1
|
Yang JF, Wang F, Wang MY, Wang D, Zhou ZS, Hao GF, Li QX, Yang GF. CIPDB: A biological structure databank for studying cation and π interactions. Drug Discov Today 2023; 28:103546. [PMID: 36871844 DOI: 10.1016/j.drudis.2023.103546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
As major forces for modulating protein folding and molecular recognition, cation and π interactions are extensively identified in protein structures. They are even more competitive than hydrogen bonds in molecular recognition, thus, are vital in numerous biological processes. In this review, we introduce the methods for the identification and quantification of cation and π interactions, provide insights into the characteristics of cation and π interactions in the natural state, and reveal their biological function together with our developed database (Cation and π Interaction in Protein Data Bank; CIPDB; http://chemyang.ccnu.edu.cn/ccb/database/CIPDB). This review lays the foundation for the in-depth study of cation and π interactions and will guide the use of molecular design for drug discovery.
Collapse
Affiliation(s)
- Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Meng-Yao Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Di Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Zhong-Shi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China.
| |
Collapse
|
2
|
Coyote-Maestas W, Nedrud D, Suma A, He Y, Matreyek KA, Fowler DM, Carnevale V, Myers CL, Schmidt D. Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling. Nat Commun 2021; 12:7114. [PMID: 34880224 PMCID: PMC8654947 DOI: 10.1038/s41467-021-27342-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Protein domains are the basic units of protein structure and function. Comparative analysis of genomes and proteomes showed that domain recombination is a main driver of multidomain protein functional diversification and some of the constraining genomic mechanisms are known. Much less is known about biophysical mechanisms that determine whether protein domains can be combined into viable protein folds. Here, we use massively parallel insertional mutagenesis to determine compatibility of over 300,000 domain recombination variants of the Inward Rectifier K+ channel Kir2.1 with channel surface expression. Our data suggest that genomic and biophysical mechanisms acted in concert to favor gain of large, structured domain at protein termini during ion channel evolution. We use machine learning to build a quantitative biophysical model of domain compatibility in Kir2.1 that allows us to derive rudimentary rules for designing domain insertion variants that fold and traffic to the cell surface. Positional Kir2.1 responses to motif insertion clusters into distinct groups that correspond to contiguous structural regions of the channel with distinct biophysical properties tuned towards providing either folding stability or gating transitions. This suggests that insertional profiling is a high-throughput method to annotate function of ion channel structural regions.
Collapse
Affiliation(s)
- Willow Coyote-Maestas
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - David Nedrud
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - Antonio Suma
- grid.264727.20000 0001 2248 3398Department of Chemistry, Temple University, Philadelphia, PA 19122 USA
| | - Yungui He
- grid.17635.360000000419368657Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kenneth A. Matreyek
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Douglas M. Fowler
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA 98115 USA ,grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA 98115 USA
| | - Vincenzo Carnevale
- grid.264727.20000 0001 2248 3398Department of Chemistry, Temple University, Philadelphia, PA 19122 USA
| | - Chad L. Myers
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Mordalski S, Wojtuch A, Podolak I, Kurczab R, Bojarski AJ. 2D SIFt: a matrix of ligand-receptor interactions. J Cheminform 2021; 13:66. [PMID: 34496955 PMCID: PMC8424890 DOI: 10.1186/s13321-021-00545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/21/2021] [Indexed: 11/10/2022] Open
Abstract
Depicting a ligand-receptor complex via Interaction Fingerprints has been shown to be both a viable data visualization and an analysis tool. The spectrum of its applications ranges from simple visualization of the binding site through analysis of molecular dynamics runs, to the evaluation of the homology models and virtual screening. Here we present a novel tool derived from the Structural Interaction Fingerprints providing a detailed and unique insight into the interactions between receptor and specific regions of the ligand (grouped into pharmacophore features) in the form of a matrix, a 2D-SIFt descriptor. The provided implementation is easy to use and extends the python library, allowing the generation of interaction matrices and their manipulation (reading and writing as well as producing the average 2D-SIFt). The library for handling the interaction matrices is available via repository http://bitbucket.org/zchl/sift2d.
