1
|
Khatri M, Shanmugam NRS, Zhang X, Patel RSKR, Yin Y. AcrDB update: Predicted 3D structures of anti-CRISPRs in human gut viromes. Protein Sci 2025; 34:e70177. [PMID: 40400348 PMCID: PMC12095918 DOI: 10.1002/pro.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Anti-CRISPR (Acr) proteins play a key role in phage-host interactions and hold great promise for advancing genome-editing technologies. However, finding new Acrs has been challenging due to their low sequence similarity. Recent advances in protein structure prediction have opened new pathways for Acr discovery by using 3D structure similarity. This study presents an updated AcrDB, with the following new features not available in other databases: (1) predicted Acrs from human gut virome databases, (2) Acr structures predicted by AlphaFold2, (3) a structural similarity search function to allow users to submit new sequences and structures to search against 3D structures of experimentally known Acrs. The updated AcrDB contains predicted 3D structures of 795 candidate Acrs with structural similarity (TM-score ≥0.7) to known Acrs supported by at least two of the three non-sequence similarity-based tools (TM-Vec, Foldseek, AcrPred). Among these candidate Acrs, 121 are supported by all three tools. AcrDB also includes 3D structures of 122 experimentally characterized Acr proteins. The 121 most confident candidate Acrs were combined with the 122 known Acrs and clustered into 163 sequence similarity-based Acr families. The 163 families were further subject to a structure similarity-based hierarchical clustering, revealing structural similarity between 44 candidate Acr (cAcr) families and 119 known Acr families. The bacterial hosts of these 163 Acr families are mainly from Bacillota, Pseudomonadota, and Bacteroidota, which are all dominant gut bacterial phyla. Many of these 163 Acr families are also co-localized in Acr operons. All the data and visualization are provided on our website: https://pro.unl.edu/AcrDB.
Collapse
Affiliation(s)
- Minal Khatri
- Nebraska Food for Health Center, Department of Food Science and TechnologyUniversity of Nebraska—LincolnLincolnNebraskaUSA
| | - N. R. Siva Shanmugam
- Nebraska Food for Health Center, Department of Food Science and TechnologyUniversity of Nebraska—LincolnLincolnNebraskaUSA
| | - Xinpeng Zhang
- Nebraska Food for Health Center, Department of Food Science and TechnologyUniversity of Nebraska—LincolnLincolnNebraskaUSA
| | - Revanth Sai Kumar Reddy Patel
- Nebraska Food for Health Center, Department of Food Science and TechnologyUniversity of Nebraska—LincolnLincolnNebraskaUSA
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and TechnologyUniversity of Nebraska—LincolnLincolnNebraskaUSA
| |
Collapse
|
2
|
Liu G, Li X, Guan J, Tai C, Weng Y, Chen X, Ou HY. oriTDB: a database of the origin-of-transfer regions of bacterial mobile genetic elements. Nucleic Acids Res 2025; 53:D163-D168. [PMID: 39373502 PMCID: PMC11701681 DOI: 10.1093/nar/gkae869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Conjugation and mobilization are two important pathways of horizontal transfer of bacterial mobile genetic elements (MGEs). The origin-of-transfer (oriT) region is crucial for this process, serving as a recognition site for relaxase and containing the DNA nicking site (nic site), which initiates the conjugation or mobilization. Here, we present a database of the origin-of-transfer regions of bacterial MGEs, oriTDB (https://bioinfo-mml.sjtu.edu.cn/oriTDB2/). Incorporating data from text mining and genome analysis, oriTDB comprises 122 experimentally validated and 22 927 predicted oriTs within bacterial plasmids, Integrative and Conjugative Elements, and Integrative and Mobilizable Elements. Additionally, oriTDB includes details about associated relaxases, auxiliary proteins, type IV coupling proteins, and a gene cluster encoding the type IV secretion system. The database also provides predicted secondary structures of oriT sequences, dissects oriT regions into pairs of inverted repeats, nic sites, and their flanking conserved sequences, and offers an interactive visual representation. Furthermore, oriTDB includes an enhanced oriT prediction pipeline, oriTfinder2, which integrates a functional annotation module for cargo genes in bacterial MGEs. This resource is intended to support research on bacterial conjugative or mobilizable elements and promote an understanding of their cargo gene functions.
