1
|
Zafar S, Jabeen I. GRID-independent molecular descriptor analysis and molecular docking studies to mimic the binding hypothesis of γ-aminobutyric acid transporter 1 (GAT1) inhibitors. PeerJ 2019; 7:e6283. [PMID: 30723616 PMCID: PMC6360079 DOI: 10.7717/peerj.6283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background The γ-aminobutyric acid (GABA) transporter GAT1 is involved in GABA transport across the biological membrane in and out of the synaptic cleft. The efficiency of this Na+ coupled GABA transport is regulated by an electrochemical gradient, which is directed inward under normal conditions. However, in certain pathophysiological situations, including strong depolarization or an imbalance in ion homeostasis, the GABA influx into the cytoplasm is increased by re-uptake transport mechanism. This mechanism may lead to extra removal of extracellular GABA which results in numerous neurological disorders such as epilepsy. Thus, small molecule inhibitors of GABA re-uptake may enhance GABA activity at the synaptic clefts. Methods In the present study, various GRID-independent molecular descriptor (GRIND) models have been developed to shed light on the 3D structural features of human GAT1 (hGAT1) inhibitors using nipecotic acid and N-diarylalkenyl piperidine analogs. Further, a binding hypothesis has been developed for the selected GAT1 antagonists by molecular docking inside the binding cavity of hGAT1 homology model. Results Our results indicate that two hydrogen bond acceptors, one hydrogen bond donor and one hydrophobic region at certain distances from each other play an important role in achieving high inhibitory potency against hGAT1. Our docking results elucidate the importance of the COOH group in hGAT1 antagonists by considering substitution of the COOH group with an isoxazol ring in compound 37, which subsequently leads to a three order of magnitude decrease in biological activity of 37 (IC50 = 38 µM) as compared to compound 1 (IC50 = 0.040 µM). Discussion Our docking results are strengthened by the structure activity relationship of the data series as well as by GRIND models, thus providing a significant structural basis for understanding the binding of antagonists, which may be useful for guiding the design of hGAT1 inhibitors.
Collapse
Affiliation(s)
- Sadia Zafar
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Federal, Pakistan
| | - Ishrat Jabeen
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Federal, Pakistan
| |
Collapse
|
2
|
Zafar S, Jabeen I. Structure, Function, and Modulation of γ-Aminobutyric Acid Transporter 1 (GAT1) in Neurological Disorders: A Pharmacoinformatic Prospective. Front Chem 2018; 6:397. [PMID: 30255012 PMCID: PMC6141625 DOI: 10.3389/fchem.2018.00397] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/20/2018] [Indexed: 02/03/2023] Open
Abstract
γ-Aminobutyric acid (GABA) Transporters (GATs) belong to sodium and chloride dependent-transporter family and are widely expressed throughout the brain. Notably, GAT1 is accountable for sustaining 75% of the synaptic GABA concentration and entails its transport to the GABAA receptors to initiate the receptor-mediated inhibition of post-synaptic neurons. Imbalance in ion homeostasis has been associated with several neurological disorders related to the GABAergic system. However, inhibition of the GABA uptake by these transporters has been accepted as an effective approach to enhance GABAergic inhibitory neurotransmission in the treatment of seizures in epileptic and other neurological disorders. Here, we reviewed computational methodologies including molecular modeling, docking, and molecular dynamic simulations studies to underscore the structure and function of GAT1 in the GABAergic system. Additionally, various SAR and QSAR methodologies have been reviewed to probe the 3D structural features of inhibitors required to modulate GATs activity. Overall, present review provides an overview of crucial role of GAT1 in GABAergic system and its modulation to evade neurological disorders.