Collapse
Affiliation(s)
- Stefan Mordalski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland.
| | - Agnieszka Wojtuch
- Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland
| | - Igor Podolak
- Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland
| | - Rafał Kurczab
- Department of Medicinal Chemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
4
|
Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Babes EE, Brisc C, Stoicescu M, Toma MM, Sava C, Bungau SG. Bioinformatics Accelerates the Major Tetrad: A Real Boost for the Pharmaceutical Industry. Int J Mol Sci 2021; 22:6184. [PMID: 34201152 PMCID: PMC8227524 DOI: 10.3390/ijms22126184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/01/2023] Open
Abstract
With advanced technology and its development, bioinformatics is one of the avant-garde fields that has managed to make amazing progress in the pharmaceutical-medical field by modeling the infrastructural dimensions of healthcare and integrating computing tools in drug innovation, facilitating prevention, detection/more accurate diagnosis, and treatment of disorders, while saving time and money. By association, bioinformatics and pharmacovigilance promoted both sample analyzes and interpretation of drug side effects, also focusing on drug discovery and development (DDD), in which systems biology, a personalized approach, and drug repositioning were considered together with translational medicine. The role of bioinformatics has been highlighted in DDD, proteomics, genetics, modeling, miRNA discovery and assessment, and clinical genome sequencing. The authors have collated significant data from the most known online databases and publishers, also narrowing the diversified applications, in order to target four major areas (tetrad): DDD, anti-microbial research, genomic sequencing, and miRNA research and its significance in the management of current pandemic context. Our analysis aims to provide optimal data in the field by stratification of the information related to the published data in key sectors and to capture the attention of researchers interested in bioinformatics, a field that has succeeded in advancing the healthcare paradigm by introducing developing techniques and multiple database platforms, addressed in the manuscript.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram 122413, India;
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey;
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristian Sava
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
5
|
Jastrzębski S, Szymczak M, Pocha A, Mordalski S, Tabor J, Bojarski AJ, Podlewska S. Emulating Docking Results Using a Deep Neural Network: A New Perspective for Virtual Screening. J Chem Inf Model 2020; 60:4246-4262. [DOI: 10.1021/acs.jcim.9b01202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stanisław Jastrzębski
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Maciej Szymczak
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Agnieszka Pocha
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Stefan Mordalski
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Jacek Tabor
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| |
Collapse
|
6
|
Fassio AV, Santos LH, Silveira SA, Ferreira RS, de Melo-Minardi RC. nAPOLI: A Graph-Based Strategy to Detect and Visualize Conserved Protein-Ligand Interactions in Large-Scale. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1317-1328. [PMID: 30629512 DOI: 10.1109/tcbb.2019.2892099] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Essential roles in biological systems depend on protein-ligand recognition, which is mostly driven by specific non-covalent interactions. Consequently, investigating these interactions contributes to understanding how molecular recognition occurs. Nowadays, a large-scale data set of protein-ligand complexes is available in the Protein Data Bank, what led several tools to be proposed as an effort to elucidate protein-ligand interactions. Nonetheless, there is not an all-in-one tool that couples large-scale statistical, visual, and interactive analysis of conserved protein-ligand interactions. Therefore, we propose nAPOLI (Analysis of PrOtein-Ligand Interactions), a web server that combines large-scale analysis of conserved interactions in protein-ligand complexes at the atomic-level, interactive visual representations, and comprehensive reports of the interacting residues/atoms to detect and explore conserved non-covalent interactions. We demonstrate the potential of nAPOLI in detecting important conserved interacting residues through four case studies: two involving a human cyclin-dependent kinase 2 (CDK2), one related to ricin, and other to the human nuclear receptor subfamily 3 (hNR3). nAPOLI proved to be suitable to identify conserved interactions according to literature, as well as highlight additional interactions. Finally, we illustrate, with a virtual screening ligand selection, how nAPOLI can be widely applied in structural biology and drug design. nAPOLI is freely available at bioinfo.dcc.ufmg.br/napoli/.
Collapse
|
7
|
Waman VP, Blundell TL, Buchan DWA, Gough J, Jones D, Kelley L, Murzin A, Pandurangan AP, Sillitoe I, Sternberg M, Torres P, Orengo C. The Genome3D Consortium for Structural Annotations of Selected Model Organisms. Methods Mol Biol 2020; 2165:27-67. [PMID: 32621218 DOI: 10.1007/978-1-0716-0708-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Genome3D consortium is a collaborative project involving protein structure prediction and annotation resources developed by six world-leading structural bioinformatics groups, based in the United Kingdom (namely Blundell, Murzin, Gough, Sternberg, Orengo, and Jones). The main objective of Genome3D serves as a common portal to provide both predicted models and annotations of proteins in model organisms, using several resources developed by these labs such as CATH-Gene3D, DOMSERF, pDomTHREADER, PHYRE, SUPERFAMILY, FUGUE/TOCATTA, and VIVACE. These resources primarily use SCOP- and/or CATH-based protein domain assignments. Another objective of Genome3D is to compare structural classifications of protein domains in CATH and SCOP databases and to provide a consensus mapping of CATH and SCOP protein superfamilies. CATH/SCOP mapping analyses led to the identification of total of 1429 consensus superfamilies.Currently, Genome3D provides structural annotations for ten model organisms, including Homo sapiens, Arabidopsis thaliana, Mus musculus, Escherichia coli, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Plasmodium falciparum, Staphylococcus aureus, and Schizosaccharomyces pombe. Thus, Genome3D serves as a common gateway to each structure prediction/annotation resource and allows users to perform comparative assessment of the predictions. It, thus, assists researchers to broaden their perspective on structure/function predictions of their query protein of interest in selected model organisms.