Collapse
Affiliation(s)
- Guitian Liu
- Department of Infectious Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaobin Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Jiahao Guan
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cui Tai
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqing Weng
- Department of Pulmonary and Critical Care Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Xiaohua Chen
- Department of Infectious Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hong- Yu Ou
- Department of Infectious Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Roberts A, Spang D, Sanozky-Dawes R, Nethery MA, Barrangou R. Characterization of Ligilactobacillus salivarius CRISPR-Cas systems. mSphere 2024; 9:e0017124. [PMID: 38990000 PMCID: PMC11288051 DOI: 10.1128/msphere.00171-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Ligilactobacillus is a diverse genus among lactobacilli with phenotypes that reflect adaptation to various hosts. CRISPR-Cas systems are highly prevalent within lactobacilli, and Ligilactobacillus salivarius, the most abundant species of Ligilactobacillus, possesses both DNA- and RNA-targeting CRISPR-Cas systems. In this study, we explore the presence and functional properties of I-B, I-C, I-E, II-A, and III-A CRISPR-Cas systems in over 500 Ligilactobacillus genomes, emphasizing systems found in L. salivarius. We examined the I-E, II-A, and III-A CRISPR-Cas systems of two L. salivarius strains and observed occurrences of split cas genes and differences in CRISPR RNA maturation in native hosts. This prompted testing of the single Cas9 and multiprotein Cascade and Csm CRISPR-Cas effector complexes in a cell-free context to demonstrate the functionality of these systems. We also predicted self-targeting spacers within L. salivarius CRISPR-Cas systems and found that nearly a third of L. salivarius genomes possess unique self-targeting spacers that generally target elements other than prophages. With these two L. salivarius strains, we performed prophage induction coupled with RNA sequencing and discovered that the prophages residing within these strains are inducible and likely active elements, despite targeting by CRISPR-Cas systems. These findings deepen our comprehension of CRISPR-Cas systems in L. salivarius, further elucidating their relationship with associated prophages and providing a functional basis for the repurposing of these Cas effectors for bacterial manipulation. IMPORTANCE Ligilactobacillus salivarius is a diverse bacterial species widely used in the food and dietary supplement industries. In this study, we investigate the occurrence and diversity of their adaptive immune systems, CRISPR-Cas, in over 500 genomes. We establish their function and provide insights into their role in the interplay between the bacterial host and the predatory phages that infect them. Such findings expand our knowledge about these important CRISPR-Cas immune systems widespread across the bacterial tree of life and also provide a technical basis for the repurposing of these molecular machines for the development of molecular biology tools and the manipulation and engineering of bacteria and other life forms.
Collapse
Affiliation(s)
- Avery Roberts
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Daniel Spang
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rosemary Sanozky-Dawes
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Duan N, Hand E, Pheko M, Sharma S, Emiola A. Structure-guided discovery of anti-CRISPR and anti-phage defense proteins. Nat Commun 2024; 15:649. [PMID: 38245560 PMCID: PMC10799925 DOI: 10.1038/s41467-024-45068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Bacteria use a variety of defense systems to protect themselves from phage infection. In turn, phages have evolved diverse counter-defense measures to overcome host defenses. Here, we use protein structural similarity and gene co-occurrence analyses to screen >66 million viral protein sequences and >330,000 metagenome-assembled genomes for the identification of anti-phage and counter-defense systems. We predict structures for ~300,000 proteins and perform large-scale, pairwise comparison to known anti-CRISPR (Acr) and anti-phage proteins to identify structural homologs that otherwise may not be uncovered using primary sequence search. This way, we identify a Bacteroidota phage Acr protein that inhibits Cas12a, and an Akkermansia muciniphila anti-phage defense protein, termed BxaP. Gene bxaP is found in loci encoding Bacteriophage Exclusion (BREX) and restriction-modification defense systems, but confers immunity independently. Our work highlights the advantage of combining protein structural features and gene co-localization information in studying host-phage interactions.
