contribute publications and annotations to UniProt entries. We describe how UniProtKB responded to the COVID-19 pandemic through expert curation of relevant entries that were rapidly made available to the research community through a dedicated portal. UniProt resources are available under a CC-BY (4.0) license via the web at https://www.uniprot.org/.
Collapse
|
13
|
Ali SA, Pastrello C, Kaur N, Peffers MJ, Ormseth MJ, Jurisica I. A Network Biology Approach to Understanding the Tissue-Specific Roles of Non-Coding RNAs in Arthritis. Front Endocrinol (Lausanne) 2021; 12:744747. [PMID: 34803912 PMCID: PMC8595833 DOI: 10.3389/fendo.2021.744747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022] Open
Abstract
Discovery of non-coding RNAs continues to provide new insights into some of the key molecular drivers of musculoskeletal diseases. Among these, microRNAs have received widespread attention for their roles in osteoarthritis and rheumatoid arthritis. With evidence to suggest that long non-coding RNAs and circular RNAs function as competing endogenous RNAs to sponge microRNAs, the net effect on gene expression in specific disease contexts can be elusive. Studies to date have focused on elucidating individual long non-coding-microRNA-gene target axes and circular RNA-microRNA-gene target axes, with a paucity of data integrating experimentally validated effects of non-coding RNAs. To address this gap, we curated recent studies reporting non-coding RNA axes in chondrocytes from human osteoarthritis and in fibroblast-like synoviocytes from human rheumatoid arthritis. Using an integrative computational biology approach, we then combined the findings into cell- and disease-specific networks for in-depth interpretation. We highlight some challenges to data integration, including non-existent naming conventions and out-of-date databases for non-coding RNAs, and some successes exemplified by the International Molecular Exchange Consortium for protein interactions. In this perspective article, we suggest that data integration is a useful in silico approach for creating non-coding RNA networks in arthritis and prioritizing interactions for further in vitro and in vivo experimentation in translational research.
Collapse
Affiliation(s)
- Shabana Amanda Ali
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- *Correspondence: Shabana Amanda Ali, ; Igor Jurisica,
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Navdeep Kaur
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, United States
| | - Mandy J. Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michelle J. Ormseth
- Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN, United States
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Shabana Amanda Ali, ; Igor Jurisica,
| |
Collapse
|
14
|
Sousa D, Lamurias A, Couto FM. A hybrid approach toward biomedical relation extraction training corpora: combining distant supervision with crowdsourcing. Database (Oxford) 2020; 2020:baaa104. [PMID: 33258966 PMCID: PMC7706181 DOI: 10.1093/database/baaa104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Biomedical relation extraction (RE) datasets are vital in the construction of knowledge bases and to potentiate the discovery of new interactions. There are several ways to create biomedical RE datasets, some more reliable than others, such as resorting to domain expert annotations. However, the emerging use of crowdsourcing platforms, such as Amazon Mechanical Turk (MTurk), can potentially reduce the cost of RE dataset construction, even if the same level of quality cannot be guaranteed. There is a lack of power of the researcher to control who, how and in what context workers engage in crowdsourcing platforms. Hence, allying distant supervision with crowdsourcing can be a more reliable alternative. The crowdsourcing workers would be asked only to rectify or discard already existing annotations, which would make the process less dependent on their ability to interpret complex biomedical sentences. In this work, we use a previously created distantly supervised human phenotype-gene relations (PGR) dataset to perform crowdsourcing validation. We divided the original dataset into two annotation tasks: Task 1, 70% of the dataset annotated by one worker, and Task 2, 30% of the dataset annotated by seven workers. Also, for Task 2, we added an extra rater on-site and a domain expert to further assess the crowdsourcing validation quality. Here, we describe a detailed pipeline for RE crowdsourcing validation, creating a new release of the PGR dataset with partial domain expert revision, and assess the quality of the MTurk platform. We applied the new dataset to two state-of-the-art deep learning systems (BiOnt and BioBERT) and compared its performance with the original PGR dataset, as well as combinations between the two, achieving a 0.3494 increase in average F-measure. The code supporting our work and the new release of the PGR dataset is available at https://github.com/lasigeBioTM/PGR-crowd.
Collapse
Affiliation(s)
- Diana Sousa
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Andre Lamurias
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Francisco M Couto
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| |
Collapse
|
15
|
Salimi N, Edwards L, Foos G, Greenbaum JA, Martini S, Reardon B, Shackelford D, Vita R, Zalman L, Peters B, Sette A. A behind-the-scenes tour of the IEDB curation process: an optimized process empirically integrating automation and human curation efforts. Immunology 2020; 161:139-147. [PMID: 32615639 PMCID: PMC7496777 DOI: 10.1111/imm.13234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
The Immune Epitope Database and Analysis Resource (IEDB) provides the scientific community with open access to epitope data, as well as epitope prediction and analysis tools. The IEDB houses the most extensive collection of experimentally validated B‐cell and T‐cell epitope data, sourced primarily from published literature by expert curation. The data procurement requires systematic identification, categorization, curation and quality‐checking processes. Here, we provide insights into these processes, with particular focus on the dividends they have paid in terms of attaining project milestones, as well as how objective analyses of our processes have identified opportunities for process optimization. These experiences are shared as a case study of the benefits of process implementation and review in biomedical big data, as well as to encourage idea‐sharing among players in this ever‐growing space.
Collapse
Affiliation(s)
- Nima Salimi
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Lindy Edwards
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Gabriele Foos
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jason A Greenbaum
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sheridan Martini
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Brian Reardon
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Deborah Shackelford
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Randi Vita
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Leora Zalman
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|