Collapse
Affiliation(s)
| | - Ishrat Jabeen
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
3
|
Pravda L, Sehnal D, Svobodová Vařeková R, Navrátilová V, Toušek D, Berka K, Otyepka M, Koča J. ChannelsDB: database of biomacromolecular tunnels and pores. Nucleic Acids Res 2018; 46:D399-D405. [PMID: 29036719 PMCID: PMC5753359 DOI: 10.1093/nar/gkx868] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/08/2017] [Accepted: 09/28/2017] [Indexed: 01/21/2023] Open
Abstract
ChannelsDB (http://ncbr.muni.cz/ChannelsDB) is a database providing information about the positions, geometry and physicochemical properties of channels (pores and tunnels) found within biomacromolecular structures deposited in the Protein Data Bank. Channels were deposited from two sources; from literature using manual deposition and from a software tool automatically detecting tunnels leading to the enzymatic active sites and selected cofactors, and transmembrane pores. The database stores information about geometrical features (e.g. length and radius profile along a channel) and physicochemical properties involving polarity, hydrophobicity, hydropathy, charge and mutability. The stored data are interlinked with available UniProt annotation data mapping known mutation effects to channel-lining residues. All structures with channels are displayed in a clear interactive manner, further facilitating data manipulation and interpretation. As such, ChannelsDB provides an invaluable resource for research related to deciphering the biological function of biomacromolecular channels.
Collapse
Affiliation(s)
- Lukáš Pravda
- CEITEC - Central European Institute of Technology, Masaryk University Brno, Kamenice 5, 625 00 Brno-Bohunice, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Kamenice 5, 625 00 Brno-Bohunice, Czech Republic
| | - David Sehnal
- CEITEC - Central European Institute of Technology, Masaryk University Brno, Kamenice 5, 625 00 Brno-Bohunice, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Kamenice 5, 625 00 Brno-Bohunice, Czech Republic
| | - Radka Svobodová Vařeková
- CEITEC - Central European Institute of Technology, Masaryk University Brno, Kamenice 5, 625 00 Brno-Bohunice, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Kamenice 5, 625 00 Brno-Bohunice, Czech Republic
| | - Veronika Navrátilová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Dominik Toušek
- CEITEC - Central European Institute of Technology, Masaryk University Brno, Kamenice 5, 625 00 Brno-Bohunice, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Karel Berka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jaroslav Koča
- CEITEC - Central European Institute of Technology, Masaryk University Brno, Kamenice 5, 625 00 Brno-Bohunice, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Kamenice 5, 625 00 Brno-Bohunice, Czech Republic
| |
Collapse
|
4
|
Wellendorph P, Jacobsen J, Skovgaard-Petersen J, Jurik A, Vogensen SB, Ecker G, Schousboe A, Krogsgaard-Larsen P, Clausen RP. γ-Aminobutyric Acid and Glycine Neurotransmitter Transporters. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527679430.ch4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Petrine Wellendorph
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Julie Jacobsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Jonas Skovgaard-Petersen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Andreas Jurik
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Stine B. Vogensen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Gerhard Ecker
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Arne Schousboe
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Povl Krogsgaard-Larsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Rasmus P. Clausen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| |
Collapse
|
5
|
Jurik A, Zdrazil B, Holy M, Stockner T, Sitte HH, Ecker GF. A binding mode hypothesis of tiagabine confirms liothyronine effect on γ-aminobutyric acid transporter 1 (GAT1). J Med Chem 2015; 58:2149-58. [PMID: 25679268 PMCID: PMC4360375 DOI: 10.1021/jm5015428] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Elevating
GABA levels in the synaptic cleft by inhibiting its reuptake
carrier GAT1 is an established approach for the treatment of CNS disorders
like epilepsy. With the increasing availability of crystal structures
of transmembrane transporters, structure-based approaches to elucidate
the molecular basis of ligand–transporter interaction also
become feasible. Experimental data guided docking of derivatives of
the GAT1 inhibitor tiagabine into a protein homology model of GAT1
allowed derivation of a common binding mode for this class of inhibitors
that is able to account for the distinct structure–activity
relationship pattern of the data set. Translating essential binding
features into a pharmacophore model followed by in silico screening
of the DrugBank identified liothyronine as a drug potentially exerting
a similar effect on GAT1. Experimental testing further confirmed the
GAT1 inhibiting properties of this thyroid hormone.