Collapse
Affiliation(s)
- Vaishali P Waman
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Daniel W A Buchan
- Department of Computer Science, University College London, London, UK
| | - Julian Gough
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - David Jones
- Department of Computer Science, University College London, London, UK
| | - Lawrence Kelley
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, UK
| | | | | | - Ian Sillitoe
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Michael Sternberg
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, UK
| | - Pedro Torres
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Christine Orengo
- Institute of Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
8
|
Pawar G, Madden JC, Ebbrell D, Firman JW, Cronin MTD. In Silico Toxicology Data Resources to Support Read-Across and (Q)SAR. Front Pharmacol 2019; 10:561. [PMID: 31244651 PMCID: PMC6580867 DOI: 10.3389/fphar.2019.00561] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
A plethora of databases exist online that can assist in in silico chemical or drug safety assessment. However, a systematic review and grouping of databases, based on purpose and information content, consolidated in a single source, has been lacking. To resolve this issue, this review provides a comprehensive listing of the key in silico data resources relevant to: chemical identity and properties, drug action, toxicology (including nano-material toxicity), exposure, omics, pathways, Absorption, Distribution, Metabolism and Elimination (ADME) properties, clinical trials, pharmacovigilance, patents-related databases, biological (genes, enzymes, proteins, other macromolecules etc.) databases, protein-protein interactions (PPIs), environmental exposure related, and finally databases relating to animal alternatives in support of 3Rs policies. More than nine hundred databases were identified and reviewed against criteria relating to accessibility, data coverage, interoperability or application programming interface (API), appropriate identifiers, types of in vitro, in vivo,-clinical or other data recorded and suitability for modelling, read-across, or similarity searching. This review also specifically addresses the need for solutions for mapping and integration of databases into a common platform for better translatability of preclinical data to clinical data.
Collapse
Affiliation(s)
| | | | | | | | - Mark T. D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
9
|
Abstract
Quantification of noncovalent interactions is the key for the understanding of binding mechanisms, of biological systems, for the design of drugs, their delivery and for the design of receptors for separations, sensors, actuators, or smart materials.
Collapse
|
10
|
Han M, Song Y, Qian J, Ming D. Sequence-based prediction of physicochemical interactions at protein functional sites using a function-and-interaction-annotated domain profile database. BMC Bioinformatics 2018; 19:204. [PMID: 29859055 PMCID: PMC5984826 DOI: 10.1186/s12859-018-2206-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 05/15/2018] [Indexed: 01/16/2023] Open
Abstract
Background Identifying protein functional sites (PFSs) and, particularly, the physicochemical interactions at these sites is critical to understanding protein functions and the biochemical reactions involved. Several knowledge-based methods have been developed for the prediction of PFSs; however, accurate methods for predicting the physicochemical interactions associated with PFSs are still lacking. Results In this paper, we present a sequence-based method for the prediction of physicochemical interactions at PFSs. The method is based on a functional site and physicochemical interaction-annotated domain profile database, called fiDPD, which was built using protein domains found in the Protein Data Bank. This method was applied to 13 target proteins from the very recent Critical Assessment of Structure Prediction (CASP10/11), and our calculations gave a Matthews correlation coefficient (MCC) value of 0.66 for PFS prediction and an 80% recall in the prediction of the associated physicochemical interactions. Conclusions Our results show that, in addition to the PFSs, the physical interactions at these sites are also conserved in the evolution of proteins. This work provides a valuable sequence-based tool for rational drug design and side-effect assessment. The method is freely available and can be accessed at http://202.119.249.49.
