1
|
Thilakarathne AS, Liu F, Zou Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1070. [PMID: 40219138 PMCID: PMC11990802 DOI: 10.3390/plants14071070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Plants constantly encounter a wide range of biotic and abiotic stresses that adversely affect their growth, development, and productivity. Phytohormones such as abscisic acid, jasmonic acid, salicylic acid, and ethylene serve as crucial regulators, integrating internal and external signals to mediate stress responses while also coordinating key developmental processes, including seed germination, root and shoot growth, flowering, and senescence. Transcription factors (TFs) such as WRKY, NAC, MYB, and AP2/ERF play complementary roles by orchestrating complex transcriptional reprogramming, modulating stress-responsive genes, and facilitating physiological adaptations. Recent advances have deepened our understanding of hormonal networks and transcription factor families, revealing their intricate crosstalk in shaping plant resilience and development. Additionally, the synthesis, transport, and signaling of these molecules, along with their interactions with stress-responsive pathways, have emerged as critical areas of study. The integration of cutting-edge biotechnological tools, such as CRISPR-mediated gene editing and omics approaches, provides new opportunities to fine-tune these regulatory networks for enhanced crop resilience. By leveraging insights into transcriptional regulation and hormone signaling, these advancements provide a foundation for developing stress-tolerant, high-yielding crop varieties tailored to the challenges of climate change.
Collapse
Affiliation(s)
| | - Fei Liu
- School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
| |
Collapse
|
2
|
Yuan HY, Kagale S, Ferrie AMR. Multifaceted roles of transcription factors during plant embryogenesis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322728. [PMID: 38235196 PMCID: PMC10791896 DOI: 10.3389/fpls.2023.1322728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Transcription factors (TFs) are diverse groups of regulatory proteins. Through their specific binding domains, TFs bind to their target genes and regulate their expression, therefore TFs play important roles in various growth and developmental processes. Plant embryogenesis is a highly regulated and intricate process during which embryos arise from various sources and undergo development; it can be further divided into zygotic embryogenesis (ZE) and somatic embryogenesis (SE). TFs play a crucial role in the process of plant embryogenesis with a number of them acting as master regulators in both ZE and SE. In this review, we focus on the master TFs involved in embryogenesis such as BABY BOOM (BBM) from the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, WUSCHEL and WUSCHEL-related homeobox (WOX) from the homeobox family, LEAFY COTYLEDON 2 (LEC2) from the B3 family, AGAMOUS-Like 15 (AGL15) from the MADS family and LEAFY COTYLEDON 1 (LEC1) from the Nuclear Factor Y (NF-Y) family. We aim to present the recent progress pertaining to the diverse roles these master TFs play in both ZE and SE in Arabidopsis, as well as other plant species including crops. We also discuss future perspectives in this context.
Collapse
Affiliation(s)
| | | | - Alison M. R. Ferrie
- Aquatic and Crop Resource Development Research Center, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Sircar S, Musaddi M, Parekh N. NetREx: Network-based Rice Expression Analysis Server for abiotic stress conditions. Database (Oxford) 2022; 2022:baac060. [PMID: 35932239 PMCID: PMC9356536 DOI: 10.1093/database/baac060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/30/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022]
Abstract
Recent focus on transcriptomic studies in food crops like rice, wheat and maize provide new opportunities to address issues related to agriculture and climate change. Re-analysis of such data available in public domain supplemented with annotations across molecular hierarchy can be of immense help to the plant research community, particularly co-expression networks representing transcriptionally coordinated genes that are often part of the same biological process. With this objective, we have developed NetREx, a Network-based Rice Expression Analysis Server, that hosts ranked co-expression networks of Oryza sativa using publicly available messenger RNA sequencing data across uniform experimental conditions. It provides a range of interactable data viewers and modules for analysing user-queried genes across different stress conditions (drought, flood, cold and osmosis) and hormonal treatments (abscisic and jasmonic acid) and tissues (root and shoot). Subnetworks of user-defined genes can be queried in pre-constructed tissue-specific networks, allowing users to view the fold change, module memberships, gene annotations and analysis of their neighbourhood genes and associated pathways. The web server also allows querying of orthologous genes from Arabidopsis, wheat, maize, barley and sorghum. Here, we demonstrate that NetREx can be used to identify novel candidate genes and tissue-specific interactions under stress conditions and can aid in the analysis and understanding of complex phenotypes linked to stress response in rice. Database URL: https://bioinf.iiit.ac.in/netrex/index.html.
Collapse
Affiliation(s)
| | - Mayank Musaddi
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad 500032, India
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad 500032, India
| |
Collapse
|
4
|
Muthuramalingam P, Jeyasri R, Selvaraj A, Shin H, Chen JT, Satish L, Wu QS, Ramesh M. Global Integrated Genomic and Transcriptomic Analyses of MYB Transcription Factor Superfamily in C3 Model Plant Oryza sativa (L.) Unravel Potential Candidates Involved in Abiotic Stress Signaling. Front Genet 2022; 13:946834. [PMID: 35873492 PMCID: PMC9305833 DOI: 10.3389/fgene.2022.946834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Plant transcription factors (TFs) are significant players in transcriptional regulations, signal transduction, and constitute an integral part of signaling networks. MYB TFs are major TF superfamilies that play pivotal roles in regulation of transcriptional reprogramming, physiological processes, and abiotic stress (AbS) responses. To explore the understanding of MYB TFs, genome and transcriptome-wide identification was performed in the C3 model plant, Oryza sativa (OsMYB). This study retrieved 114 OsMYB TFs that were computationally analyzed for their expression profiling, gene organization, cis-acting elements, and physicochemical properties. Based on the microarray datasets, six OsMYB genes which were sorted out and identified by a differential expression pattern were noted in various tissues. Systematic expression profiling of OsMYB TFs showed their meta-differential expression of different AbS treatments, spatio-temporal gene expression of various tissues and their growth in the field, and gene expression profiling in responses to phytohormones. In addition, the circular ideogram of OsMYB genes in related C4 grass plants conferred the gene synteny. Protein–protein interactions of these genes revealed the molecular crosstalk of OsMYB TFs. Transcriptional analysis (qPCR) of six OsMYB players in response to drought and salinity stress suggested the involvement in individual and combined AbS responses. To decipher how these OsMYB play functional roles in AbS dynamics, further research is a prerequisite.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
- Department of Horticultural Science, Gyeongsang National University, Jinju, South Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju, South Korea
| | - Rajendran Jeyasri
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
| | - Anthonymuthu Selvaraj
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Hyunsuk Shin
- Department of Horticultural Science, Gyeongsang National University, Jinju, South Korea
- Department of GreenBio Science, Gyeongsang National University, Jinju, South Korea
- *Correspondence: Hyunsuk Shin, ; Manikandan Ramesh,
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Lakkakula Satish
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Qiang-Sheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India
- *Correspondence: Hyunsuk Shin, ; Manikandan Ramesh,
| |
Collapse
|
5
|
Lee S, Jeon D, Choi S, Kang Y, Seo S, Kwon S, Lyu J, Ahn J, Seo J, Kim C. Expression Profile of Sorghum Genes and Cis-Regulatory Elements under Salt-Stress Conditions. PLANTS 2022; 11:plants11070869. [PMID: 35406848 PMCID: PMC9003456 DOI: 10.3390/plants11070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
Salinity stress is one of the most important abiotic stresses that causes great losses in crop production worldwide. Identifying the molecular mechanisms of salt resistance in sorghum will help develop salt-tolerant crops with high yields. Sorghum (Sorghum bicolor (L.) Moench) is one of the world’s four major grains and is known as a plant with excellent adaptability to salt stress. Among the various genotypes of sorghum, a Korean cultivar Nampungchal is also highly tolerant to salt. However, little is known about how Nampungchal responds to salt stress. In this study, we measured various physiological parameters, including Na+ and K+ contents, in leaves grown under saline conditions and investigated the expression patterns of differentially expressed genes (DEGs) using QuantSeq analysis. These DEG analyses revealed that genes up-regulated in a 150 mM NaCl treatment have various functions related to abiotic stresses, such as ERF and DREB. In addition, transcription factors such as ABA, WRKY, MYB, and bZip bind to the CREs region of sorghum and are involved in the regulation of various abiotic stress-responsive transcriptions, including salt stress. These findings may deepen our understanding of the mechanisms of salt tolerance in sorghum and other crops.