Collapse
Affiliation(s)
- Ning Duan
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Emily Hand
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Mannuku Pheko
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Shikha Sharma
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Akintunde Emiola
- Microbial Therapeutics Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Du S, Tong X, Leung MHY, Betts RJ, Woo AC, Bastien P, Misra N, Aguilar L, Clavaud C, Lee PKH. Chronic exposure to polycyclic aromatic hydrocarbons alters skin virome composition and virus-host interactions. THE ISME JOURNAL 2024; 18:wrae218. [PMID: 39450991 PMCID: PMC11549919 DOI: 10.1093/ismejo/wrae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) in polluted air influences the composition of the skin microbiome, which in turn is associated with altered skin phenotypes. However, the interactions between PAH exposure and viromes are unclear. This study aims to elucidate how PAH exposure affects the composition and function of skin viruses, their role in shaping the metabolism of bacterial hosts, and the subsequent effects on skin phenotype. We analyzed metagenomes from cheek skin swabs collected from 124 Chinese women in our previous study and found that the viruses associated with the two microbiome cutotypes had distinct diversities, compositions, functions, and lifestyles following PAH exposure. Moreover, exposure to high concentrations of PAHs substantially increased interactions between viruses and certain biodegrading bacteria. Under high-PAH exposure, the viruses were enriched in xenobiotic degradation functions, and there was evidence suggesting that the insertion of bacteriophage-encoded auxiliary metabolic genes into hosts aids biodegradation. Under low-PAH exposure conditions, the interactions followed the "Piggyback-the-Winner" model, with Cutibacterium acnes being "winners," whereas under high-PAH exposure, they followed the "Piggyback-the-Persistent" model, with biodegradation bacteria being "persistent." These findings highlight the impact of air pollutants on skin bacteria and viruses, their interactions, and their modulation of skin health. Understanding these intricate relationships could provide insights for developing targeted strategies to maintain skin health in polluted environments, emphasizing the importance of mitigating pollutant exposure and harnessing the potential of viruses to help counteract the adverse effects.
Collapse
Affiliation(s)
- Shicong Du
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Ren’ai Road, Suzhou, 215123, P. R. China
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Richard J Betts
- L’Oréal Research and Innovation, Raffles Quay, North Tower, 048583, Singapore
| | - Anthony C Woo
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Philippe Bastien
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Namita Misra
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Luc Aguilar
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Cécile Clavaud
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
- Low-Carbon and Climate Impact Research Centre, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
| |
Collapse
|
6
|
Gebhardt CM, Niopek D. Anti-CRISPR Proteins and Their Application to Control CRISPR Effectors in Mammalian Systems. Methods Mol Biol 2024; 2774:205-231. [PMID: 38441767 DOI: 10.1007/978-1-0716-3718-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
CRISPR-Cas effectors are powerful tools for genome and transcriptome targeting and editing. Naturally, these protein-RNA complexes are part of the microbial innate immune system, which emerged from the evolutionary arms race between microbes and phages. This coevolution has also given rise to so-called anti-CRISPR (Acr) proteins that counteract the CRISPR-Cas adaptive immunity. Acrs constitutively block cognate CRISPR-Cas effectors, e.g., by interfering with guide RNA binding, target DNA/RNA recognition, or target cleavage. In addition to their important role in microbiology and evolution, Acrs have recently gained particular attention for being useful tools and switches to regulate or fine-tune the activity of CRISPR-Cas effectors. Due to their commonly small size, high inhibition potency, and structural and mechanistic versatility, Acrs offer a wide range of potential applications for controlling CRISPR effectors in heterologous systems, including mammalian cells.Here, we review the diverse applications of Acrs in mammalian cells and organisms and discuss the underlying engineering strategies. These applications include (i) persistent blockage of CRISPR-Cas function to create write-protected cells, (ii) reduction of CRISPR-Cas off-target editing, (iii) focusing CRISPR-Cas activity to specific cell types and tissues, (iv) spatiotemporal control of CRISPR effectors based on engineered, opto-, or chemogenetic Acrs, and (v) the use of Acrs for selective binding and detection of CRISPR-Cas effectors in complex samples. We will also highlight potential future applications of Acrs in a biomedical context and point out present challenges that need to be overcome on the way.