Collapse
Affiliation(s)
- Min Han
- Department of Physiology and Biophysics, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yifan Song
- Department of Physiology and Biophysics, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Jiaqiang Qian
- Department of Physiology and Biophysics, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Biotech Building Room B1-404, 30 South Puzhu Road, Jiangsu, 211816, Nanjing, People's Republic of China.
| |
Collapse
|
11
|
Ferreira de Freitas R, Schapira M. A systematic analysis of atomic protein-ligand interactions in the PDB. MEDCHEMCOMM 2017; 8:1970-1981. [PMID: 29308120 PMCID: PMC5708362 DOI: 10.1039/c7md00381a] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
Abstract
As the protein databank (PDB) recently passed the cap of 123 456 structures, it stands more than ever as an important resource not only to analyze structural features of specific biological systems, but also to study the prevalence of structural patterns observed in a large body of unrelated structures, that may reflect rules governing protein folding or molecular recognition. Here, we compiled a list of 11 016 unique structures of small-molecule ligands bound to proteins - 6444 of which have experimental binding affinity - representing 750 873 protein-ligand atomic interactions, and analyzed the frequency, geometry and impact of each interaction type. We find that hydrophobic interactions are generally enriched in high-efficiency ligands, but polar interactions are over-represented in fragment inhibitors. While most observations extracted from the PDB will be familiar to seasoned medicinal chemists, less expected findings, such as the high number of C-H···O hydrogen bonds or the relatively frequent amide-π stacking between the backbone amide of proteins and aromatic rings of ligands, uncover underused ligand design strategies.
Collapse
Affiliation(s)
| | - Matthieu Schapira
- Structural Genomics Consortium , University of Toronto , Toronto , ON M5G 1L7 , Canada .
- Department of Pharmacology and Toxicology , University of Toronto , Toronto , ON M5S 1A8 , Canada
| |
Collapse
|
12
|
Ochoa-Montaño B, Blundell TL. XSuLT: a web server for structural annotation and representation of sequence-structure alignments. Nucleic Acids Res 2017; 45:W381-W387. [PMID: 28510698 PMCID: PMC5793734 DOI: 10.1093/nar/gkx421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
The web server XSuLT, an enhanced version of the protein alignment annotation program JoY, formats a submitted multiple-sequence alignment using three-dimensional (3D) structural information in order to assist in the comparative analysis of protein evolution and in the optimization of alignments for comparative modelling and construct design. In addition to the features analysed by JoY, which include secondary structure, solvent accessibility and sidechain hydrogen bonds, XSuLT annotates each amino acid residue with residue depth, chain and ligand interactions, inter-residue contacts, sequence entropy, root mean square deviation and secondary structure and disorder prediction. It is also now integrated with built-in 3D visualization which interacts with the formatted alignment to facilitate inspection and understanding. Results can be downloaded as stand-alone HTML for the formatted alignment and as XML with the underlying annotation data. XSuLT is freely available at http://structure.bioc.cam.ac.uk/xsult/.
Collapse
Affiliation(s)
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
13
|
Jubb HC, Higueruelo AP, Ochoa-Montaño B, Pitt WR, Ascher DB, Blundell TL. Arpeggio: A Web Server for Calculating and Visualising Interatomic Interactions in Protein Structures. J Mol Biol 2016; 429:365-371. [PMID: 27964945 PMCID: PMC5282402 DOI: 10.1016/j.jmb.2016.12.004] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/07/2016] [Accepted: 12/06/2016] [Indexed: 11/30/2022]
Abstract
Interactions between proteins and their ligands, such as small molecules, other proteins, and DNA, depend on specific interatomic interactions that can be classified on the basis of atom type and distance and angle constraints. Visualisation of these interactions provides insights into the nature of molecular recognition events and has practical uses in guiding drug design and understanding the structural and functional impacts of mutations. We present Arpeggio, a web server for calculating interactions within and between proteins and protein, DNA, or small-molecule ligands, including van der Waals', ionic, carbonyl, metal, hydrophobic, and halogen bond contacts, and hydrogen bonds and specific atom–aromatic ring (cation–π, donor–π, halogen–π, and carbon–π) and aromatic ring–aromatic ring (π–π) interactions, within user-submitted macromolecule structures. PyMOL session files can be downloaded, allowing high-quality publication images of the interactions to be generated. Arpeggio is implemented in Python and available as a user-friendly web interface at http://structure.bioc.cam.ac.uk/arpeggio/ and as a downloadable package at https://bitbucket.org/harryjubb/arpeggio. Enumeration and visualisation of molecular interactions can facilitate drug development and provide insights towards understanding the consequences of mutations in genetic diseases and protein engineering. Reliable and comprehensive methods to evaluate and visualise the full range of potential molecular interactions across many atom types present in protein structures are invaluable. Arpeggio calculates all intra- and interatomic interactions in macromolecular structures, including van der Waals', ionic, carbonyl, metal, hydrophobic, and halogen bond contacts, and hydrogen bonds and specific atom–aromatic ring (cation–π, donor–π, halogen–π, and carbon–π) and aromatic ring–aromatic ring (π–π) interactions, within a provided Protein Data Bank file. Calculations can be within or between any combination of protein, DNA, or small organic molecules. The Arpeggio web server (http://bleoberis.bioc.cam.ac.uk/arpeggioweb/) was implemented to provide a freely available, user-friendly web interface for the exploration of molecular interactions within protein structures, including through WebGL-based visualisation of interactions and downloadable interactive PyMOL session files. Arpeggio is written in Python, requires only Open Source dependencies, and is freely available for download at https://bitbucket.org/harryjubb/arpeggio for use in custom analyses.