Collapse
Affiliation(s)
- Solji Lee
- Department of Crop Science, Chungnam National University, Daejeon 34134, Korea; (S.L.); (S.C.); (Y.K.)
| | - Donghyun Jeon
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea; (D.J.); (S.S.)
| | - Sehyun Choi
- Department of Crop Science, Chungnam National University, Daejeon 34134, Korea; (S.L.); (S.C.); (Y.K.)
| | - Yuna Kang
- Department of Crop Science, Chungnam National University, Daejeon 34134, Korea; (S.L.); (S.C.); (Y.K.)
| | - Sumin Seo
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea; (D.J.); (S.S.)
| | - Soonjae Kwon
- Korea Atomic Energy Research Institute (Advanced Radiation Technology Institute), Jeongeup 56212, Korea; (S.K.); (J.L.); (J.A.); (J.S.)
| | - Jaeil Lyu
- Korea Atomic Energy Research Institute (Advanced Radiation Technology Institute), Jeongeup 56212, Korea; (S.K.); (J.L.); (J.A.); (J.S.)
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea
| | - Joonwoo Ahn
- Korea Atomic Energy Research Institute (Advanced Radiation Technology Institute), Jeongeup 56212, Korea; (S.K.); (J.L.); (J.A.); (J.S.)
| | - Jisu Seo
- Korea Atomic Energy Research Institute (Advanced Radiation Technology Institute), Jeongeup 56212, Korea; (S.K.); (J.L.); (J.A.); (J.S.)
| | - Changsoo Kim
- Department of Crop Science, Chungnam National University, Daejeon 34134, Korea; (S.L.); (S.C.); (Y.K.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea; (D.J.); (S.S.)
- Correspondence:
| |
Collapse
|
6
|
Su Q, Zhang F, Xiao Y, Zhang P, Xing H, Chen F. An efficient screening system to identify protein-protein or protein-DNA interaction partners of rice transcription factors. J Genet Genomics 2022; 49:979-981. [PMID: 35218975 DOI: 10.1016/j.jgg.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/18/2022] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Qingmei Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; OE biotech Co., Ltd. Shanghai, China
| | | | | | | | - Fan Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Gupta C, Ramegowda V, Basu S, Pereira A. Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance. Front Genet 2021; 12:652189. [PMID: 34249082 PMCID: PMC8264776 DOI: 10.3389/fgene.2021.652189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice (Oryza sativa). GRAiN is an interactive query-based web-platform that allows users to study functional relationships between transcription factors (TFs) and genetic modules underlying abiotic-stress responses. We built GRAiN by applying a combination of different network inference algorithms to publicly available gene expression data. We propose a supervised machine learning framework that complements GRAiN in prioritizing genes that regulate stress signal transduction and modulate gene expression under drought conditions. Our framework converts intricate network connectivity patterns of 2160 TFs into a single drought score. We observed that TFs with the highest drought scores define the functional, structural, and evolutionary characteristics of drought resistance in rice. Our approach accurately predicted the function of OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and mRNA sequencing loss-of-function mutants grown under control and drought stress conditions. Our network and the complementary machine learning strategy lends itself to predicting key regulatory genes underlying other agricultural traits and will assist in the genetic engineering of desirable rice varieties.
Collapse
Affiliation(s)
- Chirag Gupta
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Venkategowda Ramegowda
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Supratim Basu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
8
|
Gupta C, Ramegowda V, Basu S, Pereira A. Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance. Front Genet 2021. [PMID: 34249082 DOI: 10.1101/2020.04.29.068379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice (Oryza sativa). GRAiN is an interactive query-based web-platform that allows users to study functional relationships between transcription factors (TFs) and genetic modules underlying abiotic-stress responses. We built GRAiN by applying a combination of different network inference algorithms to publicly available gene expression data. We propose a supervised machine learning framework that complements GRAiN in prioritizing genes that regulate stress signal transduction and modulate gene expression under drought conditions. Our framework converts intricate network connectivity patterns of 2160 TFs into a single drought score. We observed that TFs with the highest drought scores define the functional, structural, and evolutionary characteristics of drought resistance in rice. Our approach accurately predicted the function of OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and mRNA sequencing loss-of-function mutants grown under control and drought stress conditions. Our network and the complementary machine learning strategy lends itself to predicting key regulatory genes underlying other agricultural traits and will assist in the genetic engineering of desirable rice varieties.