Collapse
Affiliation(s)
- Carolin Maja Gebhardt
- Centre for Synthetic Biology, Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Dominik Niopek
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
7
|
Lücking D, Alarcón-Schumacher T, Erdmann S. Distribution and Implications of Haloarchaeal Plasmids Disseminated in Self-Encoded Plasmid Vesicles. Microorganisms 2023; 12:5. [PMID: 38276173 PMCID: PMC10818511 DOI: 10.3390/microorganisms12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Even though viruses and plasmids are both drivers of horizontal gene transfer, they differ fundamentally in their mode of transfer. Virus genomes are enclosed in virus capsids and are not dependent on cell-to-cell contacts for their dissemination. In contrast, the transfer of plasmids most often requires physical contact between cells. However, plasmid pR1SE of Halorubrum lacusprofundi is disseminated between cells, independent of cell-cell contacts, in specialized membrane vesicles that contain plasmid proteins. In this study, we searched for pR1SE-like elements in public databases and a metagenomics dataset from Australian salt lakes and identified 40 additional pR1SE-like elements in hypersaline environments worldwide. Herein, these elements are named apHPVs (archaeal plasmids of haloarchaea potentially transferred in plasmid vesicles). They share two sets of closely related proteins with conserved synteny, strongly indicating an organization into different functional clusters. We find that apHPVs, besides transferring themselves, have the potential to transfer large fragments of DNA between host cells, including virus defense systems. Most interestingly, apHPVs likely play an important role in the evolution of viruses and plasmids in haloarchaea, as they appear to recombine with both of them. This further supports the idea that plasmids and viruses are not distinct but closely related mobile genetic elements.
Collapse
Affiliation(s)
| | | | - Susanne Erdmann
- Max-Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| |
Collapse
|
8
|
Tyumentseva M, Tyumentsev A, Akimkin V. CRISPR/Cas9 Landscape: Current State and Future Perspectives. Int J Mol Sci 2023; 24:16077. [PMID: 38003266 PMCID: PMC10671331 DOI: 10.3390/ijms242216077] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a unique genome editing tool that can be easily used in a wide range of applications, including functional genomics, transcriptomics, epigenetics, biotechnology, plant engineering, livestock breeding, gene therapy, diagnostics, and so on. This review is focused on the current CRISPR/Cas9 landscape, e.g., on Cas9 variants with improved properties, on Cas9-derived and fusion proteins, on Cas9 delivery methods, on pre-existing immunity against CRISPR/Cas9 proteins, anti-CRISPR proteins, and their possible roles in CRISPR/Cas9 function improvement. Moreover, this review presents a detailed outline of CRISPR/Cas9-based diagnostics and therapeutic approaches. Finally, the review addresses the future expansion of genome editors' toolbox with Cas9 orthologs and other CRISPR/Cas proteins.