Collapse
Affiliation(s)
- Harry C Jubb
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Alicia P Higueruelo
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Bernardo Ochoa-Montaño
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Will R Pitt
- UCB, 208 Bath Road, Slough, West Berkshire SL1 3WE, UK
| | - David B Ascher
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Tom L Blundell
- Department of Biochemistry, Sanger Building, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
14
|
Lenselink EB, Jespers W, van Vlijmen HWT, IJzerman AP, van Westen GJP. Interacting with GPCRs: Using Interaction Fingerprints for Virtual Screening. J Chem Inf Model 2016; 56:2053-2060. [PMID: 27626908 DOI: 10.1021/acs.jcim.6b00314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The expanding number of crystal structures of G protein-coupled receptors (GPCRs) has increased the knowledge on receptor function and their ability to recognize ligands. Although structure-based virtual screening has been quite successful on GPCRs, scores obtained by docking are typically not indicative for ligand affinity. Methods capturing interactions between protein and ligand in a more explicit manner, such as interaction fingerprints (IFPs), have been applied as an addition or alternative to docking. Originally IFPs captured the interactions of amino acid residues with ligands with specific definitions for the various interaction types. More complex IFPs now capture atom-atom interactions, such as in SYBYL, or fragment-fragment co-occurrences such as in SPLIF. Overall, most of the IFPs have been studied in comparison with docking in retrospective studies. For GPCRs it remains unclear which IFP should be used, if at all, and in what manner. Thus, the performance between five different IFPs was compared on five different representative GPCRs, including several extensions of the original implementations,. Results show that the more detailed IFPs, SYBYL and SPLIF, perform better than the other IFPs (Deng, Credo, and Elements). SPLIF was further tuned based on the number of poses, fingerprint similarity coefficient, and using an ensemble of structures. Enrichments were obtained that were significantly higher than initial enrichments and those obtained by 2D-similarity. With the increase in available crystal structures for GPCRs, and given that IFPs such as SPLIF enhance enrichment in virtual screens, it is anticipated that IFPs will be used in conjunction with docking, especially for GPCRs with a large binding pocket.
Collapse
Affiliation(s)
- Eelke B Lenselink
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , 2333 CC Leiden, The Netherlands
| | - Willem Jespers
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , 2333 CC Leiden, The Netherlands
| | - Herman W T van Vlijmen
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , 2333 CC Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , 2333 CC Leiden, The Netherlands
| | - Gerard J P van Westen
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University , 2333 CC Leiden, The Netherlands
| |
Collapse
|
15
|
Molecular interaction fingerprint approaches for GPCR drug discovery. Curr Opin Pharmacol 2016; 30:59-68. [PMID: 27479316 DOI: 10.1016/j.coph.2016.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/23/2023]
Abstract
Protein-ligand interaction fingerprints (IFPs) are binary 1D representations of the 3D structure of protein-ligand complexes encoding the presence or absence of specific interactions between the binding pocket amino acids and the ligand. Various implementations of IFPs have been developed and successfully applied for post-processing molecular docking results for G Protein-Coupled Receptor (GPCR) ligand binding mode prediction and virtual ligand screening. Novel interaction fingerprint methods enable structural chemogenomics and polypharmacology predictions by complementing the increasing amount of GPCR structural data. Machine learning methods are increasingly used to derive relationships between bioactivity data and fingerprint descriptors of chemical and structural information of binding sites, ligands, and protein-ligand interactions. Factors that influence the application of IFPs include structure preparation, binding site definition, fingerprint similarity assessment, and data processing and these factors pose challenges as well possibilities to optimize interaction fingerprint methods for GPCR drug discovery.
