1
|
Stocker M, Snyder L, Anfuso M, Ludwig O, Thießen F, Farfar KE, Haris M, Oelen A, Jaradeh MY. Rethinking the production and publication of machine-readable expressions of research findings. Sci Data 2025; 12:677. [PMID: 40307293 PMCID: PMC12043899 DOI: 10.1038/s41597-025-04905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Scientific literature is the primary expression of scientific knowledge and an important source of research data. However, scientific knowledge expressed in narrative text documents is not inherently machine readable. To facilitate knowledge reuse, knowledge must be extracted from articles and organized into databases post-publication. The high time costs and inaccuracies associated with completing these activities manually has driven the development of techniques that automate knowledge extraction. Tackling the problem with a different mindset, we propose a pre-publication approach, known as reborn, that ensures scientific knowledge is born readable, i.e. produced in a machine-readable format with formal data syntax during knowledge production. We implement the approach using the Open Research Knowledge Graph infrastructure for FAIR scientific knowledge organization. With a focus on statistical research findings, we test the approach with three use cases in soil science, computer science, and agroecology. Our results suggest that the proposed approach is superior compared to classical manual and semi-automated post-publication extraction techniques in terms of knowledge accuracy, richness, and reproducibility as well as technological simplicity.
Collapse
Affiliation(s)
- Markus Stocker
- TIB - Leibniz Information Centre for Science and Technology, 30167, Hannover, Germany.
- Leibniz University Hannover, Institute of Data Science, 30167, Hannover, Germany.
| | - Lauren Snyder
- TIB - Leibniz Information Centre for Science and Technology, 30167, Hannover, Germany
| | - Matthew Anfuso
- Leibniz University Hannover, Institute of Data Science, 30167, Hannover, Germany
| | - Oliver Ludwig
- Leibniz University Hannover, Institute of Data Science, 30167, Hannover, Germany
| | - Freya Thießen
- TIB - Leibniz Information Centre for Science and Technology, 30167, Hannover, Germany
| | - Kheir Eddine Farfar
- TIB - Leibniz Information Centre for Science and Technology, 30167, Hannover, Germany
| | - Muhammad Haris
- TIB - Leibniz Information Centre for Science and Technology, 30167, Hannover, Germany
| | - Allard Oelen
- TIB - Leibniz Information Centre for Science and Technology, 30167, Hannover, Germany
| | | |
Collapse
|
2
|
Kim S, Yu B, Li Q, Bolton EE. PubChem synonym filtering process using crowdsourcing. J Cheminform 2024; 16:69. [PMID: 38880887 PMCID: PMC11181558 DOI: 10.1186/s13321-024-00868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
PubChem ( https://pubchem.ncbi.nlm.nih.gov ) is a public chemical information resource containing more than 100 million unique chemical structures. One of the most requested tasks in PubChem and other chemical databases is to search chemicals by name (also commonly called a "chemical synonym"). PubChem performs this task by looking up chemical synonym-structure associations provided by individual depositors to PubChem. In addition, these synonyms are used for many purposes, including creating links between chemicals and PubMed articles (using Medical Subject Headings (MeSH) terms). However, these depositor-provided name-structure associations are subject to substantial discrepancies within and between depositors, making it difficult to unambiguously map a chemical name to a specific chemical structure. The present paper describes PubChem's crowdsourcing-based synonym filtering strategy, which resolves inter- and intra-depositor discrepancies in synonym-structure associations as well as in the chemical-MeSH associations. The PubChem synonym filtering process was developed based on the analysis of four crowd-voting strategies, which differ in the consistency threshold value employed (60% vs 70%) and how to resolve intra-depositor discrepancies (a single vote vs. multiple votes per depositor) prior to inter-depositor crowd-voting. The agreement of voting was determined at six levels of chemical equivalency, which considers varying isotopic composition, stereochemistry, and connectivity of chemical structures and their primary components. While all four strategies showed comparable results, Strategy I (one vote per depositor with a 60% consistency threshold) resulted in the most synonyms assigned to a single chemical structure as well as the most synonym-structure associations disambiguated at the six chemical equivalency contexts. Based on the results of this study, Strategy I was implemented in PubChem's filtering process that cleans up synonym-structure associations as well as chemical-MeSH associations. This consistency-based filtering process is designed to look for a consensus in name-structure associations but cannot attest to their correctness. As a result, it can fail to recognize correct name-structure associations (or incorrect ones), for example, when a synonym is provided by only one depositor or when many contributors are incorrect. However, this filtering process is an important starting point for quality control in name-structure associations in large chemical databases like PubChem.
Collapse
Affiliation(s)
- Sunghwan Kim
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Bo Yu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Qingliang Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Evan E Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
3
|
Lee K, Wei CH, Lu Z. Recent advances of automated methods for searching and extracting genomic variant information from biomedical literature. Brief Bioinform 2021; 22:bbaa142. [PMID: 32770181 PMCID: PMC8138883 DOI: 10.1093/bib/bbaa142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/07/2020] [Accepted: 06/25/2020] [Indexed: 12/28/2022] Open
Abstract
MOTIVATION To obtain key information for personalized medicine and cancer research, clinicians and researchers in the biomedical field are in great need of searching genomic variant information from the biomedical literature now than ever before. Due to the various written forms of genomic variants, however, it is difficult to locate the right information from the literature when using a general literature search system. To address the difficulty of locating genomic variant information from the literature, researchers have suggested various solutions based on automated literature-mining techniques. There is, however, no study for summarizing and comparing existing tools for genomic variant literature mining in terms of how to search easily for information in the literature on genomic variants. RESULTS In this article, we systematically compared currently available genomic variant recognition and normalization tools as well as the literature search engines that adopted these literature-mining techniques. First, we explain the problems that are caused by the use of non-standard formats of genomic variants in the PubMed literature by considering examples from the literature and show the prevalence of the problem. Second, we review literature-mining tools that address the problem by recognizing and normalizing the various forms of genomic variants in the literature and systematically compare them. Third, we present and compare existing literature search engines that are designed for a genomic variant search by using the literature-mining techniques. We expect this work to be helpful for researchers who seek information about genomic variants from the literature, developers who integrate genomic variant information from the literature and beyond.