Collapse
Affiliation(s)
- Chirag Gupta
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Venkategowda Ramegowda
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Supratim Basu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Andy Pereira
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
9
|
Tseng KC, Li GZ, Hung YC, Chow CN, Wu NY, Chien YY, Zheng HQ, Lee TY, Kuo PL, Chang SB, Chang WC. EXPath 2.0: An Updated Database for Integrating High-Throughput Gene Expression Data with Biological Pathways. PLANT & CELL PHYSIOLOGY 2020; 61:1818-1827. [PMID: 32898258 DOI: 10.1093/pcp/pcaa115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Co-expressed genes tend to have regulatory relationships and participate in similar biological processes. Construction of gene correlation networks from microarray or RNA-seq expression data has been widely applied to study transcriptional regulatory mechanisms and metabolic pathways under specific conditions. Furthermore, since transcription factors (TFs) are critical regulators of gene expression, it is worth investigating TFs on the promoters of co-expressed genes. Although co-expressed genes and their related metabolic pathways can be easily identified from previous resources, such as EXPath and EXPath Tool, this information is not simultaneously available to identify their regulatory TFs. EXPath 2.0 is an updated database for the investigation of regulatory mechanisms in various plant metabolic pathways with 1,881 microarray and 978 RNA-seq samples. There are six significant improvements in EXPath 2.0: (i) the number of species has been extended from three to six to include Arabidopsis, rice, maize, Medicago, soybean and tomato; (ii) gene expression at various developmental stages have been added; (iii) construction of correlation networks according to a group of genes is available; (iv) hierarchical figures of the enriched Gene Ontology (GO) terms are accessible; (v) promoter analysis of genes in a metabolic pathway or correlation network is provided; and (vi) user's gene expression data can be uploaded and analyzed. Thus, EXPath 2.0 is an updated platform for investigating gene expression profiles and metabolic pathways under specific conditions. It facilitates users to access the regulatory mechanisms of plant biological processes. The new version is available at http://EXPath.itps.ncku.edu.tw.
Collapse
Affiliation(s)
- Kuan-Chieh Tseng
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Guan-Zhen Li
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Cheng Hung
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi-Nga Chow
- College of Biosciences and Biotechnology, NCKU-AS Graduate Program in Translational Agricultural Sciences, National Cheng Kung University, Tainan 70101, Taiwan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Nai-Yun Wu
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Ying Chien
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Qin Zheng
- Yourgene Health, No. 376-5, Fuxing Rd, Shulin Dist, New Taipei City 238, Taiwan
| | - Tzong-Yi Lee
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Po-Li Kuo
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Chi Chang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
- College of Biosciences and Biotechnology, NCKU-AS Graduate Program in Translational Agricultural Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
10
|
Sahu A, Das A, Saikia K, Barah P. Temperature differentially modulates the transcriptome response in Oryza sativa to Xanthomonas oryzae pv. oryzae infection. Genomics 2020; 112:4842-4852. [PMID: 32896629 DOI: 10.1016/j.ygeno.2020.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/19/2020] [Accepted: 08/21/2020] [Indexed: 01/17/2023]
Abstract
Bacterial blight is caused by the pathogen Xanthomonas oryzae pv. oryzae (Xoo). Genome scale integrative analysis on the interaction of high and low temperatures on the molecular response signature in rice during the Xoo infection has not been conducted yet. We have analysed a unique RNA-Seq dataset generated on the susceptible rice variety IR24 under combined exposure of Xoo with low 29/21 °C (day/night) and high 35/31 °C (day/night) temperatures. Differentially regulated key genes and pathways in rice plants during both the stress conditions were identified. Differential dynamics of the regulatory network topology showed that WRKY and ERF families of transcription factors play a crucial role during signal crosstalk events in rice plants while responding to combined exposure of Xoo with low temperature vs. Xoo with high temperatures. Our study suggests that upon onset of high temperature, rice plants tend to switch its focus from defence response towards growth and reproduction.
Collapse
Affiliation(s)
- Ankur Sahu
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Akash Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Katherine Saikia
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India.
| |
Collapse
|
11
|
Ambrosino L, Colantuono C, Diretto G, Fiore A, Chiusano ML. Bioinformatics Resources for Plant Abiotic Stress Responses: State of the Art and Opportunities in the Fast Evolving -Omics Era. PLANTS 2020; 9:plants9050591. [PMID: 32384671 PMCID: PMC7285221 DOI: 10.3390/plants9050591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Abiotic stresses are among the principal limiting factors for productivity in agriculture. In the current era of continuous climate changes, the understanding of the molecular aspects involved in abiotic stress response in plants is a priority. The rise of -omics approaches provides key strategies to promote effective research in the field, facilitating the investigations from reference models to an increasing number of species, tolerant and sensitive genotypes. Integrated multilevel approaches, based on molecular investigations at genomics, transcriptomics, proteomics and metabolomics levels, are now feasible, expanding the opportunities to clarify key molecular aspects involved in responses to abiotic stresses. To this aim, bioinformatics has become fundamental for data production, mining and integration, and necessary for extracting valuable information and for comparative efforts, paving the way to the modeling of the involved processes. We provide here an overview of bioinformatics resources for research on plant abiotic stresses, describing collections from -omics efforts in the field, ranging from raw data to complete databases or platforms, highlighting opportunities and still open challenges in abiotic stress research based on -omics technologies.
Collapse
Affiliation(s)
- Luca Ambrosino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
| | - Chiara Colantuono
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.D.); (A.F.)
| | - Alessia Fiore
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.D.); (A.F.)
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Na), Italy; (L.A.); (C.C.)
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), 80121 Naples, Italy
- Correspondence: ; Tel.: +39-081-253-9492
| |
Collapse
|
12
|
Transcriptomic data-driven discovery of global regulatory features of rice seeds developing under heat stress. Comput Struct Biotechnol J 2020; 18:2556-2567. [PMID: 33033578 PMCID: PMC7522763 DOI: 10.1016/j.csbj.2020.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
Plants respond to abiotic stressors through a suite of strategies including differential regulation of stress-responsive genes. Hence, characterizing the influences of the relevant global regulators or on stress-related transcription factors is critical to understand plant stress response. Rice seed development is highly sensitive to elevated temperatures. To elucidate the extent and directional hierarchy of gene regulation in rice seeds under heat stress, we developed and implemented a robust multi-level optimization-based algorithm called Minimal Regulatory Network identifier (MiReN). MiReN could predict the minimal regulatory relationship between a gene and its potential regulators from our temporal transcriptomic dataset. MiReN predictions for global regulators including stress-responsive gene Slender Rice 1 (SLR1) and disease resistance gene XA21 were validated with published literature. It also predicted novel regulatory influences of other major regulators such as Kinesin-like proteins KIN12C and STD1, and WD repeat-containing protein WD40. Out of the 228 stress-responsive transcription factors identified, we predicted de novo regulatory influences on three major groups (MADS-box M-type, MYB, and bZIP) and investigated their physiological impacts during stress. Overall, MiReN results can facilitate new experimental studies to enhance our understanding of global regulatory mechanisms triggered during heat stress, which can potentially accelerate the development of stress-tolerant cultivars.
