1
|
Singh B, Jevnikar AM, Desjardins E. Artificial Intelligence, Big Data, and Regulation of Immunity: Challenges and Opportunities. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0006. [PMID: 38421272 DOI: 10.2478/aite-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
The immune system is regulated by a complex set of genetic, molecular, and cellular interactions. Rapid advances in the study of immunity and its network of interactions have been boosted by a spectrum of "omics" technologies that have generated huge amounts of data that have reached the status of big data (BD). With recent developments in artificial intelligence (AI), theoretical and clinical breakthroughs could emerge. Analyses of large data sets with AI tools will allow the formulation of new testable hypotheses open new research avenues and provide innovative strategies for regulating immunity and treating immunological diseases. This includes diagnosis and identification of rare diseases, prevention and treatment of autoimmune diseases, allergic disorders, infectious diseases, metabolomic disorders, cancer, and organ transplantation. However, ethical and regulatory challenges remain as to how these studies will be used to advance our understanding of basic immunology and how immunity might be regulated in health and disease. This will be particularly important for entities in which the complexity of interactions occurring at the same time and multiple cellular pathways have eluded conventional approaches to understanding and treatment. The analyses of BD by AI are likely to be complicated as both positive and negative outcomes of regulating immunity may have important ethical ramifications that need to be considered. We suggest there is an immediate need to develop guidelines as to how the analyses of immunological BD by AI tools should guide immune-based interventions to treat various diseases, prevent infections, and maintain health within an ethical framework.
Collapse
Affiliation(s)
- Bhagirath Singh
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Rotman Institute of Philosophy, University of Western Ontario, London, ON, Canada
| | - Anthony M Jevnikar
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Eric Desjardins
- Rotman Institute of Philosophy, University of Western Ontario, London, ON, Canada
- Department of Philosophy, University of Western Ontario, London, ON, Canada
| |
Collapse
|
2
|
Chen H, Xu J, Wei S, Jia Z, Sun C, Kang J, Guo X, Zhang N, Tao J, Dong Y, Zhang C, Ma Y, Lv W, Tian H, Bi S, Lv H, Huang C, Kong F, Tang G, Jiang Y, Zhang M. RABC: Rheumatoid Arthritis Bioinformatics Center. Nucleic Acids Res 2022; 51:D1381-D1387. [PMID: 36243962 PMCID: PMC9825551 DOI: 10.1093/nar/gkac850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 01/30/2023] Open
Abstract
Advances in sequencing technologies have led to the rapid growth of multi-omics data on rheumatoid arthritis (RA). However, a comprehensive database that systematically collects and classifies the scattered data is still lacking. Here, we developed the Rheumatoid Arthritis Bioinformatics Center (RABC, http://www.onethird-lab.com/RABC/), the first multi-omics data resource platform (data hub) for RA. There are four categories of data in RABC: (i) 175 multi-omics sample sets covering transcriptome, epigenome, genome, and proteome; (ii) 175 209 differentially expressed genes (DEGs), 105 differentially expressed microRNAs (DEMs), 18 464 differentially DNA methylated (DNAm) genes, 1 764 KEGG pathways, 30 488 GO terms, 74 334 SNPs, 242 779 eQTLs, 105 m6A-SNPs and 18 491 669 meta-mQTLs; (iii) prior knowledge on seven types of RA molecular markers from nine public and credible databases; (iv) 127 073 literature information from PubMed (from 1972 to March 2022). RABC provides a user-friendly interface for browsing, searching and downloading these data. In addition, a visualization module also supports users to generate graphs of analysis results by inputting personalized parameters. We believe that RABC will become a valuable resource and make a significant contribution to the study of RA.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingxuan Kang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China,The ABC Project, Harbin, China
| | - Xuying Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Nan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Junxian Tao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China,The ABC Project, Harbin, China
| | - Yu Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chen Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China,The ABC Project, Harbin, China
| | - Yingnan Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenhua Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongsheng Tian
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuo Bi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau, SAR, China,Stat Key laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Fanwu Kong
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guoping Tang
- Correspondence may also be addressed to Guoping Tang.
| | - Yongshuai Jiang
- Correspondence may also be addressed to Yongshuai Jiang. Tel: +86 451 86620941; Fax: +86 451 86620941;
| | - Mingming Zhang
- To whom correspondence should be addressed. Tel: +86 451 86620941; Fax: +86 451 86620941;
| |
Collapse
|