Collapse
Affiliation(s)
- Kyubum Lee
- National Center for Biotechnology Information
| | | | - Zhiyong Lu
- National Center for Biotechnology Information
| |
Collapse
|
4
|
Wei CH, Allot A, Leaman R, Lu Z. PubTator central: automated concept annotation for biomedical full text articles. Nucleic Acids Res 2020; 47:W587-W593. [PMID: 31114887 DOI: 10.1093/nar/gkz389] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/08/2019] [Accepted: 04/30/2019] [Indexed: 11/12/2022] Open
Abstract
PubTator Central (https://www.ncbi.nlm.nih.gov/research/pubtator/) is a web service for viewing and retrieving bioconcept annotations in full text biomedical articles. PubTator Central (PTC) provides automated annotations from state-of-the-art text mining systems for genes/proteins, genetic variants, diseases, chemicals, species and cell lines, all available for immediate download. PTC annotates PubMed (29 million abstracts) and the PMC Text Mining subset (3 million full text articles). The new PTC web interface allows users to build full text document collections and visualize concept annotations in each document. Annotations are downloadable in multiple formats (XML, JSON and tab delimited) via the online interface, a RESTful web service and bulk FTP. Improved concept identification systems and a new disambiguation module based on deep learning increase annotation accuracy, and the new server-side architecture is significantly faster. PTC is synchronized with PubMed and PubMed Central, with new articles added daily. The original PubTator service has served annotated abstracts for ∼300 million requests, enabling third-party research in use cases such as biocuration support, gene prioritization, genetic disease analysis, and literature-based knowledge discovery. We demonstrate the full text results in PTC significantly increase biomedical concept coverage and anticipate this expansion will both enhance existing downstream applications and enable new use cases.
Collapse
Affiliation(s)
- Chih-Hsuan Wei
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexis Allot
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Robert Leaman
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
5
|
Neural network-based approaches for biomedical relation classification: A review. J Biomed Inform 2019; 99:103294. [DOI: 10.1016/j.jbi.2019.103294] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/02/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022]
|
6
|
Tsueng G, Nanis M, Fouquier JT, Mayers M, Good BM, Su AI. Applying citizen science to gene, drug and disease relationship extraction from biomedical abstracts. Bioinformatics 2019; 36:1226-1233. [PMID: 31504205 PMCID: PMC8104067 DOI: 10.1093/bioinformatics/btz678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/05/2019] [Accepted: 08/29/2019] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Biomedical literature is growing at a rate that outpaces our ability to harness the knowledge contained therein. To mine valuable inferences from the large volume of literature, many researchers use information extraction algorithms to harvest information in biomedical texts. Information extraction is usually accomplished via a combination of manual expert curation and computational methods. Advances in computational methods usually depend on the time-consuming generation of gold standards by a limited number of expert curators. Citizen science is public participation in scientific research. We previously found that citizen scientists are willing and capable of performing named entity recognition of disease mentions in biomedical abstracts, but did not know if this was true with relationship extraction (RE). RESULTS In this article, we introduce the Relationship Extraction Module of the web-based application Mark2Cure (M2C) and demonstrate that citizen scientists can perform RE. We confirm the importance of accurate named entity recognition on user performance of RE and identify design issues that impacted data quality. We find that the data generated by citizen scientists can be used to identify relationship types not currently available in the M2C Relationship Extraction Module. We compare the citizen science-generated data with algorithm-mined data and identify ways in which the two approaches may complement one another. We also discuss opportunities for future improvement of this system, as well as the potential synergies between citizen science, manual biocuration and natural language processing. AVAILABILITY AND IMPLEMENTATION Mark2Cure platform: https://mark2cure.org; Mark2Cure source code: https://github.com/sulab/mark2cure; and data and analysis code for this article: https://github.com/gtsueng/M2C_rel_nb. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Max Nanis
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jennifer T Fouquier
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Mayers
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin M Good
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew I Su
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Xu J, Yang P, Xue S, Sharma B, Sanchez-Martin M, Wang F, Beaty KA, Dehan E, Parikh B. Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. Hum Genet 2019; 138:109-124. [PMID: 30671672 PMCID: PMC6373233 DOI: 10.1007/s00439-019-01970-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
In the field of cancer genomics, the broad availability of genetic information offered by next-generation sequencing technologies and rapid growth in biomedical publication has led to the advent of the big-data era. Integration of artificial intelligence (AI) approaches such as machine learning, deep learning, and natural language processing (NLP) to tackle the challenges of scalability and high dimensionality of data and to transform big data into clinically actionable knowledge is expanding and becoming the foundation of precision medicine. In this paper, we review the current status and future directions of AI application in cancer genomics within the context of workflows to integrate genomic analysis for precision cancer care. The existing solutions of AI and their limitations in cancer genetic testing and diagnostics such as variant calling and interpretation are critically analyzed. Publicly available tools or algorithms for key NLP technologies in the literature mining for evidence-based clinical recommendations are reviewed and compared. In addition, the present paper highlights the challenges to AI adoption in digital healthcare with regard to data requirements, algorithmic transparency, reproducibility, and real-world assessment, and discusses the importance of preparing patients and physicians for modern digitized healthcare. We believe that AI will remain the main driver to healthcare transformation toward precision medicine, yet the unprecedented challenges posed should be addressed to ensure safety and beneficial impact to healthcare.
