1
|
Costábile A, Paredes G, Aversa-Marnai M, Lorenzo C, Pérez Etcheverry D, Castellano M, Quartiani I, Conijeski D, Perretta A, Villarino A, Ferreira AM, Silva-Álvarez V. Understanding the spleen response of Russian sturgeon (Acipenser gueldenstaedtii) dealing with chronic heat stress and Aeromonas hydrophila challenge. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101352. [PMID: 39549417 DOI: 10.1016/j.cbd.2024.101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/18/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024]
Abstract
Sturgeon aquaculture has grown in recent years, driven by increasing global demand for its highly valued products. Russian sturgeon (Acipenser gueldenstaedtii), recognised as one of the most valuable species for caviar production, is farmed in several warm-temperate regions. However, the substantial temperature increase due to global warming represents a challenge for developing sturgeon aquaculture. Previously we demonstrated that Russian sturgeon under chronic heat stress (CHS) exhibited a liver metabolic reprogramming to meet energy demands, weakening their innate defences and leading to increased mortality and economic losses. Here, we used RNA-seq technology to analyse regulated genes in the spleen of Russian sturgeons exposed to CHS and challenged with Aeromonas hydrophila. The assembly gave 253,415 unigenes, with 13.7 % having at least one reliable functional annotation. We found that CHS caused mild splenitis and upregulated genes related to protein folding, heat shock response, apoptosis and autophagy while downregulated genes associated with the cell cycle. The cell cycle arrest was maintained upon A. hydrophila challenge in heat-stressed fish, potentially inducing cell senescence. Surprisingly, immunoglobulin heavy and light chains were upregulated in the spleen of stressed sturgeons but not in those maintained at tolerable temperatures; however, no changes in IgM serum levels were observed in any condition. Our findings indicate that long-term exposure to non-tolerable temperatures induced a heat shock response and activated apoptosis and autophagy processes in the spleen. These mechanisms may enable the control of tissue damage and facilitate the recycling of cell components in a condition where the nutrient supply by the liver might be insufficient. Stressed sturgeons challenged with A. hydrophila maintain these mechanisms, which could culminate in cellular senescence.
Collapse
Affiliation(s)
- Alicia Costábile
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Gonzalo Paredes
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay
| | - Marcio Aversa-Marnai
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay
| | - Carmen Lorenzo
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, CP 91000, Canelones, Uruguay
| | - Diana Pérez Etcheverry
- Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, CP 91000, Canelones, Uruguay
| | - Mauricio Castellano
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay; Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Ignacio Quartiani
- Unidad de Patología, Biología y Cultivo de Organismos Acuáticos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, CP 11300, Montevideo, Uruguay
| | | | - Alejandro Perretta
- Unidad de Patología, Biología y Cultivo de Organismos Acuáticos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, CP 11300, Montevideo, Uruguay
| | - Andrea Villarino
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Ana María Ferreira
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay.
| | - Valeria Silva-Álvarez
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Instituto de Higiene, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay.
| |
Collapse
|
2
|
Zhang S, Lu Y, Liu Y, Wang M, Xu S, Li Y, Wu H, Pei Q, Yang L, Lu L, Xiong Y, Liu Y, Chen S, Yao Q, Kang Q, Li Y, Chen D, Zhang X, Tang N, Li Z. Neglected function of gastrin to reduce feeding in Siberian sturgeon (Acipenser baerii) via cholecystokinin receptor B. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:941-954. [PMID: 38381278 DOI: 10.1007/s10695-024-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Gastrin is an important intragastrointestinal hormone, but reports on its regulation of feeding behavior in fish are still scarce. This study aimed to determine the feeding regulatory function of gastrin in sturgeon. In this study, a gastrin/cholecystokinin-like peptide was identified in the genomes of sturgeon and proved to be gastrin by evolutionary tree analysis. Tissue distribution of gastrin and its receptor, cholecystokinin receptor B (CCKRB), showed that both had high mRNA abundance in the hypothalamus and gastrointestinal tract. In the duodenum, gastrin and CCKRB mRNAs were reduced at 1 h of fasting, and both were also observed in the stomach and hypothalamus in response to changes in feeding status. Sulfated gastrin 17 is the major form of gastrin in vivo. Therefore, we investigated the effect of sulfated gastrin 17 on feeding by intraperitoneal injection into Siberian sturgeon using sulfated gastrin 17. The results showed that gastrin 17 significantly reduced the cumulative feeding of Siberian sturgeon in the short term (1, 3 and 6 h) and long term (1, 2, 3, 4, 5 and 7 days). Finally, we explored the potential mechanism of feeding inhibition after intraperitoneal injection of gastrin 17 for 7 consecutive days. The results showed that gastrin 17 treatment significantly increased the mRNA levels of anorexigenic peptides (cart, cck and pyy), while it had no significant effect on the mRNA abundance of orexigenic peptides (npy and agrp). In addition, gastrin 17 treatment significantly affected the expression of appetite signaling pathways in the hypothalamus, such that the mRNA expression of ampkα1 was significantly reduced, whereas the mRNA abundance of stat3, mtor and s6k was significantly increased. In conclusion, the present study confirmed the anorectic effect of gastrin on Siberian sturgeon.