Collapse
|
16
|
Tanramluk D, Narupiyakul L, Akavipat R, Gong S, Charoensawan V. MANORAA (Mapping Analogous Nuclei Onto Residue And Affinity) for identifying protein-ligand fragment interaction, pathways and SNPs. Nucleic Acids Res 2016; 44:W514-21. [PMID: 27131358 PMCID: PMC4987895 DOI: 10.1093/nar/gkw314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 11/15/2022] Open
Abstract
Protein-ligand interaction analysis is an important step of drug design and protein engineering in order to predict the binding affinity and selectivity between ligands to the target proteins. To date, there are more than 100 000 structures available in the Protein Data Bank (PDB), of which ∼30% are protein-ligand (MW below 1000 Da) complexes. We have developed the integrative web server MANORAA (Mapping Analogous Nuclei Onto Residue And Affinity) with the aim of providing a user-friendly web interface to assist structural study and design of protein-ligand interactions. In brief, the server allows the users to input the chemical fragments and present all the unique molecular interactions to the target proteins with available three-dimensional structures in the PDB. The users can also link the ligands of interest to assess possible off-target proteins, human variants and pathway information using our all-in-one integrated tools. Taken together, we envisage that the server will facilitate and improve the study of protein-ligand interactions by allowing observation and comparison of ligand interactions with multiple proteins at the same time. (http://manoraa.org).
Collapse
Affiliation(s)
- Duangrudee Tanramluk
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand Integrative Computational BioScience (ICBS) Center, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Lalita Narupiyakul
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand Department of Computer Engineering, Faculty of Engineering, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Ruj Akavipat
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand Department of Computer Science, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Sungsam Gong
- Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge CB2 0SW, UK
| | - Varodom Charoensawan
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand Department of Biochemistry, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
17
|
Impact of germline and somatic missense variations on drug binding sites. THE PHARMACOGENOMICS JOURNAL 2016; 17:128-136. [PMID: 26810135 PMCID: PMC5380835 DOI: 10.1038/tpj.2015.97] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/02/2015] [Accepted: 11/13/2015] [Indexed: 11/10/2022]
Abstract
Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein–drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein–drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein–drug binding sites. Using this method we identified 12 993 amino acid–drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid–drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid–drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid–drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein–drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein–drug binding predicted drug target proteins and prevalence of both somatic and germline nsSNVs that disrupt these binding sites can provide valuable knowledge for personalized medicine treatment. A web portal is available where nsSNVs from individual patient can be checked by scanning against DrugVar to determine whether any of the SNVs affect the binding of any drug in the database.
Collapse
|
18
|
Metri R, Hariharaputran S, Ramakrishnan G, Anand P, Raghavender US, Ochoa-Montaño B, Higueruelo AP, Sowdhamini R, Chandra NR, Blundell TL, Srinivasan N. SInCRe-structural interactome computational resource for Mycobacterium tuberculosis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav060. [PMID: 26130660 PMCID: PMC4485431 DOI: 10.1093/database/bav060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/26/2015] [Indexed: 11/20/2022]
Abstract
We have developed an integrated database for Mycobacterium tuberculosis H37Rv (Mtb) that collates information on protein sequences, domain assignments, functional annotation and 3D structural information along with protein–protein and protein–small molecule interactions. SInCRe (Structural Interactome Computational Resource) is developed out of CamBan (Cambridge and Bangalore) collaboration. The motivation for development of this database is to provide an integrated platform to allow easily access and interpretation of data and results obtained by all the groups in CamBan in the field of Mtb informatics. In-house algorithms and databases developed independently by various academic groups in CamBan are used to generate Mtb-specific datasets and are integrated in this database to provide a structural dimension to studies on tuberculosis. The SInCRe database readily provides information on identification of functional domains, genome-scale modelling of structures of Mtb proteins and characterization of the small-molecule binding sites within Mtb. The resource also provides structure-based function annotation, information on small-molecule binders including FDA (Food and Drug Administration)-approved drugs, protein–protein interactions (PPIs) and natural compounds that bind to pathogen proteins potentially and result in weakening or elimination of host–pathogen protein–protein interactions. Together they provide prerequisites for identification of off-target binding. Database URL:http://proline.biochem.iisc.ernet.in/sincre
Collapse
Affiliation(s)
- Rahul Metri
- Department of Biochemistry and Indian Institute of Science Mathematics Initiative, Indian Institute of Science, Bangalore, India
| | - Sridhar Hariharaputran
- Department of Biochemistry and National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bellary Road, Bangalore, India
| | - Gayatri Ramakrishnan
- Indian Institute of Science Mathematics Initiative, Indian Institute of Science, Bangalore, India, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India, and