Collapse
Affiliation(s)
- Marina Tyumentseva
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (A.T.); (V.A.)
| | | | | |
Collapse
|
9
|
Shmakov SA, Barth ZK, Makarova KS, Wolf Y, Brover V, Peters J, Koonin E. Widespread CRISPR-derived RNA regulatory elements in CRISPR-Cas systems. Nucleic Acids Res 2023; 51:8150-8168. [PMID: 37283088 PMCID: PMC10450183 DOI: 10.1093/nar/gkad495] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
CRISPR-cas loci typically contain CRISPR arrays with unique spacers separating direct repeats. Spacers along with portions of adjacent repeats are transcribed and processed into CRISPR(cr) RNAs that target complementary sequences (protospacers) in mobile genetic elements, resulting in cleavage of the target DNA or RNA. Additional, standalone repeats in some CRISPR-cas loci produce distinct cr-like RNAs implicated in regulatory or other functions. We developed a computational pipeline to systematically predict crRNA-like elements by scanning for standalone repeat sequences that are conserved in closely related CRISPR-cas loci. Numerous crRNA-like elements were detected in diverse CRISPR-Cas systems, mostly, of type I, but also subtype V-A. Standalone repeats often form mini-arrays containing two repeat-like sequence separated by a spacer that is partially complementary to promoter regions of cas genes, in particular cas8, or cargo genes located within CRISPR-Cas loci, such as toxins-antitoxins. We show experimentally that a mini-array from a type I-F1 CRISPR-Cas system functions as a regulatory guide. We also identified mini-arrays in bacteriophages that could abrogate CRISPR immunity by inhibiting effector expression. Thus, recruitment of CRISPR effectors for regulatory functions via spacers with partial complementarity to the target is a common feature of diverse CRISPR-Cas systems.
Collapse
Affiliation(s)
- Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Zachary K Barth
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Vyacheslav Brover
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
10
|
Zhou F, Yu X, Gan R, Ren K, Chen C, Ren C, Cui M, Liu Y, Gao Y, Wang S, Yin M, Huang T, Huang Z, Zhang F. CRISPRimmunity: an interactive web server for CRISPR-associated Important Molecular events and Modulators Used in geNome edIting Tool identifYing. Nucleic Acids Res 2023:7175359. [PMID: 37216595 DOI: 10.1093/nar/gkad425] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
The CRISPR-Cas system is a highly adaptive and RNA-guided immune system found in bacteria and archaea, which has applications as a genome editing tool and is a valuable system for studying the co-evolutionary dynamics of bacteriophage interactions. Here introduces CRISPRimmunity, a new web server designed for Acr prediction, identification of novel class 2 CRISPR-Cas loci, and dissection of key CRISPR-associated molecular events. CRISPRimmunity is built on a suite of CRISPR-oriented databases providing a comprehensive co-evolutionary perspective of the CRISPR-Cas and anti-CRISPR systems. The platform achieved a high prediction accuracy of 0.997 for Acr prediction when tested on a dataset of 99 experimentally validated Acrs and 676 non-Acrs, outperforming other existing prediction tools. Some of the newly identified class 2 CRISPR-Cas loci using CRISPRimmunity have been experimentally validated for cleavage activity in vitro. CRISPRimmunity offers the catalogues of pre-identified CRISPR systems to browse and query, the collected resources or databases to download, a well-designed graphical interface, a detailed tutorial, multi-faceted information, and exportable results in machine-readable formats, making it easy to use and facilitating future experimental design and further data mining. The platform is available at http://www.microbiome-bigdata.com/CRISPRimmunity. Moreover, the source code for batch analysis are published on Github (https://github.com/HIT-ImmunologyLab/CRISPRimmunity).