Collapse
Affiliation(s)
- Jia Xu
- IBM Watson Health, Cambridge, MA, USA.
| | | | - Shang Xue
- IBM Watson Health, Cambridge, MA, USA
| | | | | | - Fang Wang
- IBM Watson Health, Cambridge, MA, USA
| | | | | | | |
Collapse
|
8
|
Wei CH, Phan L, Feltz J, Maiti R, Hefferon T, Lu Z. tmVar 2.0: integrating genomic variant information from literature with dbSNP and ClinVar for precision medicine. Bioinformatics 2018; 34:80-87. [PMID: 28968638 DOI: 10.1093/bioinformatics/btx541] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/31/2017] [Indexed: 11/12/2022] Open
Abstract
Motivation Despite significant efforts in expert curation, clinical relevance about most of the 154 million dbSNP reference variants (RS) remains unknown. However, a wealth of knowledge about the variant biological function/disease impact is buried in unstructured literature data. Previous studies have attempted to harvest and unlock such information with text-mining techniques but are of limited use because their mutation extraction results are not standardized or integrated with curated data. Results We propose an automatic method to extract and normalize variant mentions to unique identifiers (dbSNP RSIDs). Our method, in benchmarking results, demonstrates a high F-measure of ∼90% and compared favorably to the state of the art. Next, we applied our approach to the entire PubMed and validated the results by verifying that each extracted variant-gene pair matched the dbSNP annotation based on mapped genomic position, and by analyzing variants curated in ClinVar. We then determined which text-mined variants and genes constituted novel discoveries. Our analysis reveals 41 889 RS numbers (associated with 9151 genes) not found in ClinVar. Moreover, we obtained a rich set worth further review: 12 462 rare variants (MAF ≤ 0.01) in 3849 genes which are presumed to be deleterious and not frequently found in the general population. To our knowledge, this is the first large-scale study to analyze and integrate text-mined variant data with curated knowledge in existing databases. Our results suggest that databases can be significantly enriched by text mining and that the combined information can greatly assist human efforts in evaluating/prioritizing variants in genomic research. Availability and implementation The tmVar 2.0 source code and corpus are freely available at https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/tmvar/. Contact zhiyong.lu@nih.gov.
Collapse
Affiliation(s)
- Chih-Hsuan Wei
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), Bethesda, MD 20894, USA
| | - Lon Phan
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), Bethesda, MD 20894, USA
| | - Juliana Feltz
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), Bethesda, MD 20894, USA
| | - Rama Maiti
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), Bethesda, MD 20894, USA
| | - Tim Hefferon
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), Bethesda, MD 20894, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), Bethesda, MD 20894, USA
| |
Collapse
|
9
|
Lee K, Famiglietti ML, McMahon A, Wei CH, MacArthur JAL, Poux S, Breuza L, Bridge A, Cunningham F, Xenarios I, Lu Z. Scaling up data curation using deep learning: An application to literature triage in genomic variation resources. PLoS Comput Biol 2018; 14:e1006390. [PMID: 30102703 PMCID: PMC6107285 DOI: 10.1371/journal.pcbi.1006390] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/23/2018] [Accepted: 07/24/2018] [Indexed: 11/18/2022] Open
Abstract
Manually curating biomedical knowledge from publications is necessary to build a knowledge based service that provides highly precise and organized information to users. The process of retrieving relevant publications for curation, which is also known as document triage, is usually carried out by querying and reading articles in PubMed. However, this query-based method often obtains unsatisfactory precision and recall on the retrieved results, and it is difficult to manually generate optimal queries. To address this, we propose a machine-learning assisted triage method. We collect previously curated publications from two databases UniProtKB/Swiss-Prot and the NHGRI-EBI GWAS Catalog, and used them as a gold-standard dataset for training deep learning models based on convolutional neural networks. We then use the trained models to classify and rank new publications for curation. For evaluation, we apply our method to the real-world manual curation process of UniProtKB/Swiss-Prot and the GWAS Catalog. We demonstrate that our machine-assisted triage method outperforms the current query-based triage methods, improves efficiency, and enriches curated content. Our method achieves a precision 1.81 and 2.99 times higher than that obtained by the current query-based triage methods of UniProtKB/Swiss-Prot and the GWAS Catalog, respectively, without compromising recall. In fact, our method retrieves many additional relevant publications that the query-based method of UniProtKB/Swiss-Prot could not find. As these results show, our machine learning-based method can make the triage process more efficient and is being implemented in production so that human curators can focus on more challenging tasks to improve the quality of knowledge bases. As the volume of literature on genomic variants continues to grow at an increasing rate, it is becoming more difficult for a curator of a variant knowledge base to keep up with and curate all the published papers. Here, we suggest a deep learning-based literature triage method for genomic variation resources. Our method achieves state-of-the-art performance on the triage task. Moreover, our model does not require any laborious preprocessing or feature engineering steps, which are required for traditional machine learning triage methods. We applied our method to the literature triage process of UniProtKB/Swiss-Prot and the NHGRI-EBI GWAS Catalog for genomic variation by collaborating with the database curators. Both the manual curation teams confirmed that our method achieved higher precision than their previous query-based triage methods without compromising recall. Both results show that our method is more efficient and can replace the traditional query-based triage methods of manually curated databases. Our method can give human curators more time to focus on more challenging tasks such as actual curation as well as the discovery of novel papers/experimental techniques to consider for inclusion.
Collapse
Affiliation(s)
- Kyubum Lee
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | | | - Aoife McMahon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Chih-Hsuan Wei
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Jacqueline Ann Langdon MacArthur
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sylvain Poux
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Lionel Breuza
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Alan Bridge
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Ioannis Xenarios
- Center for Integrative Genomics, University of Lausanne, Lausanne Switzerland.,Department of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
|
11
|
Créquit P, Mansouri G, Benchoufi M, Vivot A, Ravaud P. Mapping of Crowdsourcing in Health: Systematic Review. J Med Internet Res 2018; 20:e187. [PMID: 29764795 PMCID: PMC5974463 DOI: 10.2196/jmir.9330] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/10/2018] [Accepted: 03/14/2018] [Indexed: 11/22/2022] Open
Abstract
Background Crowdsourcing involves obtaining ideas, needed services, or content by soliciting Web-based contributions from a crowd. The 4 types of crowdsourced tasks (problem solving, data processing, surveillance or monitoring, and surveying) can be applied in the 3 categories of health (promotion, research, and care). Objective This study aimed to map the different applications of crowdsourcing in health to assess the fields of health that are using crowdsourcing and the crowdsourced tasks used. We also describe the logistics of crowdsourcing and the characteristics of crowd workers. Methods MEDLINE, EMBASE, and ClinicalTrials.gov were searched for available reports from inception to March 30, 2016, with no restriction on language or publication status. Results We identified 202 relevant studies that used crowdsourcing, including 9 randomized controlled trials, of which only one had posted results at ClinicalTrials.gov. Crowdsourcing was used in health promotion (91/202, 45.0%), research (73/202, 36.1%), and care (38/202, 18.8%). The 4 most frequent areas of application were public health (67/202, 33.2%), psychiatry (32/202, 15.8%), surgery (22/202, 10.9%), and oncology (14/202, 6.9%). Half of the reports (99/202, 49.0%) referred to data processing, 34.6% (70/202) referred to surveying, 10.4% (21/202) referred to surveillance or monitoring, and 5.9% (12/202) referred to problem-solving. Labor market platforms (eg, Amazon Mechanical Turk) were used in most studies (190/202, 94%). The crowd workers’ characteristics were poorly reported, and crowdsourcing logistics were missing from two-thirds of the reports. When reported, the median size of the crowd was 424 (first and third quartiles: 167-802); crowd workers’ median age was 34 years (32-36). Crowd workers were mainly recruited nationally, particularly in the United States. For many studies (58.9%, 119/202), previous experience in crowdsourcing was required, and passing a qualification test or training was seldom needed (11.9% of studies; 24/202). For half of the studies, monetary incentives were mentioned, with mainly less than US $1 to perform the task. The time needed to perform the task was mostly less than 10 min (58.9% of studies; 119/202). Data quality validation was used in 54/202 studies (26.7%), mainly by attention check questions or by replicating the task with several crowd workers. Conclusions The use of crowdsourcing, which allows access to a large pool of participants as well as saving time in data collection, lowering costs, and speeding up innovations, is increasing in health promotion, research, and care. However, the description of crowdsourcing logistics and crowd workers’ characteristics is frequently missing in study reports and needs to be precisely reported to better interpret the study findings and replicate them.