| | | | | | | | - Alicia P Higueruelo
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bellary Road, Bangalore, India
| | | | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | | |
Collapse
|
19
|
Ochoa-Montaño B, Mohan N, Blundell TL. CHOPIN: a web resource for the structural and functional proteome of Mycobacterium tuberculosis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav026. [PMID: 25833954 PMCID: PMC4381106 DOI: 10.1093/database/bav026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/01/2015] [Indexed: 11/18/2022]
Abstract
Tuberculosis kills more than a million people annually and presents increasingly high levels of resistance against current first line drugs. Structural information about Mycobacterium tuberculosis (Mtb) proteins is a valuable asset for the development of novel drugs and for understanding the biology of the bacterium; however, only about 10% of the ∼4000 proteins have had their structures determined experimentally. The CHOPIN database assigns structural domains and generates homology models for 2911 sequences, corresponding to ∼73% of the proteome. A sophisticated pipeline allows multiple models to be created using conformational states characteristic of different oligomeric states and ligand binding, such that the models reflect various functional states of the proteins. Additionally, CHOPIN includes structural analyses of mutations potentially associated with drug resistance. Results are made available at the web interface, which also serves as an automatically updated repository of all published Mtb experimental structures. Its RESTful interface allows direct and flexible access to structures and metadata via intuitive URLs, enabling easy programmatic use of the models. Database URL: http://structure.bioc.cam.ac.uk/chopin
Collapse
Affiliation(s)
- Bernardo Ochoa-Montaño
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Nishita Mohan
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
20
|
Wu Q, Jubb H, Blundell TL. Phosphopeptide interactions with BRCA1 BRCT domains: More than just a motif. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:143-148. [PMID: 25701377 PMCID: PMC4728184 DOI: 10.1016/j.pbiomolbio.2015.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/05/2015] [Accepted: 02/10/2015] [Indexed: 01/15/2023]
Abstract
BRCA1 BRCT domains function as phosphoprotein-binding modules for recognition of the phosphorylated protein-sequence motif pSXXF. While the motif interaction interface provides strong anchor points for binding, protein regions outside the motif have recently been found to be important for binding affinity. In this review, we compare the available structural data for BRCA1 BRCT domains in complex with phosphopeptides in order to gain a more complete understanding of the interaction between phosphopeptides and BRCA1-BRCT domains.
Collapse
Affiliation(s)
- Qian Wu
- Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, CB2 1GA, Cambridge, United Kingdom.
| | - Harry Jubb
- Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, CB2 1GA, Cambridge, United Kingdom
| | - Tom L Blundell
- Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, CB2 1GA, Cambridge, United Kingdom
| |
Collapse
|
21
|
Abstract
Protein-protein interactions are central to all cellular processes. Understanding of protein-protein interactions is therefore fundamental for many areas of biochemical and biomedical research and will facilitate an understanding of the cell process-regulating machinery, disease causative mechanisms, biomarkers, drug target discovery and drug development. In this review, we summarize methods for populating and analyzing the interactome, highlighting their advantages and disadvantages. Applications of interactomics in both the biochemical and clinical arenas are presented, illustrating important recent advances in the field.
Collapse
Affiliation(s)
- Shachuan Feng
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, PR China
| | | | | | | | | |
Collapse
|
22
|
Polyphony: superposition independent methods for ensemble-based drug discovery. BMC Bioinformatics 2014; 15:324. [PMID: 25265915 PMCID: PMC4261739 DOI: 10.1186/1471-2105-15-324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/17/2014] [Indexed: 12/04/2022] Open
Abstract
Background Structure-based drug design is an iterative process, following cycles of structural biology, computer-aided design, synthetic chemistry and bioassay. In favorable circumstances, this process can lead to the structures of hundreds of protein-ligand crystal structures. In addition, molecular dynamics simulations are increasingly being used to further explore the conformational landscape of these complexes. Currently, methods capable of the analysis of ensembles of crystal structures and MD trajectories are limited and usually rely upon least squares superposition of coordinates. Results Novel methodologies are described for the analysis of multiple structures of a protein. Statistical approaches that rely upon residue equivalence, but not superposition, are developed. Tasks that can be performed include the identification of hinge regions, allosteric conformational changes and transient binding sites. The approaches are tested on crystal structures of CDK2 and other CMGC protein kinases and a simulation of p38α. Known interaction - conformational change relationships are highlighted but also new ones are revealed. A transient but druggable allosteric pocket in CDK2 is predicted to occur under the CMGC insert. Furthermore, an evolutionarily-conserved conformational link from the location of this pocket, via the αEF-αF loop, to phosphorylation sites on the activation loop is discovered. Conclusions New methodologies are described and validated for the superimposition independent conformational analysis of large collections of structures or simulation snapshots of the same protein. The methodologies are encoded in a Python package called Polyphony, which is released as open source to accompany this paper [http://wrpitt.bitbucket.org/polyphony/].