Collapse
|
13
|
Genome-Wide Computational Identification of Biologically Significant Cis-Regulatory Elements and Associated Transcription Factors from Rice. PLANTS 2019; 8:plants8110441. [PMID: 31652796 PMCID: PMC6918188 DOI: 10.3390/plants8110441] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/12/2023]
Abstract
The interactions between transcription factors (TFs) and cis-acting regulatory elements (CREs) provide crucial information on the regulation of gene expression. The determination of TF-binding sites and CREs experimentally is costly and time intensive. An in silico identification and annotation of TFs, and the prediction of CREs from rice are made possible by the availability of whole genome sequence and transcriptome data. In this study, we tested the applicability of two algorithms developed for other model systems for the identification of biologically significant CREs of co-expressed genes from rice. CREs were identified from the DNA sequences located upstream from the transcription start sites, untranslated regions (UTRs), and introns, and downstream from the translational stop codons of co-expressed genes. The biologically significance of each CRE was determined by correlating their absence and presence in each gene with that gene's expression profile using a meta-database constructed from 50 rice microarray data sets. The reliability of these methods in the predictions of CREs and their corresponding TFs was supported by previous wet lab experimental data and a literature review. New CREs corresponding to abiotic stresses, biotic stresses, specific tissues, and developmental stages were identified from rice, revealing new pieces of information for future experimental testing. The effectiveness of some-but not all-CREs was found to be affected by copy number, position, and orientation. The corresponding TFs that were most likely correlated with each CRE were also identified. These findings not only contribute to the prioritization of candidates for further analysis, the information also contributes to the understanding of the gene regulatory network.
Collapse
|
14
|
Sicilia A, Testa G, Santoro DF, Cosentino SL, Lo Piero AR. RNASeq analysis of giant cane reveals the leaf transcriptome dynamics under long-term salt stress. BMC PLANT BIOLOGY 2019; 19:355. [PMID: 31416418 PMCID: PMC6694640 DOI: 10.1186/s12870-019-1964-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/07/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND To compensate for the lack of information about the molecular mechanism involved in Arundo donax L. response to salt stress, we de novo sequenced, assembled and analyzed the A. donax leaf transcriptome subjected to two levels of long-term salt stress (namely, S3 severe and S4 extreme). RESULTS The picture that emerges from the identification of differentially expressed genes is consistent with a salt dose-dependent response. Hence, a deeper re-programming of the gene expression occurs in those plants grew at extreme salt level than in those subjected to severe salt stress, probably representing for them an "emergency" state. In particular, we analyzed clusters related to salt sensory and signaling, transcription factors, hormone regulation, Reactive Oxygen Species (ROS) scavenging, osmolyte biosynthesis and biomass production, all of them showing different regulation either versus untreated plants or between the two treatments. Importantly, the photosynthesis is strongly impaired in samples treated with both levels of salinity stress. However, in extreme salt conditions, a dramatic switch from C3 Calvin cycle to C4 photosynthesis is likely to occur, this probably being the more impressive finding of our work. CONCLUSIONS Considered the distinct response to salt doses, genes either involved in severe or in extreme salt response could constitute useful markers of the physiological status of A. donax to deepen our understanding of its biology and productivity in salinized soil. Finally, many of the unigenes identified in the present study have the potential to be used for the development of A. donax varieties with improved productivity and stress tolerance, in particular the knock out of the GTL1 gene acting as negative regulator of water use efficiency has been proposed as good target for genome editing.
Collapse
Affiliation(s)
- Angelo Sicilia
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Giorgio Testa
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Danilo Fabrizio Santoro
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Salvatore Luciano Cosentino
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy
| | - Angela Roberta Lo Piero
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 98, 95123, Catania, Italy.
| |
Collapse
|
15
|
Shameer K, Naika MB, Shafi KM, Sowdhamini R. Decoding systems biology of plant stress for sustainable agriculture development and optimized food production. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 145:19-39. [DOI: 10.1016/j.pbiomolbio.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/23/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
|
16
|
Shen Z, Lin Y, Zou Q. Transcription factors–DNA interactions in rice: identification and verification. Brief Bioinform 2019; 21:946-956. [DOI: 10.1093/bib/bbz045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 01/08/2023] Open
Abstract
Abstract
The completion of the rice genome sequence paved the way for rice functional genomics research. Additionally, the functional characterization of transcription factors is currently a popular and crucial objective among researchers. Transcription factors are one of the groups of proteins that bind to either enhancer or promoter regions of genes to regulate expression. On the basis of several typical examples of transcription factor analyses, we herein summarize selected research strategies and methods and introduce their advantages and disadvantages. This review may provide some theoretical and technical guidelines for future investigations of transcription factors, which may be helpful to develop new rice varieties with ideal traits.
Collapse
Affiliation(s)
- Zijie Shen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Lin
- Department of System Integration, Sparebanken Vest, Bergen, Norway
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Hong WJ, Kim YJ, Chandran AKN, Jung KH. Infrastructures of systems biology that facilitate functional genomic study in rice. RICE (NEW YORK, N.Y.) 2019; 12:15. [PMID: 30874968 PMCID: PMC6419666 DOI: 10.1186/s12284-019-0276-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/06/2019] [Indexed: 05/08/2023]
Abstract
Rice (Oryza sativa L.) is both a major staple food for the worldwide population and a model crop plant for studying the mode of action of agronomically valuable traits, providing information that can be applied to other crop plants. Due to the development of high-throughput technologies such as next generation sequencing and mass spectrometry, a huge mass of multi-omics data in rice has been accumulated. Through the integration of those data, systems biology in rice is becoming more advanced.To facilitate such systemic approaches, we have summarized current resources, such as databases and tools, for systems biology in rice. In this review, we categorize the resources using six omics levels: genomics, transcriptomics, proteomics, metabolomics, integrated omics, and functional genomics. We provide the names, websites, references, working states, and number of citations for each individual database or tool and discuss future prospects for the integrated understanding of rice gene functions.
Collapse
Affiliation(s)
- Woo-Jong Hong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Yu-Jin Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | | | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| |
Collapse
|
18
|
Chandran AKN, Moon S, Yoo YH, Gho YS, Cao P, Sharma R, Sharma MK, Ronald PC, Jung KH. A web-based tool for the prediction of rice transcription factor function. Database (Oxford) 2019; 2019:baz061. [PMID: 31169887 PMCID: PMC6553503 DOI: 10.1093/database/baz061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/15/2019] [Indexed: 11/14/2022]
Abstract
Transcription factors (TFs) are an important class of regulatory molecules. Despite their importance, only a small number of genes encoding TFs have been characterized in Oryza sativa (rice), often because gene duplication and functional redundancy complicate their analysis. To address this challenge, we developed a web-based tool called the Rice Transcription Factor Phylogenomics Database (RTFDB) and demonstrate its application for predicting TF function. The RTFDB hosts transcriptome and co-expression analyses. Sources include high-throughput data from oligonucleotide microarray (Affymetrix and Agilent) as well as RNA-Seq-based expression profiles. We used the RTFDB to identify tissue-specific and stress-related gene expression. Subsequently, 273 genes preferentially expressed in specific tissues or organs, 455 genes showing a differential expression pattern in response to 4 abiotic stresses, 179 genes responsive to infection of various pathogens and 512 genes showing differential accumulation in response to various hormone treatments were identified through the meta-expression analysis. Pairwise Pearson correlation coefficient analysis between paralogous genes in a phylogenetic tree was used to assess their expression collinearity and thereby provides a hint on their genetic redundancy. Integrating transcriptome with the gene evolutionary information reveals the possible functional redundancy or dominance played by paralog genes in a highly duplicated genome such as rice. With this method, we estimated a predominant role for 83.3% (65/78) of the TF or transcriptional regulator genes that had been characterized via loss-of-function studies. In this regard, the proposed method is applicable for functional studies of other plant species with annotated genome.