Collapse
Affiliation(s)
- Perrine Créquit
- INSERM UMR1153, Methods Team, Epidemiology and Statistics Sorbonne Paris Cité Research Center, Paris Descartes University, Paris, France.,Centre d'Epidémiologie Clinique, Hôpital Hôtel Dieu, Assistance Publique des Hôpitaux de Paris, Paris, France.,Cochrane France, Paris, France
| | - Ghizlène Mansouri
- INSERM UMR1153, Methods Team, Epidemiology and Statistics Sorbonne Paris Cité Research Center, Paris Descartes University, Paris, France
| | - Mehdi Benchoufi
- Centre d'Epidémiologie Clinique, Hôpital Hôtel Dieu, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Alexandre Vivot
- INSERM UMR1153, Methods Team, Epidemiology and Statistics Sorbonne Paris Cité Research Center, Paris Descartes University, Paris, France.,Centre d'Epidémiologie Clinique, Hôpital Hôtel Dieu, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Philippe Ravaud
- INSERM UMR1153, Methods Team, Epidemiology and Statistics Sorbonne Paris Cité Research Center, Paris Descartes University, Paris, France.,Centre d'Epidémiologie Clinique, Hôpital Hôtel Dieu, Assistance Publique des Hôpitaux de Paris, Paris, France.,Cochrane France, Paris, France.,Department of Epidemiology, Columbia University, Mailman School of Public Health, New York, NY, United States
| |
Collapse
|
12
|
Abstract
Background Crowdsourcing is a nascent phenomenon that has grown exponentially since it was coined in 2006. It involves a large group of people solving a problem or completing a task for an individual or, more commonly, for an organisation. While the field of crowdsourcing has developed more quickly in information technology, it has great promise in health applications. This review examines uses of crowdsourcing in global health and health, broadly. Methods Semantic searches were run in Google Scholar for “crowdsourcing,” “crowdsourcing and health,” and similar terms. 996 articles were retrieved and all abstracts were scanned. 285 articles related to health. This review provides a narrative overview of the articles identified. Results Eight areas where crowdsourcing has been used in health were identified: diagnosis; surveillance; nutrition; public health and environment; education; genetics; psychology; and, general medicine/other. Many studies reported crowdsourcing being used in a diagnostic or surveillance capacity. Crowdsourcing has been widely used across medical disciplines; however, it is important for future work using crowdsourcing to consider the appropriateness of the crowd being used to ensure the crowd is capable and has the adequate knowledge for the task at hand. Gamification of tasks seems to improve accuracy; other innovative methods of analysis including introducing thresholds and measures of trustworthiness should be considered. Conclusion Crowdsourcing is a new field that has been widely used and is innovative and adaptable. With the exception of surveillance applications that are used in emergency and disaster situations, most uses of crowdsourcing have only been used as pilots. These exceptions demonstrate that it is possible to take crowdsourcing applications to scale. Crowdsourcing has the potential to provide more accessible health care to more communities and individuals rapidly and to lower costs of care.
Collapse
Affiliation(s)
- Kerri Wazny
- Centre for Global Health Research, Usher Institute of Informatics and Population Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Lee K, Kim B, Choi Y, Kim S, Shin W, Lee S, Park S, Kim S, Tan AC, Kang J. Deep learning of mutation-gene-drug relations from the literature. BMC Bioinformatics 2018; 19:21. [PMID: 29368597 PMCID: PMC5784504 DOI: 10.1186/s12859-018-2029-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 01/17/2018] [Indexed: 12/31/2022] Open
Abstract
Background Molecular biomarkers that can predict drug efficacy in cancer patients are crucial components for the advancement of precision medicine. However, identifying these molecular biomarkers remains a laborious and challenging task. Next-generation sequencing of patients and preclinical models have increasingly led to the identification of novel gene-mutation-drug relations, and these results have been reported and published in the scientific literature. Results Here, we present two new computational methods that utilize all the PubMed articles as domain specific background knowledge to assist in the extraction and curation of gene-mutation-drug relations from the literature. The first method uses the Biomedical Entity Search Tool (BEST) scoring results as some of the features to train the machine learning classifiers. The second method uses not only the BEST scoring results, but also word vectors in a deep convolutional neural network model that are constructed from and trained on numerous documents such as PubMed abstracts and Google News articles. Using the features obtained from both the BEST search engine scores and word vectors, we extract mutation-gene and mutation-drug relations from the literature using machine learning classifiers such as random forest and deep convolutional neural networks. Our methods achieved better results compared with the state-of-the-art methods. We used our proposed features in a simple machine learning model, and obtained F1-scores of 0.96 and 0.82 for mutation-gene and mutation-drug relation classification, respectively. We also developed a deep learning classification model using convolutional neural networks, BEST scores, and the word embeddings that are pre-trained on PubMed or Google News data. Using deep learning, the classification accuracy improved, and F1-scores of 0.96 and 0.86 were obtained for the mutation-gene and mutation-drug relations, respectively. Conclusion We believe that our computational methods described in this research could be used as an important tool in identifying molecular biomarkers that predict drug responses in cancer patients. We also built a database of these mutation-gene-drug relations that were extracted from all the PubMed abstracts. We believe that our database can prove to be a valuable resource for precision medicine researchers. Electronic supplementary material The online version of this article (10.1186/s12859-018-2029-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyubum Lee
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea
| | - Byounggun Kim
- Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, South Korea
| | - Yonghwa Choi
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea
| | - Sunkyu Kim
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea
| | - Wonho Shin
- Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, South Korea
| | - Sunwon Lee
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea
| | - Sungjoon Park
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea
| | - Seongsoon Kim
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea
| | - Aik Choon Tan
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Jaewoo Kang
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea. .,Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, South Korea.