Collapse
Affiliation(s)
- Fengxia Zhou
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xiaorong Yu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Rui Gan
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102200, China
| | - Kuan Ren
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Chuangeng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Meng Cui
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yuchen Liu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yiyang Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Shouyu Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Mingyu Yin
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Tengjin Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Fan Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
11
|
Makarova KS, Wolf YI, Koonin EV. In Silico Approaches for Prediction of Anti-CRISPR Proteins. J Mol Biol 2023; 435:168036. [PMID: 36868398 PMCID: PMC10073340 DOI: 10.1016/j.jmb.2023.168036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Numerous viruses infecting bacteria and archaea encode CRISPR-Cas system inhibitors, known as anti-CRISPR proteins (Acr). The Acrs typically are highly specific for particular CRISPR variants, resulting in remarkable sequence and structural diversity and complicating accurate prediction and identification of Acrs. In addition to their intrinsic interest for understanding the coevolution of defense and counter-defense systems in prokaryotes, Acrs could be natural, potent on-off switches for CRISPR-based biotechnological tools, so their discovery, characterization and application are of major importance. Here we discuss the computational approaches for Acr prediction. Due to the enormous diversity and likely multiple origins of the Acrs, sequence similarity searches are of limited use. However, multiple features of protein and gene organization have been successfully harnessed to this end including small protein size and distinct amino acid compositions of the Acrs, association of acr genes in virus genomes with genes encoding helix-turn-helix proteins that regulate Acr expression (Acr-associated proteins, Aca), and presence of self-targeting CRISPR spacers in bacterial and archaeal genomes containing Acr-encoding proviruses. Productive approaches for Acr prediction also involve genome comparison of closely related viruses, of which one is resistant and the other one is sensitive to a particular CRISPR variant, and "guilt by association" whereby genes adjacent to a homolog of a known Aca are identified as candidate Acrs. The distinctive features of Acrs are employed for Acr prediction both by developing dedicated search algorithms and through machine learning. New approaches will be needed to identify novel types of Acrs that are likely to exist.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, USA.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, USA
| |
Collapse
|
12
|
Hwang S, Maxwell KL. Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type II Anti-CRISPR Proteins. J Mol Biol 2023; 435:168041. [PMID: 36893938 DOI: 10.1016/j.jmb.2023.168041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins) systems provide bacteria and archaea with an adaptive immune response against invasion by mobile genetic elements like phages, plasmids, and transposons. These systems have been repurposed as very powerful biotechnological tools for gene editing applications in both bacterial and eukaryotic systems. The discovery of natural off-switches for CRISPR-Cas systems, known as anti-CRISPR proteins, provided a mechanism for controlling CRISPR-Cas activity and opened avenues for the development of more precise editing tools. In this review, we focus on the inhibitory mechanisms of anti-CRISPRs that are active against type II CRISPR-Cas systems and briefly discuss their biotechnological applications.
Collapse
Affiliation(s)
- Sungwon Hwang
- Department of Biochemistry. University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON M5G 1M1, Canada. https://twitter.com/s1hwang_21
| | - Karen L Maxwell
- Department of Biochemistry. University of Toronto, 661 University Avenue, Suite 1600, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
13
|
Shmakov SA, Barth ZK, Makarova KS, Wolf YI, Brover V, Peters JE, Koonin EV. Widespread CRISPR repeat-like RNA regulatory elements in CRISPR-Cas systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.530964. [PMID: 37090614 PMCID: PMC10120712 DOI: 10.1101/2023.03.03.530964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
CRISPR- cas loci typically contain CRISPR arrays with unique spacers separating direct repeats. Spacers along with portions of adjacent repeats are transcribed and processed into CRISPR(cr) RNAs that target complementary sequences (protospacers) in mobile genetic elements, resulting in cleavage of the target DNA or RNA. Additional, standalone repeats in some CRISPR- cas loci produce distinct cr-like RNAs implicated in regulatory or other functions. We developed a computational pipeline to systematically predict crRNA-like elements by scanning for standalone repeat sequences that are conserved in closely related CRISPR- cas loci. Numerous crRNA-like elements were detected in diverse CRISPR-Cas systems, mostly, of type I, but also subtype V-A. Standalone repeats often form mini-arrays containing two repeat-like sequence separated by a spacer that is partially complementary to promoter regions of cas genes, in particular cas8 , or cargo genes located within CRISPR-Cas loci, such as toxins-antitoxins. We show experimentally that a mini-array from a type I-F1 CRISPR-Cas system functions as a regulatory guide. We also identified mini-arrays in bacteriophages that could abrogate CRISPR immunity by inhibiting effector expression. Thus, recruitment of CRISPR effectors for regulatory functions via spacers with partial complementarity to the target is a common feature of diverse CRISPR-Cas systems.