Collapse
Affiliation(s)
- Anil Kumar Nalini Chandran
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Yo-Han Yoo
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Yoon-Shil Gho
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Rita Sharma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manoj K Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, USA
- Feedstocks Division, The Joint Bioenergy Institute, Emeryville, CA, USA
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
19
|
Li JR, Liu CC, Sun CH, Chen YT. Plant stress RNA-seq Nexus: a stress-specific transcriptome database in plant cells. BMC Genomics 2018; 19:966. [PMID: 30587128 PMCID: PMC6307140 DOI: 10.1186/s12864-018-5367-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 12/12/2018] [Indexed: 01/22/2023] Open
Abstract
Background Abiotic and biotic stresses severely affect the growth and reproduction of plants and crops. Determining the critical molecular mechanisms and cellular processes in response to stresses will provide biological insight for addressing both climate change and food crises. RNA sequencing (RNA-Seq) is a revolutionary tool that has been used extensively in plant stress research. However, no existing large-scale RNA-Seq database has been designed to provide information on the stress-specific differentially expressed transcripts that occur across diverse plant species and various stresses. Results We have constructed a comprehensive database, the plant stress RNA-Seq nexus (PSRN), which includes 12 plant species, 26 plant-stress RNA-Seq datasets, and 937 samples. All samples are assigned to 133 stress-specific subsets, which are constructed into 254 subset pairs, a comparison between selected two subsets, for stress-specific differentially expressed transcript identification. Conclusions PSRN is an open resource for intuitive data exploration, providing expression profiles of coding-transcript/lncRNA and identifying which transcripts are differentially expressed between different stress-specific subsets, in order to support researchers generating new biological insights and hypotheses in molecular breeding or evolution. PSRN is freely available at http://syslab5.nchu.edu.tw/PSRN. Electronic supplementary material The online version of this article (10.1186/s12864-018-5367-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian-Rong Li
- Program in Medical Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung City, 402, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung City, 402, Taiwan
| | - Chun-Chi Liu
- Program in Medical Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung City, 402, Taiwan.,Advanced Plant Biotechnology Center, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung City, 402, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung City, 402, Taiwan
| | - Chuan-Hu Sun
- Institute of Genomics and Bioinformatics, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung City, 402, Taiwan
| | - Yu-Ting Chen
- Program in Medical Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung City, 402, Taiwan. .,Institute of Genomics and Bioinformatics, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung City, 402, Taiwan.
| |
Collapse
|
20
|
Pathak RK, Baunthiyal M, Pandey D, Kumar A. Augmentation of crop productivity through interventions of omics technologies in India: challenges and opportunities. 3 Biotech 2018; 8:454. [PMID: 30370195 PMCID: PMC6195494 DOI: 10.1007/s13205-018-1473-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023] Open
Abstract
With the continuous increase in the population of developing countries and decline of natural resources, there is an urgent need to qualitatively and quantitatively augment crop productivity by using new tools and technologies for improvement of agriculturally important traits. The new scientific and technological omics-based approaches have enabled us to deal with several issues and challenges faced by modern agricultural system and provided us novel opportunities for ensuring food and nutritional security. Recent developments in sequencing techniques have made available huge amount of genomic and transcriptomic data on model and cultivated crop plants including Arabidopsis thaliana, Oryza sativa, Triticum aestivum etc. The sequencing data along with other data generated through several omics platforms have significantly influenced the disciplines of crop sciences. Gene discovery and expression profiling-based technologies are offering enormous opportunities to the scientific community which can now apply marker-assisted selection technology to assess and enhance diversity in their collected germplasm, introgress essential traits from new sources and investigate genes that control key traits of crop plants. Utilization of omics science and technologies for crop productivity, protection and management has recently been receiving a lot of attention; the majority of the efforts have been put into signifying the possible applications of various omics technologies in crop plant sciences. This article highlights the background of challenges and opportunities for augmentation of crop productivity through interventions of omics technologies in India.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
- Department of Biotechnology, G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Mamta Baunthiyal
- Department of Biotechnology, G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Dinesh Pandey
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
- Present Address: Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh 284003 India
| |
Collapse
|
21
|
Draft genome sequence of first monocot-halophytic species Oryza coarctata reveals stress-specific genes. Sci Rep 2018; 8:13698. [PMID: 30209320 PMCID: PMC6135824 DOI: 10.1038/s41598-018-31518-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/21/2018] [Indexed: 11/08/2022] Open
Abstract
Oryza coarctata (KKLL; 2n = 4x = 48, 665 Mb) also known as Porteresia coarctata is an extreme halophyte species of genus Oryza. Using Illumina and Nanopore reads, we achieved the assembled genome size of 569.9 Mb, accounting 85.69% of the estimated genome size with N50 of 1.85 Mb and 19.89% repetitive region. We also found 230,968 simple sequence repeats (SSRs) and 5,512 non-coding RNAs (ncRNAs). The functional annotation of predicted 33,627 protein-coding genes and 4,916 transcription factors revealed that high salinity adaptation of this species is due to the exclusive or excessive presence of stress-specific genes as compared to rice. We have identified 8 homologs to salt-tolerant SOS1 genes, one of the three main components of salt overly sensitive (SOS) signal pathway. On the other hand, the phylogenetic analysis of the assembled chloroplast (134.75 kb) and mitochondrial genome (491.06 kb) favours the conservative nature of these organelle genomes within Oryza taxon.
Collapse
|
22
|
Chae S, Kim JS, Jun KM, Lee SB, Kim MS, Nahm BH, Kim YK. Analysis of Genes with Alternatively Spliced Transcripts in the Leaf, Root, Panicle and Seed of Rice Using a Long Oligomer Microarray and RNA-Seq. Mol Cells 2017; 40:714-730. [PMID: 29047256 PMCID: PMC5682249 DOI: 10.14348/molcells.2017.2297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 11/30/2022] Open
Abstract
Pre-mRNA splicing further increases protein diversity acquired through evolution. The underlying driving forces for this phenomenon are unknown, especially in terms of gene expression. A rice alternatively spliced transcript detection microarray (ASDM) and RNA sequencing (RNA-Seq) were applied to differentiate the transcriptome of 4 representative organs of Oryza sativa L. cv. Ilmi: leaves, roots, 1-cm-stage panicles and young seeds at 21 days after pollination. Comparison of data obtained by microarray and RNA-Seq showed a bell-shaped distribution and a co-lineation for highly expressed genes. Transcripts were classified according to the degree of organ enrichment using a coefficient value (CV, the ratio of the standard deviation to the mean values): highly variable (CVI), variable (CVII), and constitutive (CVIII) groups. A higher index of the portion of loci with alternatively spliced transcripts in a group (IAST) value was observed for the constitutive group. Genes of the highly variable group showed the characteristics of the examined organs, and alternatively spliced transcripts tended to exhibit the same organ specificity or less organ preferences, with avoidance of 'organ distinctness'. In addition, within a locus, a tendency of higher expression was found for transcripts with a longer coding sequence (CDS), and a spliced intron was the most commonly found type of alternative splicing for an extended CDS. Thus, pre-mRNA splicing might have evolved to retain maximum functionality in terms of organ preference and multiplicity.