| |
Collapse
|
14
|
Abstract
Deciphering gene–disease association is a crucial step in designing therapeutic strategies against diseases. There are experimental methods for identifying gene–disease associations, such as genome-wide association studies and linkage analysis, but these can be expensive and time consuming. As a result, various
in silico methods for predicting associations from these and other data have been developed using different approaches. In this article, we review some of the recent approaches to the computational prediction of gene–disease association. We look at recent advancements in algorithms, categorising them into those based on genome variation, networks, text mining, and crowdsourcing. We also look at some of the challenges faced in the computational prediction of gene–disease associations.
Collapse
Affiliation(s)
- Kenneth Opap
- University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
15
|
Singhal A, Simmons M, Lu Z. Text Mining Genotype-Phenotype Relationships from Biomedical Literature for Database Curation and Precision Medicine. PLoS Comput Biol 2016; 12:e1005017. [PMID: 27902695 PMCID: PMC5130168 DOI: 10.1371/journal.pcbi.1005017] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/04/2016] [Indexed: 11/23/2022] Open
Abstract
The practice of precision medicine will ultimately require databases of genes and mutations for healthcare providers to reference in order to understand the clinical implications of each patient’s genetic makeup. Although the highest quality databases require manual curation, text mining tools can facilitate the curation process, increasing accuracy, coverage, and productivity. However, to date there are no available text mining tools that offer high-accuracy performance for extracting such triplets from biomedical literature. In this paper we propose a high-performance machine learning approach to automate the extraction of disease-gene-variant triplets from biomedical literature. Our approach is unique because we identify the genes and protein products associated with each mutation from not just the local text content, but from a global context as well (from the Internet and from all literature in PubMed). Our approach also incorporates protein sequence validation and disease association using a novel text-mining-based machine learning approach. We extract disease-gene-variant triplets from all abstracts in PubMed related to a set of ten important diseases (breast cancer, prostate cancer, pancreatic cancer, lung cancer, acute myeloid leukemia, Alzheimer’s disease, hemochromatosis, age-related macular degeneration (AMD), diabetes mellitus, and cystic fibrosis). We then evaluate our approach in two ways: (1) a direct comparison with the state of the art using benchmark datasets; (2) a validation study comparing the results of our approach with entries in a popular human-curated database (UniProt) for each of the previously mentioned diseases. In the benchmark comparison, our full approach achieves a 28% improvement in F1-measure (from 0.62 to 0.79) over the state-of-the-art results. For the validation study with UniProt Knowledgebase (KB), we present a thorough analysis of the results and errors. Across all diseases, our approach returned 272 triplets (disease-gene-variant) that overlapped with entries in UniProt and 5,384 triplets without overlap in UniProt. Analysis of the overlapping triplets and of a stratified sample of the non-overlapping triplets revealed accuracies of 93% and 80% for the respective categories (cumulative accuracy, 77%). We conclude that our process represents an important and broadly applicable improvement to the state of the art for curation of disease-gene-variant relationships. To provide personalized health care it is important to understand patients’ genomic variations and the effect these variants have in protecting or predisposing patients to disease. Several projects aim at providing this information by manually curating such genotype-phenotype relationships in organized databases using data from clinical trials and biomedical literature. However, the exponentially increasing size of biomedical literature and the limited ability of manual curators to discover the genotype-phenotype relationships “hidden” in text has led to delays in keeping such databases updated with the current findings. The result is a bottleneck in leveraging valuable information that is currently available to develop personalized health care solutions. In the past, a few computational techniques have attempted to speed up the curation efforts by using text mining techniques to automatically mine genotype-phenotype information from biomedical literature. However, such computational approaches have not been able to achieve accuracy levels sufficient to make them appealing for practical use. In this work, we present a highly accurate machine-learning-based text mining approach for mining complete genotype-phenotype relationships from biomedical literature. We test the performance of this approach on ten well-known diseases and demonstrate the validity of our approach and its potential utility for practical purposes. We are currently working towards generating genotype-phenotype relationships for all PubMed data with the goal of developing an exhaustive database of all the known diseases in life science. We believe that this work will provide very important and needed support for implementation of personalized health care using genomic data.
Collapse
Affiliation(s)
- Ayush Singhal
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michael Simmons
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Wang Z, Monteiro CD, Jagodnik KM, Fernandez NF, Gundersen GW, Rouillard AD, Jenkins SL, Feldmann AS, Hu KS, McDermott MG, Duan Q, Clark NR, Jones MR, Kou Y, Goff T, Woodland H, Amaral FMR, Szeto GL, Fuchs O, Schüssler-Fiorenza Rose SM, Sharma S, Schwartz U, Bausela XB, Szymkiewicz M, Maroulis V, Salykin A, Barra CM, Kruth CD, Bongio NJ, Mathur V, Todoric RD, Rubin UE, Malatras A, Fulp CT, Galindo JA, Motiejunaite R, Jüschke C, Dishuck PC, Lahl K, Jafari M, Aibar S, Zaravinos A, Steenhuizen LH, Allison LR, Gamallo P, de Andres Segura F, Dae Devlin T, Pérez-García V, Ma'ayan A. Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nat Commun 2016; 7:12846. [PMID: 27667448 PMCID: PMC5052684 DOI: 10.1038/ncomms12846] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
Gene expression data are accumulating exponentially in public repositories. Reanalysis and integration of themed collections from these studies may provide new insights, but requires further human curation. Here we report a crowdsourcing project to annotate and reanalyse a large number of gene expression profiles from Gene Expression Omnibus (GEO). Through a massive open online course on Coursera, over 70 participants from over 25 countries identify and annotate 2,460 single-gene perturbation signatures, 839 disease versus normal signatures, and 906 drug perturbation signatures. All these signatures are unique and are manually validated for quality. Global analysis of these signatures confirms known associations and identifies novel associations between genes, diseases and drugs. The manually curated signatures are used as a training set to develop classifiers for extracting similar signatures from the entire GEO repository. We develop a web portal to serve these signatures for query, download and visualization.