Collapse
Affiliation(s)
- Sergey A. Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Zachary K. Barth
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Vyacheslav Brover
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Joseph E. Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
14
|
Dao FY, Liu ML, Su W, Lv H, Zhang ZY, Lin H, Liu L. AcrPred: A hybrid optimization with enumerated machine learning algorithm to predict Anti-CRISPR proteins. Int J Biol Macromol 2023; 228:706-714. [PMID: 36584777 DOI: 10.1016/j.ijbiomac.2022.12.250] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
CRISPR-Cas, as a tool for gene editing, has received extensive attention in recent years. Anti-CRISPR (Acr) proteins can inactivate the CRISPR-Cas defense system during interference phase, and can be used as a potential tool for the regulation of gene editing. In-depth study of Anti-CRISPR proteins is of great significance for the implementation of gene editing. In this study, we developed a high-accuracy prediction model based on two-step model fusion strategy, called AcrPred, which could produce an AUC of 0.952 with independent dataset validation. To further validate the proposed model, we compared with published tools and correctly identified 9 of 10 new Acr proteins, indicating the strong generalization ability of our model. Finally, for the convenience of related wet-experimental researchers, a user-friendly web-server AcrPred (Anti-CRISPR proteins Prediction) was established at http://lin-group.cn/server/AcrPred, by which users can easily identify potential Anti-CRISPR proteins.
Collapse
Affiliation(s)
- Fu-Ying Dao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Meng-Lu Liu
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Su
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lv
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Zhao-Yue Zhang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324003, China.
| |
Collapse
|
15
|
Nidhi S, Tripathi P, Tripathi V. Phylogenetic Analysis of Anti-CRISPR and Member Addition in the Families. Mol Biotechnol 2023; 65:273-281. [PMID: 36109427 DOI: 10.1007/s12033-022-00558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/05/2022] [Indexed: 01/18/2023]
Abstract
CRISPR-Cas is a widespread anti-viral adaptive immune system in the microorganisms. Viruses living in bacteria or some phages carry anti-CRISPR proteins to evade immunity by CRISPR-Cas. The anti-CRISPR proteins are prevalent in phages capable of lying dormant in a CRISPR-carrying host, while their orthologs frequently found in virulent phages. Here, we propose a probabilistic strategy of ancestral sequence reconstruction (ASR) and Hidden Markov Model (HMM) profile search to fish out sequences of anti-CRISPR proteins from environmental metagenomic, human microbiome metagenomic, human microbiome reference genome, and NCBI's non-redundant databases. Our results revealed that the metagenome database dark matter might contain anti-CRISPR encoding genes.
Collapse
Affiliation(s)
- Sweta Nidhi
- Department of Genomics and Bioinformatics, Aix-Marseille University, 13007, Marseille, France
| | - Pooja Tripathi
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India.
| |
Collapse
|
16
|
Ecology and evolution of phages encoding anti-CRISPR proteins. J Mol Biol 2023; 435:167974. [PMID: 36690071 DOI: 10.1016/j.jmb.2023.167974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
CRISPR-Cas are prokaryotic defence systems that provide protection against invasion by mobile genetic elements (MGE), including bacteriophages. MGE can overcome CRISPR-Cas defences by encoding anti-CRISPR (Acr) proteins. These proteins are produced in the early stages of the infection and inhibit the CRISPR-Cas machinery to allow phage replication. While research on Acr has mainly focused on their discovery, structure and mode of action, and their applications in biotechnology, the impact of Acr on the ecology of MGE as well as on the coevolution with their bacterial hosts only begins to be unravelled. In this review, we summarise our current understanding on the distribution of anti-CRISPR genes in MGE, the ecology of phages encoding Acr, and their coevolution with bacterial defence mechanisms. We highlight the need to use more diverse and complex experimental models to better understand the impact of anti-CRISPR in MGE-host interactions.
Collapse
|