Collapse
Affiliation(s)
- Songhwa Chae
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
| | - Joung Sug Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
| | - Kyong Mi Jun
- GreenGene Biotech Inc., 116, Yongin 17058,
Korea
| | - Sang-Bok Lee
- Central Area Crop Breeding Research Division, National Institute of Crop Science, Chuncheon 24219,
Korea
| | | | - Baek Hie Nahm
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
- GreenGene Biotech Inc., 116, Yongin 17058,
Korea
| | - Yeon-Ki Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
| |
Collapse
|
23
|
Sandhu M, Sureshkumar V, Prakash C, Dixit R, Solanke AU, Sharma TR, Mohapatra T, S V AM. RiceMetaSys for salt and drought stress responsive genes in rice: a web interface for crop improvement. BMC Bioinformatics 2017; 18:432. [PMID: 28964253 PMCID: PMC5622590 DOI: 10.1186/s12859-017-1846-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Background Genome-wide microarray has enabled development of robust databases for functional genomics studies in rice. However, such databases do not directly cater to the needs of breeders. Here, we have attempted to develop a web interface which combines the information from functional genomic studies across different genetic backgrounds with DNA markers so that they can be readily deployed in crop improvement. In the current version of the database, we have included drought and salinity stress studies since these two are the major abiotic stresses in rice. Results RiceMetaSys, a user-friendly and freely available web interface provides comprehensive information on salt responsive genes (SRGs) and drought responsive genes (DRGs) across genotypes, crop development stages and tissues, identified from multiple microarray datasets. ‘Physical position search’ is an attractive tool for those using QTL based approach for dissecting tolerance to salt and drought stress since it can provide the list of SRGs and DRGs in any physical interval. To identify robust candidate genes for use in crop improvement, the ‘common genes across varieties’ search tool is useful. Graphical visualization of expression profiles across genes and rice genotypes has been enabled to facilitate the user and to make the comparisons more impactful. Simple Sequence Repeat (SSR) search in the SRGs and DRGs is a valuable tool for fine mapping and marker assisted selection since it provides primers for survey of polymorphism. An external link to intron specific markers is also provided for this purpose. Bulk retrieval of data without any limit has been enabled in case of locus and SSR search. Conclusions The aim of this database is to facilitate users with a simple and straight-forward search options for identification of robust candidate genes from among thousands of SRGs and DRGs so as to facilitate linking variation in expression profiles to variation in phenotype. Database URL: http://14.139.229.201 Electronic supplementary material The online version of this article (10.1186/s12859-017-1846-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maninder Sandhu
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.,Shobhit University, Modipuram, Meerut, 250110, Uttar Pradesh, India
| | - V Sureshkumar
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.,Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Chandra Prakash
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Rekha Dixit
- Shobhit University, Modipuram, Meerut, 250110, Uttar Pradesh, India.,Current address: Department of biotechnology, Keralverma faculty of science, Swami Vivekanand Subharti University, Meerut, 250005, Uttar Pradesh, India
| | - Amolkumar U Solanke
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Tilak Raj Sharma
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Trilochan Mohapatra
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India
| | - Amitha Mithra S V
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
24
|
Stress2TF: a manually curated database of TF regulation in plant response to stress. Gene 2017; 638:36-40. [PMID: 28974472 DOI: 10.1016/j.gene.2017.09.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 09/14/2017] [Accepted: 09/29/2017] [Indexed: 01/17/2023]
Abstract
Considerable studies demonstrate that plant transcription factors (TFs) play key regulatory roles in abiotic/biotic stress conditions, such as drought and pathogen attack. However, there is no effort dedicated to curate experimentally validated stress-TF regulatory relationships from these individual reports into a central database, which put an obstacle in the exploration of stress-TF regulations in plants. To address this issue, we presented a literature-curated database 'Stress2TF' that currently documented 1533 regulatory relationships between 71 abiotic/biotic stresses and 558 TFs in 47 plant species. Each entry in Stress2TF contains detailed information about a stress-TF relationship such as plant name, stress name, TF and brief description of stress-TF relationship. Stress2TF provided a user-friendly interface for entry browse, search and download. In addition, a submission page and several useful tools (e.g., BLAST, network visualization) were integrated. Stress2TF may be a valuable resource for the research of stress-TF regulatory mechanisms in plants. Stress2TF is available at http://csgenomics.ahau.edu.cn/Stress2TF.