Collapse
Affiliation(s)
- Zichen Wang
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| | - Caroline D. Monteiro
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| | - Kathleen M. Jagodnik
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
- Fluid Physics and Transport Processes Branch, NASA Glenn Research Center, 21000 Brookpark Rd, Cleveland, Ohio 44135, USA
- Center for Space Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | - Nicolas F. Fernandez
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| | - Gregory W. Gundersen
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| | - Andrew D. Rouillard
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| | - Sherry L. Jenkins
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| | - Axel S. Feldmann
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| | - Kevin S. Hu
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| | - Michael G. McDermott
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| | - Qiaonan Duan
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| | - Neil R. Clark
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| | - Matthew R. Jones
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| | - Yan Kou
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| | - Troy Goff
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| | | | - Fabio M R. Amaral
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Gregory L. Szeto
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The Ragon Institute of MGH, MIT, and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Oliver Fuchs
- Paediatric Allergology and Pulmonology, Dr von Hauner University Children's Hospital, Ludwig-Maximilians-University of Munich, Member of the German Centre for Lung Research (DZL), Lindwurmstrasse 4, Munich 80337, Germany
| | - Sophia M. Schüssler-Fiorenza Rose
- Spinal Cord Injury Service, Veteran Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
- Department of Neurosurgery, Stanford School of Medicine, Stanford, California 94304, USA
| | - Shvetank Sharma
- Department of Research, Institute of Liver & Biliary Sciences, D1, Vasant Kunj, New Delhi 110070, India
| | - Uwe Schwartz
- Department of Biochemistry III, University of Regensburg, Universitätsstrasse 31, Regensburg 93053, Germany
| | - Xabier Bengoetxea Bausela
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Irunlarrea 1, Pamplona 31008, Spain
| | - Maciej Szymkiewicz
- Warsaw School of Information Technology under the auspices of the Polish Academy of Sciences, 6 Newelska St, Warsaw 01–447, Poland
| | | | - Anton Salykin
- Department of Biology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Carolina M. Barra
- IMIM-Hospital Del Mar, PRBB Barcelona, Dr Aiguader, Barcelona 88.08003, Spain
| | | | - Nicholas J. Bongio
- Department of Biology, Shenandoah University, 1460 University Dr Winchester, Winchester, Virginia 22601, USA
| | | | | | - Udi E. Rubin
- Department of Biological Sciences, 600 Fairchild Center, Mail Code 2402, Columbia University, New York, New York 10032, USA
| | - Apostolos Malatras
- Center for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS975, CNRS FRE3617, 47 Boulevard de l'hôpital, Paris 75013, France
| | - Carl T. Fulp
- 13-1, Higashi 4-chome Shibuya-ku, Tokyo 150-0011, Japan
| | - John A. Galindo
- Department of Biology and Institute of Genetics, Universidad Nacional de Colombia, Bogota, Cr. 30 # 45-08, Colombia
| | - Ruta Motiejunaite
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, 3 Blackfan Circle, Boston, Massachusetts 02115, USA
| | - Christoph Jüschke
- Department of Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Ammerländer Heerstrasse 114-118, Oldenburg 26129, Germany
| | | | - Katharina Lahl
- Technical University of Denmark, National Veterinary Institute, Bülowsvej 27 Building 2-3, Frederiksberg C 1870, Denmark
| | - Mohieddin Jafari
- Protein Chemistry and Proteomics Unit, Biotechnology Research Center, Pasteur Institute of Iran, No. 358, 12th Farwardin Ave, Jomhhoori St, Tehran 13164, Iran
- School of Biological Sciences, Institute for Researches in Fundamental Sciences, Niavaran Square, P.O.Box, Tehran 19395-5746, Iran
| | - Sara Aibar
- University of Salamanca, Salamanca, Madrid 37008, Spain
| | - Apostolos Zaravinos
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Alfred Nobels Allé 8, level 7, Stockholm SE141 86, Sweden
- Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenes Str. Engomi, P.O.Box 22006, Nicosia 1516, Cyprus
| | | | | | | | - Fernando de Andres Segura
- CICAB, Clinical Research Centre, Extremadura University Hospital, Elvas Av., s/n. 06006 Badajoz 06006, Spain
| | | | - Vicente Pérez-García
- Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología, Department of Immunology and Oncology, c/Darwin, 3 Madrid 28049, Spain
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, BD2K-LINCS Data Coordination and Integration Center, Illuminating the Druggable Genome Knowledge Management Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1215, New York, New York 10029, USA
| |
Collapse
|
17
|
Hirschman L, Fort K, Boué S, Kyrpides N, Islamaj Doğan R, Cohen KB. Crowdsourcing and curation: perspectives from biology and natural language processing. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw115. [PMID: 27504010 PMCID: PMC4976298 DOI: 10.1093/database/baw115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022]
Abstract
Crowdsourcing is increasingly utilized for performing tasks in both natural language processing and biocuration. Although there have been many applications of crowdsourcing in these fields, there have been fewer high-level discussions of the methodology and its applicability to biocuration. This paper explores crowdsourcing for biocuration through several case studies that highlight different ways of leveraging 'the crowd'; these raise issues about the kind(s) of expertise needed, the motivations of participants, and questions related to feasibility, cost and quality. The paper is an outgrowth of a panel session held at BioCreative V (Seville, September 9-11, 2015). The session consisted of four short talks, followed by a discussion. In their talks, the panelists explored the role of expertise and the potential to improve crowd performance by training; the challenge of decomposing tasks to make them amenable to crowdsourcing; and the capture of biological data and metadata through community editing.Database URL: http://www.mitre.org/publications/technical-papers/crowdsourcing-and-curation-perspectives.