Collapse
Affiliation(s)
- Shupeng Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| | - Yongpei Lu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yanling Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Mei Wang
- Chengdu Agricultural College, 392# Detong Bridge, Chengdu, Sichuan, China
| | - Shaoqi Xu
- Sichuan Fisheries School, 18# Dujuan Road, Chengdu, Chengdu, Sichuan, China
| | - Ya Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hongwei Wu
- Chengdu Agricultural College, 392# Detong Bridge, Chengdu, Sichuan, China
| | - Qaolin Pei
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Lei Yang
- Yuxi Agricultural Vocational-Technical College, 41# Xiangjiazhuang, Yuxi, Yunnan, China
| | - Lu Lu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yixiao Xiong
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Youlian Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shuhuang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Qin Yao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Qin Kang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yingzi Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Costábile A, Castellano M, Aversa-Marnai M, Quartiani I, Conijeski D, Perretta A, Villarino A, Silva-Álvarez V, Ferreira AM. A different transcriptional landscape sheds light on Russian sturgeon (Acipenser gueldenstaedtii) mechanisms to cope with bacterial infection and chronic heat stress. FISH & SHELLFISH IMMUNOLOGY 2022; 128:505-522. [PMID: 35985628 DOI: 10.1016/j.fsi.2022.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Sturgeons are chondrostean fish of high economic value and critically endangered due to anthropogenic activities, which has led to sturgeon aquaculture development. Russian sturgeon (Acipenser gueldenstaedtii), the second most important species reared for caviar, is successfully farmed in subtropical countries, including Uruguay. However, during the Uruguayan summer, sturgeons face intolerable warmer temperatures that weaken their defences and favour infections by opportunistic pathogens, increasing fish mortality and farm economic losses. Since innate immunity is paramount in fish, for which the liver plays a key role, we used deep RNA sequencing to analyse differentially expressed genes in the liver of Russian sturgeons exposed to chronic heat stress and challenged with Aeromonas hydrophila. We assembled 149.615 unigenes in the Russian sturgeon liver transcriptome and found that metabolism and immune defence pathways are among the top five biological processes taking place in the liver. Chronic heat stress provoked profound effects on liver biological functions, up-regulating genes related to protein folding, heat shock response and lipid and protein metabolism to meet energy demands for coping with heat stress. Besides, long-term exposure to heat stress led to cell damage triggering liver inflammation and diminishing liver ability to mount an innate response to A. hydrophila challenge. Accordingly, the reprogramming of liver metabolism over an extended period had detrimental effects on fish health, resulting in weight loss and mortality, with the latter increasing after A. hydrophila challenge. To our knowledge, this is the first transcriptomic study describing how chronic heat-stressed sturgeons respond to a bacterial challenge, suggesting that liver metabolism alterations have a negative impact on the innate anti-bacterial response.
Collapse
Affiliation(s)
- Alicia Costábile
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Mauricio Castellano
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay; Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Marcio Aversa-Marnai
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay
| | - Ignacio Quartiani
- Unidad de Patología, Biología y Cultivo de Organismos Acuáticos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, CP 11300, Montevideo, Uruguay
| | | | - Alejandro Perretta
- Unidad de Patología, Biología y Cultivo de Organismos Acuáticos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, CP 11300, Montevideo, Uruguay
| | - Andrea Villarino
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Valeria Silva-Álvarez
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay.
| | - Ana María Ferreira
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay.
| |
Collapse
|