Collapse
|
25
|
Agarwal P, Parida SK, Raghuvanshi S, Kapoor S, Khurana P, Khurana JP, Tyagi AK. Rice Improvement Through Genome-Based Functional Analysis and Molecular Breeding in India. RICE (NEW YORK, N.Y.) 2016; 9:1. [PMID: 26743769 PMCID: PMC4705060 DOI: 10.1186/s12284-015-0073-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/22/2015] [Indexed: 05/05/2023]
Abstract
Rice is one of the main pillars of food security in India. Its improvement for higher yield in sustainable agriculture system is also vital to provide energy and nutritional needs of growing world population, expected to reach more than 9 billion by 2050. The high quality genome sequence of rice has provided a rich resource to mine information about diversity of genes and alleles which can contribute to improvement of useful agronomic traits. Defining the function of each gene and regulatory element of rice remains a challenge for the rice community in the coming years. Subsequent to participation in IRGSP, India has continued to contribute in the areas of diversity analysis, transcriptomics, functional genomics, marker development, QTL mapping and molecular breeding, through national and multi-national research programs. These efforts have helped generate resources for rice improvement, some of which have already been deployed to mitigate loss due to environmental stress and pathogens. With renewed efforts, Indian researchers are making new strides, along with the international scientific community, in both basic research and realization of its translational impact.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saurabh Raghuvanshi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
26
|
Gahlaut V, Jaiswal V, Kumar A, Gupta PK. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2019-2042. [PMID: 27738714 DOI: 10.1007/s00122-016-2794-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 09/15/2016] [Indexed: 05/26/2023]
Abstract
TFs involved in drought tolerance in plants may be utilized in future for developing drought tolerant cultivars of wheat and some other crops. Plants have developed a fairly complex stress response system to deal with drought and other abiotic stresses. These response systems often make use of transcription factors (TFs); a gene encoding a specific TF together with -its target genes constitute a regulon, and take part in signal transduction to activate/silence genes involved in response to drought. Since, five specific families of TFs (out of >80 known families of TFs) have gained widespread attention on account of their significant role in drought tolerance in plants, TFs and regulons belonging to these five multi-gene families (AP2/EREBP, bZIP, MYB/MYC, NAC and WRKY) have been described and their role in improving drought tolerance discussed in this brief review. These TFs often undergo reversible phosphorylation to perform their function, and are also involved in complex networks. Therefore, some details about reversible phosphorylation of TFs by different protein kinases/phosphatases and the co-regulatory networks, which involve either only TFs or TFs with miRNAs, have also been discussed. Literature on transgenics involving genes encoding TFs and that on QTLs and markers associated with TF genes involved in drought tolerance has also been reviewed. Throughout the review, there is a major emphasis on wheat as an important crop, although examples from the model cereal rice (sometimes maize also), and the model plant Arabidopsis have also been used. This knowledge base may eventually allow the use of TF genes for development of drought tolerant cultivars, particularly in wheat.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Vandana Jaiswal
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Plant Molecular Biology and Genetic Engineering, CSIR-National Botanical Research Institute, Lucknow, India
| | - Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology, Dehradun, India
| | | |
Collapse
|
27
|
Chakraborty C, Bandyopadhyay S, Agoramoorthy G. India's Computational Biology Growth and Challenges. Interdiscip Sci 2016; 8:263-76. [PMID: 27465042 DOI: 10.1007/s12539-016-0179-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022]
Abstract
India's computational science is growing swiftly due to the outburst of internet and information technology services. The bioinformatics sector of India has been transforming rapidly by creating a competitive position in global bioinformatics market. Bioinformatics is widely used across India to address a wide range of biological issues. Recently, computational researchers and biologists are collaborating in projects such as database development, sequence analysis, genomic prospects and algorithm generations. In this paper, we have presented the Indian computational biology scenario highlighting bioinformatics-related educational activities, manpower development, internet boom, service industry, research activities, conferences and trainings undertaken by the corporate and government sectors. Nonetheless, this new field of science faces lots of challenges.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, India
| | | | | |
Collapse
|
28
|
Mousavi SA, Pouya FM, Ghaffari MR, Mirzaei M, Ghaffari A, Alikhani M, Ghareyazie M, Komatsu S, Haynes PA, Salekdeh GH. PlantPReS: A database for plant proteome response to stress. J Proteomics 2016; 143:69-72. [DOI: 10.1016/j.jprot.2016.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 11/25/2022]
|
29
|
Wang Y, Lu W, Deng D. Bioinformatic landscapes for plant transcription factor system research. PLANTA 2016; 243:297-304. [PMID: 26719053 DOI: 10.1007/s00425-015-2453-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Diverse bioinformatic resources have been developed for plant transcription factor (TF) research. This review presents the bioinformatic resources and methodologies for the elucidation of plant TF-mediated biological events. Such information is helpful to dissect the transcriptional regulatory systems in the three reference plants Arabidopsis , rice, and maize and translation to other plants. Transcription factors (TFs) orchestrate diverse biological programs by the modulation of spatiotemporal patterns of gene expression via binding cis-regulatory elements. Advanced sequencing platforms accompanied by emerging bioinformatic tools revolutionize the scope and extent of TF research. The system-level integration of bioinformatic resources is beneficial to the decoding of TF-involved networks. Herein, we first briefly introduce general and specialized databases for TF research in three reference plants Arabidopsis, rice, and maize. Then, as proof of concept, we identified and characterized heat shock transcription factor (HSF) members through the TF databases. Finally, we present how the integration of bioinformatic resources at -omics layers can aid the dissection of TF-mediated pathways. We also suggest ways forward to improve the bioinformatic resources of plant TFs. Leveraging these bioinformatic resources and methodologies opens new avenues for the elucidation of transcriptional regulatory systems in the three model systems and translation to other plants.
Collapse
Affiliation(s)
- Yijun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Wenjie Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Dexiang Deng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
30
|
Fu Y, Poli M, Sablok G, Wang B, Liang Y, La Porta N, Velikova V, Loreto F, Li M, Varotto C. Dissection of early transcriptional responses to water stress in Arundo donax L. by unigene-based RNA-seq. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:54. [PMID: 26958077 PMCID: PMC4782572 DOI: 10.1186/s13068-016-0471-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/22/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Arundo donax L. (Poaceae) is considered one of the most promising energy crops in the Mediterranean region because of its high biomass yield and low input requirements, but to date no information on its transcriptional responses to water stress is available. RESULTS We obtained by Illumina-based RNA-seq the whole root and shoot transcriptomes of young A. donax plants subjected to osmotic/water stress with 10 and 20 % polyethylene glycol (PEG; 3 biological replicates/organ/condition corresponding to 18 RNA-Seq libraries), and identified a total of 3034 differentially expressed genes. Blast-based mining of stress-related genes indicated the higher responsivity of roots compared to shoots at the early stages of water stress especially under the milder PEG treatment, with a majority of genes responsive to salt, oxidative, and dehydration stress. Analysis of gene ontology terms underlined the qualitatively different responses between root and shoot tissues. Among the most significantly enriched metabolic pathways identified using a Fisher's exact test with FDR correction, a crucial role was played in both shoots and roots by genes involved in the signaling cascade of abscisic acid. We further identified relatively large organ-specific differences in the patterns of drought-related transcription factor AP2-EREBP, AUX/IAA, MYB, bZIP, C2H2, and GRAS families, which may underlie the transcriptional reprogramming differences between organs. Through comparative analyses with major Poaceae species based on Blast, we finally identified a set of 53 orthologs that can be considered as a core of evolutionary conserved genes important to mediate water stress responses in the family. CONCLUSIONS This study provides the first characterization of A. donax transcriptome in response to water stress, thus shedding novel light at the molecular level on the mechanisms of stress response and adaptation in this emerging bioenergy species. The inventory of early-responsive genes to water stress identified could constitute useful markers of the physiological status of A. donax and be a basis for the improvement of its productivity under water limitation. The full water-stressed A. donax transcriptome is available for Blast-based homology searches through a dedicated web server (http://ecogenomics.fmach.it/arundo/).