Collapse
Affiliation(s)
| | - Karën Fort
- University of Paris-Sorbonne/STIH Team, Paris, France
| | - Stéphanie Boué
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Rezarta Islamaj Doğan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
18
|
Singhal A, Simmons M, Lu Z. Text mining for precision medicine: automating disease-mutation relationship extraction from biomedical literature. J Am Med Inform Assoc 2016; 23:766-72. [PMID: 27121612 DOI: 10.1093/jamia/ocw041] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/19/2016] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Identifying disease-mutation relationships is a significant challenge in the advancement of precision medicine. The aim of this work is to design a tool that automates the extraction of disease-related mutations from biomedical text to advance database curation for the support of precision medicine. MATERIALS AND METHODS We developed a machine-learning (ML) based method to automatically identify the mutations mentioned in the biomedical literature related to a particular disease. In order to predict a relationship between the mutation and the target disease, several features, such as statistical features, distance features, and sentiment features, were constructed. Our ML model was trained with a pre-labeled dataset consisting of manually curated information about mutation-disease associations. The model was subsequently used to extract disease-related mutations from larger biomedical literature corpora. RESULTS The performance of the proposed approach was assessed using a benchmarking dataset. Results show that our proposed approach gains significant improvement over the previous state of the art and obtains F-measures of 0.880 and 0.845 for prostate and breast cancer mutations, respectively. DISCUSSION To demonstrate its utility, we applied our approach to all abstracts in PubMed for 3 diseases (including a non-cancer disease). The mutations extracted were then manually validated against human-curated databases. The validation results show that the proposed approach is useful in a real-world setting to extract uncurated disease mutations from the biomedical literature. CONCLUSIONS The proposed approach improves the state of the art for mutation-disease extraction from text. It is scalable and generalizable to identify mutations for any disease at a PubMed scale.
Collapse
Affiliation(s)
- Ayush Singhal
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health, Bethesda, MD, USA
| | - Michael Simmons
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health, Bethesda, MD, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Li TS, Bravo À, Furlong LI, Good BM, Su AI. A crowdsourcing workflow for extracting chemical-induced disease relations from free text. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw051. [PMID: 27087308 PMCID: PMC4834205 DOI: 10.1093/database/baw051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 03/17/2016] [Indexed: 01/05/2023]
Abstract
Relations between chemicals and diseases are one of the most queried biomedical interactions. Although expert manual curation is the standard method for extracting these relations from the literature, it is expensive and impractical to apply to large numbers of documents, and therefore alternative methods are required. We describe here a crowdsourcing workflow for extracting chemical-induced disease relations from free text as part of the BioCreative V Chemical Disease Relation challenge. Five non-expert workers on the CrowdFlower platform were shown each potential chemical-induced disease relation highlighted in the original source text and asked to make binary judgments about whether the text supported the relation. Worker responses were aggregated through voting, and relations receiving four or more votes were predicted as true. On the official evaluation dataset of 500 PubMed abstracts, the crowd attained a 0.505 F-score (0.475 precision, 0.540 recall), with a maximum theoretical recall of 0.751 due to errors with named entity recognition. The total crowdsourcing cost was $1290.67 ($2.58 per abstract) and took a total of 7 h. A qualitative error analysis revealed that 46.66% of sampled errors were due to task limitations and gold standard errors, indicating that performance can still be improved. All code and results are publicly available at https://github.com/SuLab/crowd_cid_relex Database URL: https://github.com/SuLab/crowd_cid_relex
Collapse
Affiliation(s)
- Tong Shu Li
- Department of Molecular and Experimental Medicine, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Àlex Bravo
- Research Programme on Biomedical Informatics (GRIB), IMIM, UPF, Barcelona, Spain
| | - Laura I Furlong
- Research Programme on Biomedical Informatics (GRIB), IMIM, UPF, Barcelona, Spain
| | - Benjamin M Good
- Department of Molecular and Experimental Medicine, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew I Su
- Department of Molecular and Experimental Medicine, the Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Mahmood ASMA, Wu TJ, Mazumder R, Vijay-Shanker K. DiMeX: A Text Mining System for Mutation-Disease Association Extraction. PLoS One 2016; 11:e0152725. [PMID: 27073839 PMCID: PMC4830514 DOI: 10.1371/journal.pone.0152725] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 03/19/2016] [Indexed: 11/22/2022] Open
Abstract
The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases.