Collapse
|
23
|
Inhester T, Rarey M. Protein-ligand interaction databases: advanced tools to mine activity data and interactions on a structural level. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014. [DOI: 10.1002/wcms.1192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Therese Inhester
- Center for Bioinformatics; University of Hamburg; Hamburg Germany
| | - Matthias Rarey
- Center for Bioinformatics; University of Hamburg; Hamburg Germany
| |
Collapse
|
24
|
Anand P, Nagarajan D, Mukherjee S, Chandra N. PLIC: protein-ligand interaction clusters. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau029. [PMID: 24763918 PMCID: PMC3998096 DOI: 10.1093/database/bau029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most of the biological processes are governed through specific protein–ligand interactions. Discerning different components that contribute toward a favorable protein– ligand interaction could contribute significantly toward better understanding protein function, rationalizing drug design and obtaining design principles for protein engineering. The Protein Data Bank (PDB) currently hosts the structure of ∼68 000 protein–ligand complexes. Although several databases exist that classify proteins according to sequence and structure, a mere handful of them annotate and classify protein–ligand interactions and provide information on different attributes of molecular recognition. In this study, an exhaustive comparison of all the biologically relevant ligand-binding sites (84 846 sites) has been conducted using PocketMatch: a rapid, parallel, in-house algorithm. PocketMatch quantifies the similarity between binding sites based on structural descriptors and residue attributes. A similarity network was constructed using binding sites whose PocketMatch scores exceeded a high similarity threshold (0.80). The binding site similarity network was clustered into discrete sets of similar sites using the Markov clustering (MCL) algorithm. Furthermore, various computational tools have been used to study different attributes of interactions within the individual clusters. The attributes can be roughly divided into (i) binding site characteristics including pocket shape, nature of residues and interaction profiles with different kinds of atomic probes, (ii) atomic contacts consisting of various types of polar, hydrophobic and aromatic contacts along with binding site water molecules that could play crucial roles in protein–ligand interactions and (iii) binding energetics involved in interactions derived from scoring functions developed for docking. For each ligand-binding site in each protein in the PDB, site similarity information, clusters they belong to and description of site attributes are provided as a relational database—protein–ligand interaction clusters (PLIC). Database URL: http://proline.biochem.iisc.ernet.in/PLIC
Collapse
Affiliation(s)
- Praveen Anand
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India and IISc Mathematics Initiative, Indian Institute of Science, Banglaore 560012, Karnataka, India
| | | | | | | |
Collapse
|
25
|
Finn RD, Miller BL, Clements J, Bateman A. iPfam: a database of protein family and domain interactions found in the Protein Data Bank. Nucleic Acids Res 2013; 42:D364-73. [PMID: 24297255 PMCID: PMC3965099 DOI: 10.1093/nar/gkt1210] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The database iPfam, available at http://ipfam.org, catalogues Pfam domain interactions based on known 3D structures that are found in the Protein Data Bank, providing interaction data at the molecular level. Previously, the iPfam domain–domain interaction data was integrated within the Pfam database and website, but it has now been migrated to a separate database. This allows for independent development, improving data access and giving clearer separation between the protein family and interactions datasets. In addition to domain–domain interactions, iPfam has been expanded to include interaction data for domain bound small molecule ligands. Functional annotations are provided from source databases, supplemented by the incorporation of Wikipedia articles where available. iPfam (version 1.0) contains >9500 domain–domain and 15 500 domain–ligand interactions. The new website provides access to this data in a variety of ways, including interactive visualizations of the interaction data.
Collapse
Affiliation(s)
- Robert D Finn
- HHMI Janelia Farm Research Campus, 19700 Helix Drive, Ashburn VA 20147 USA and European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | | | | |
Collapse
|