Collapse
Affiliation(s)
- Yuan Fu
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
- />Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Michele Poli
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
- />Dipartimento di Scienze Agrarie, Università di Bologna, Bologna, Italy
| | - Gaurav Sablok
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
| | - Bo Wang
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
- />Centro di Biologia Integrata (CIBIO), University of Trento, Trento, Italy
| | - Yanchun Liang
- />College of Computer Science and Technology, Jilin University, Changchun, China
| | - Nicola La Porta
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
- />MOUNTFOR Project Centre, European Forest Institute, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
| | - Violeta Velikova
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
- />Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Francesco Loreto
- />The National Research Council of Italy (CNR), Department of Biology, Agriculture and Food Sciences, Rome, Italy
| | - Mingai Li
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
| | - Claudio Varotto
- />Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Trento Italy
| |
Collapse
|
31
|
Zhang Y, Verhoeff NI, Chen Z, Chen S, Wang M, Zhu Z, Ouwerkerk PBF. Functions of OsDof25 in regulation of OsC4PPDK. PLANT MOLECULAR BIOLOGY 2015; 89:229-42. [PMID: 26337938 PMCID: PMC4579267 DOI: 10.1007/s11103-015-0357-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/31/2015] [Indexed: 05/03/2023]
Abstract
Relative little is known about the functions of the so-called Dof zinc factors in plants. Here we report on the analysis of OsDof25 and show a function in regulation of the important C4 photosynthesis gene, OsC4PPDK in rice. Over-expression of OsDof25 enhanced the expression of OsC4PPDK in transient expression experiments by binding in a specific way to a conserved Dof binding site which was confirmed by yeast and in vitro binding studies. Expression studies using promoter GUS plants as well as qPCR experiments showed that OsDof25 expressed in different tissues including both photosynthetic and non-photosynthetic organs and that expression of OsDof25 was partially overlapping with the OsC4PPDK gene. Conclusive evidence for a role of OsDof25 in regulation of C4PPDK came from loss-of-function and gain-of-function experiments with transgenic rice, which showed that down-regulation or over-expression of OsDof25 correlated with OsC4PPDK expression and that OsDof25 has functions as transcriptional activator.
Collapse
Affiliation(s)
- Y Zhang
- Department of Molecular and Developmental Genetics, Institute of Biology (IBL), Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China
| | - N I Verhoeff
- Department of Molecular and Developmental Genetics, Institute of Biology (IBL), Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Z Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Wusi Rd 247, Fuzhou, 350003, Fujian, China
| | - S Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Wusi Rd 247, Fuzhou, 350003, Fujian, China
| | - Mei Wang
- Department of Molecular and Developmental Genetics, Institute of Biology (IBL), Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- SU BioMedicine/TNO Quality of Life, Zernikedreef 9, P.O. Box 2215, 2301 CE, Leiden, The Netherlands
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - P B F Ouwerkerk
- Department of Molecular and Developmental Genetics, Institute of Biology (IBL), Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
32
|
StressMicrobesInfo: Database of Microorganisms Responsive to Stress Conditions. Interdiscip Sci 2015; 8:203-8. [PMID: 26264053 DOI: 10.1007/s12539-015-0102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 05/12/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
Microorganisms are continuously exposed to numerous stress conditions and had evolved with numerous evolutionary adaptations and physiological acclimation mechanisms against stress effects. Any information related to the microbes responsive to stress conditions will help scientists working in the area of stress biology. Currently, there is lack of information resource on this aspect and for getting information about microbes susceptible or tolerant to different environmental changes, literature searching is the only option. Here, we present a database StressMicrobesInfo that was developed with a mandate to provide information about microbes responding to various biotic and abiotic stress conditions. This database currently contains information about 183 microbes along with a brief detail for each. StressMicrobesInfo will facilitate researchers working on stress-related microbes as a starting point and will facilitate them with the microbes which are susceptible or resistant towards particular stress conditions.
Collapse
|
33
|
Alter S, Bader KC, Spannagl M, Wang Y, Bauer E, Schön CC, Mayer KFX. DroughtDB: an expert-curated compilation of plant drought stress genes and their homologs in nine species. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav046. [PMID: 25979979 PMCID: PMC4433318 DOI: 10.1093/database/bav046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/21/2015] [Indexed: 02/01/2023]
Abstract
Plants are sessile and therefore exposed to a number of biotic and abiotic stresses. Drought is the major abiotic stress restricting plant growth worldwide. A number of genes involved in drought stress response have already been characterized, mainly in the model species Arabidopsis thaliana and Oryza sativa. However, with the aim to produce drought tolerant crop varieties, it is of importance to identify the respective orthologs for each species. We have developed DroughtDB, a manually curated compilation of molecularly characterized genes that are involved in drought stress response. DroughtDB includes information about the originally identified gene, its physiological and/or molecular function and mutant phenotypes and provides detailed information about computed orthologous genes in nine model and crop plant species including maize and barley. All identified orthologs are interlinked with the respective reference entry in MIPS/PGSB PlantsDB, which allows retrieval of additional information like genome context and sequence information. Thus, DroughtDB is a valuable resource and information tool for researchers working on drought stress and will facilitate the identification, analysis and characterization of genes involved in drought stress tolerance in agriculturally important crop plants. Database URL:http://pgsb.helmholtz-muenchen.de/droughtdb/
Collapse
Affiliation(s)
- Svenja Alter
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany, Department of Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany and College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Kai C Bader
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany, Department of Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany and College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Manuel Spannagl
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany, Department of Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany and College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Yu Wang
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany, Department of Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany and College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Eva Bauer
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany, Department of Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany and College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Chris-Carolin Schön
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany, Department of Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany and College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Klaus F X Mayer
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany, Department of Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany and College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany, Department of Plant Genome and Systems Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany and College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Sharma R, Priya P, Jain M. Modified expression of an auxin-responsive rice CC-type glutaredoxin gene affects multiple abiotic stress responses. PLANTA 2013; 238:871-84. [PMID: 23918184 DOI: 10.1007/s00425-013-1940-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/17/2013] [Indexed: 05/20/2023]
Abstract
Glutaredoxins (GRXs) are the ubiquitous oxidoreductase enzymes, which play an important role in defense against various stresses. Here, we report the role of a CC-type GRX gene from rice, OsGRX8, in abiotic stress tolerance. OsGRX8 protein was found to be localized in nucleus and cytosol and its gene expression is induced by various stress conditions and plant hormone auxin. The over-expression of OsGRX8 in Arabidopsis plants conferred reduced sensitivity to auxin and stress hormone, abscisic acid. In addition, the transgenic Arabidopsis plants exhibited enhanced tolerance to various abiotic stresses, including salinity, osmotic and oxidative stress. Further, the transgenic RNAi rice plants exhibited increased susceptibility to various abiotic stresses, which further confirmed the role of OsGRX8 in abiotic stress responses. The microarray data analysis revealed that expression of a large number of auxin-responsive, known stress-associated and transcription factor encoding genes was altered in GRX transgenic Arabidopsis plants in response to exogenous auxin and stress conditions as compared to wild-type plants. Altogether, these findings suggest the role of OsGRX8 in regulating abiotic stress response and may be used to engineer stress tolerance in crop plants.
Collapse
Affiliation(s)
- Raghvendra Sharma
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | |
Collapse
|