Collapse
Affiliation(s)
- Andreas Jurik
- University of Vienna , Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
6
|
Szymańska K, Kuśmierska K, Demkow U. Inherited disorders of brain neurotransmitters: pathogenesis and diagnostic approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 837:1-8. [PMID: 25310959 DOI: 10.1007/5584_2014_86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurotransmitters (NTs) play a central role in the efficient communication between neurons necessary for normal functioning of the nervous system. NTs can be divided into two groups: small molecule NTs and larger neuropeptide NTs. Inherited disorders of NTs result from a primary disturbance of NTs metabolism or transport. This group of disorders requires sophisticated diagnostic procedures. In this review we discuss disturbances in the metabolism of tetrahydrobiopterin, biogenic amines, γ-aminobutyric acid, foliate, pyridoxine-dependent enzymes, and also the glycine-dependent encephalopathy. We point to pathologic alterations of proteins involved in synaptic neurotransmission that may cause neurological and psychiatric symptoms. We postulate that synaptic receptors and transporter proteins for neurotransmitters should be investigated in unresolved cases. Patients with inherited neurotransmitters disorders present various clinical presentations such as mental retardation, refractory seizures, pyramidal and extrapyramidal syndromes, impaired locomotor patterns, and progressive encephalopathy. Every patient with suspected inherited neurotransmitter disorder should undergo a structured interview and a careful examination including neurological, biochemical, and imaging.
Collapse
Affiliation(s)
- Krystyna Szymańska
- Department of Experimental and Clinical Neuropathology, Medical Research Center, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
7
|
Baglo Y, Gabrielsen M, Sylte I, Gederaas OA. Homology modeling of human γ-butyric acid transporters and the binding of pro-drugs 5-aminolevulinic acid and methyl aminolevulinic acid used in photodynamic therapy. PLoS One 2013; 8:e65200. [PMID: 23762315 PMCID: PMC3676387 DOI: 10.1371/journal.pone.0065200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/23/2013] [Indexed: 12/28/2022] Open
Abstract
Photodynamic therapy (PDT) is a safe and effective method currently used in the treatment of skin cancer. In ALA-based PDT, 5-aminolevulinic acid (ALA), or ALA esters, are used as pro-drugs to induce the formation of the potent photosensitizer protoporphyrin IX (PpIX). Activation of PpIX by light causes the formation of reactive oxygen species (ROS) and toxic responses. Studies have indicated that ALA and its methyl ester (MAL) are taken up into the cells via γ-butyric acid (GABA) transporters (GATs). Uptake via GATs into peripheral sensory nerve endings may also account for one of the few adverse side effects of ALA-based PDT, namely pain. In the present study, homology models of the four human GAT subtypes were constructed using three x-ray crystal structures of the homologous leucine transporter (LeuT) as templates. Binding of the native substrate GABA and the possible substrates ALA and MAL was investigated by molecular docking of the ligands into the central putative substrate binding sites in the outward-occluded GAT models. Electrostatic potentials (ESPs) of the putative substrate translocation pathway of each subtype were calculated using the outward-open and inward-open homology models. Our results suggested that ALA is a substrate of all four GATs and that MAL is a substrate of GAT-2, GAT-3 and BGT-1. The ESP calculations indicated that differences likely exist in the entry pathway of the transporters (i.e. in outward-open conformations). Such differences may be exploited for development of inhibitors that selectively target specific GAT subtypes and the homology models may hence provide tools for design of therapeutic inhibitors that can be used to reduce ALA-induced pain.
Collapse
Affiliation(s)
- Yan Baglo
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | |
Collapse
|
8
|
Gromiha MM, Ou YY. Bioinformatics approaches for functional annotation of membrane proteins. Brief Bioinform 2013; 15:155-68. [DOI: 10.1093/bib/bbt015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Omoto JJ, Maestas MJ, Rahnama-Vaghef A, Choi YE, Salto G, Sanchez RV, Anderson CM, Eskandari S. Functional consequences of sulfhydryl modification of the γ-aminobutyric acid transporter 1 at a single solvent-exposed cysteine residue. J Membr Biol 2012; 245:841-57. [PMID: 22918627 PMCID: PMC3505503 DOI: 10.1007/s00232-012-9492-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022]
Abstract
The aims of this study were to optimize the experimental conditions for labeling extracellularly oriented, solvent-exposed cysteine residues of γ-aminobutyric acid transporter 1 (GAT1) with the membrane-impermeant sulfhydryl reagent [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET) and to characterize the functional and pharmacological consequences of labeling on transporter steady-state and presteady-state kinetic properties. We expressed human GAT1 in Xenopus laevis oocytes and used radiotracer and electrophysiological methods to assay transporter function before and after sulfhydryl modification with MTSET. In the presence of NaCl, transporter exposure to MTSET (1–2.5 mM for 5–20 min) led to partial inhibition of GAT1-mediated transport, and this loss of function was completely reversed by the reducing reagent dithiothreitol. MTSET treatment had no functional effect on the mutant GAT1 C74A, whereas the membrane-permeant reagents N-ethylmaleimide and tetramethylrhodamine-6-maleimide inhibited GABA transport mediated by GAT1 C74A. Ion replacement experiments indicated that MTSET labeling of GAT1 could be driven to completion when valproate replaced chloride in the labeling buffer, suggesting that valproate induces a GAT1 conformation that significantly increases C74 accessibility to the extracellular fluid. Following partial inhibition by MTSET, there was a proportional reduction in both the presteady-state and steady-state macroscopic signals, and the functional and pharmacological properties of the remaining signals were indistinguishable from those of unlabeled GAT1. Therefore, covalent modification of GAT1 at C74 results in completely nonfunctional as well as electrically silent transporters.
Collapse
Affiliation(s)
- Jaison J Omoto
- Biological Sciences Department, California State Polytechnic University, Pomona, 3801 West Temple Avenue, Pomona, CA 91768-4032, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Meinild AK, Forster IC. Using lithium to probe sequential cation interactions with GAT1. Am J Physiol Cell Physiol 2012; 302:C1661-75. [PMID: 22460712 DOI: 10.1152/ajpcell.00446.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Li(+) interacts with the Na(+)/Cl(-)-dependent GABA transporter, GAT1, under two conditions: in the absence of Na(+) it induces a voltage-dependent leak current; in the presence of Na(+) and GABA, Li(+) stimulates GABA-induced steady-state currents. The amino acids directly involved in the interaction with the Na(+) and Li(+) ions at the so-called "Na2" binding site have been identified, but how Li(+) affects the kinetics of GABA cotransport has not been fully explored. We expressed GAT1 in Xenopus oocytes and applied the two-electrode voltage clamp and (22)Na uptake assays to determine coupling ratios and steady-state and presteady-state kinetics under experimental conditions in which extracellular Na(+) was partially substituted by Li(+). Three novel findings are: 1) Li(+) reduced the coupling ratio between Na(+) and net charge translocated during GABA cotransport; 2) Li(+) increased the apparent Na(+) affinity without changing its voltage dependence; 3) Li(+) altered the voltage dependence of presteady-state relaxations in the absence of GABA. We propose an ordered binding scheme for cotransport in which either a Na(+) or Li(+) ion can bind at the putative first cation binding site (Na2). This is followed by the cooperative binding of the second Na(+) ion at the second cation binding site (Na1) and then binding of GABA. With Li(+) bound to Na2, the second Na(+) ion binds more readily GAT1, and despite a lower apparent GABA affinity, the translocation rate of the fully loaded carrier is not reduced. Numerical simulations using a nonrapid equilibrium model fully recapitulated our experimental findings.
Collapse
Affiliation(s)
- Anne-Kristine Meinild
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.
| | | |
Collapse
|