Collapse
Affiliation(s)
- A. S. M. Ashique Mahmood
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| | - Tsung-Jung Wu
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, District of Columbia, United States of America
| | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, District of Columbia, United States of America
- McCormick Genomic and Proteomic Center, George Washington University, Washington, District of Columbia, United States of America
| | - K. Vijay-Shanker
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
21
|
Lee K, Lee S, Park S, Kim S, Kim S, Choi K, Tan AC, Kang J. BRONCO: Biomedical entity Relation ONcology COrpus for extracting gene-variant-disease-drug relations. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw043. [PMID: 27074804 PMCID: PMC4830473 DOI: 10.1093/database/baw043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 03/09/2016] [Indexed: 12/31/2022]
Abstract
Comprehensive knowledge of genomic variants in a biological context is key for precision medicine. As next-generation sequencing technologies improve, the amount of literature containing genomic variant data, such as new functions or related phenotypes, rapidly increases. Because numerous articles are published every day, it is almost impossible to manually curate all the variant information from the literature. Many researchers focus on creating an improved automated biomedical natural language processing (BioNLP) method that extracts useful variants and their functional information from the literature. However, there is no gold-standard data set that contains texts annotated with variants and their related functions. To overcome these limitations, we introduce a Biomedical entity Relation ONcology COrpus (BRONCO) that contains more than 400 variants and their relations with genes, diseases, drugs and cell lines in the context of cancer and anti-tumor drug screening research. The variants and their relations were manually extracted from 108 full-text articles. BRONCO can be utilized to evaluate and train new methods used for extracting biomedical entity relations from full-text publications, and thus be a valuable resource to the biomedical text mining research community. Using BRONCO, we quantitatively and qualitatively evaluated the performance of three state-of-the-art BioNLP methods. We also identified their shortcomings, and suggested remedies for each method. We implemented post-processing modules for the three BioNLP methods, which improved their performance. Database URL: http://infos.korea.ac.kr/bronco
Collapse
Affiliation(s)
- Kyubum Lee
- Department of Computer Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Korea and
| | - Sunwon Lee
- Department of Computer Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Korea and
| | - Sungjoon Park
- Department of Computer Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Korea and
| | - Sunkyu Kim
- Department of Computer Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Korea and
| | - Suhkyung Kim
- Department of Computer Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Korea and
| | - Kwanghun Choi
- Department of Computer Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Korea and
| | - Aik Choon Tan
- Translational Bioinformatics and Cancer Systems Biology Laboratory, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue Aurora, CO 80045, USA
| | - Jaewoo Kang
- Department of Computer Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Korea and
| |
Collapse
|
22
|
Hochheiser H, Ning Y, Hernandez A, Horn JR, Jacobson R, Boyce RD. Using Nonexperts for Annotating Pharmacokinetic Drug-Drug Interaction Mentions in Product Labeling: A Feasibility Study. JMIR Res Protoc 2016; 5:e40. [PMID: 27066806 PMCID: PMC4844909 DOI: 10.2196/resprot.5028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/25/2015] [Accepted: 12/19/2015] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Because vital details of potential pharmacokinetic drug-drug interactions are often described in free-text structured product labels, manual curation is a necessary but expensive step in the development of electronic drug-drug interaction information resources. The use of nonexperts to annotate potential drug-drug interaction (PDDI) mentions in drug product label annotation may be a means of lessening the burden of manual curation. OBJECTIVE Our goal was to explore the practicality of using nonexpert participants to annotate drug-drug interaction descriptions from structured product labels. By presenting annotation tasks to both pharmacy experts and relatively naïve participants, we hoped to demonstrate the feasibility of using nonexpert annotators for drug-drug information annotation. We were also interested in exploring whether and to what extent natural language processing (NLP) preannotation helped improve task completion time, accuracy, and subjective satisfaction. METHODS Two experts and 4 nonexperts were asked to annotate 208 structured product label sections under 4 conditions completed sequentially: (1) no NLP assistance, (2) preannotation of drug mentions, (3) preannotation of drug mentions and PDDIs, and (4) a repeat of the no-annotation condition. Results were evaluated within the 2 groups and relative to an existing gold standard. Participants were asked to provide reports on the time required to complete tasks and their perceptions of task difficulty. RESULTS One of the experts and 3 of the nonexperts completed all tasks. Annotation results from the nonexpert group were relatively strong in every scenario and better than the performance of the NLP pipeline. The expert and 2 of the nonexperts were able to complete most tasks in less than 3 hours. Usability perceptions were generally positive (3.67 for expert, mean of 3.33 for nonexperts). CONCLUSIONS The results suggest that nonexpert annotation might be a feasible option for comprehensive labeling of annotated PDDIs across a broader range of drug product labels. Preannotation of drug mentions may ease the annotation task. However, preannotation of PDDIs, as operationalized in this study, presented the participants with difficulties. Future work should test if these issues can be addressed by the use of better performing NLP and a different approach to presenting the PDDI preannotations to users during the annotation workflow.
Collapse
Affiliation(s)
- Harry Hochheiser
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| | | | | | | | | | | |
Collapse
|
23
|
Jain S, Tumkur KR, Kuo TT, Bhargava S, Lin G, Hsu CN. Weakly supervised learning of biomedical information extraction from curated data. BMC Bioinformatics 2016; 17 Suppl 1:1. [PMID: 26817711 PMCID: PMC4847485 DOI: 10.1186/s12859-015-0844-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Numerous publicly available biomedical databases derive data by curating from literatures. The curated data can be useful as training examples for information extraction, but curated data usually lack the exact mentions and their locations in the text required for supervised machine learning. This paper describes a general approach to information extraction using curated data as training examples. The idea is to formulate the problem as cost-sensitive learning from noisy labels, where the cost is estimated by a committee of weak classifiers that consider both curated data and the text. Results We test the idea on two information extraction tasks of Genome-Wide Association Studies (GWAS). The first task is to extract target phenotypes (diseases or traits) of a study and the second is to extract ethnicity backgrounds of study subjects for different stages (initial or replication). Experimental results show that our approach can achieve 87 % of Precision-at-2 (P@2) for disease/trait extraction, and 0.83 of F1-Score for stage-ethnicity extraction, both outperforming their cost-insensitive baseline counterparts. Conclusions The results show that curated biomedical databases can potentially be reused as training examples to train information extractors without expert annotation or refinement, opening an unprecedented opportunity of using “big data” in biomedical text mining. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0844-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suvir Jain
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA.
| | - Kashyap R Tumkur
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA.
| | - Tsung-Ting Kuo
- Department of Biomedical Informatics, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA.
| | - Shitij Bhargava
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA.
| | - Gordon Lin
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA.
| | - Chun-Nan Hsu
- Department of Biomedical Informatics, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093, USA.
| |
Collapse
|
24
|
Rodriguez-Esteban R. Biocuration with insufficient resources and fixed timelines. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav116. [PMID: 26708987 PMCID: PMC4691339 DOI: 10.1093/database/bav116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/17/2015] [Indexed: 11/14/2022]
Abstract
Biological curation, or biocuration, is often studied from the perspective of creating and maintaining databases that have the goal of mapping and tracking certain areas of biology. However, much biocuration is, in fact, dedicated to finite and time-limited projects in which insufficient resources demand trade-offs. This typically more ephemeral type of curation is nonetheless of importance in biomedical research. Here, I propose a framework to understand such restricted curation projects from the point of view of return on curation (ROC), value, efficiency and productivity. Moreover, I suggest general strategies to optimize these curation efforts, such as the ‘multiple strategies’ approach, as well as a metric called overhead that can be used in the context of managing curation resources.
Collapse
Affiliation(s)
- Raul Rodriguez-Esteban
- Roche Pharmaceutical Research and Early Development, pRED Informatics, Roche Innovation Center Basel, Basel 4070, Switzerland
| |
Collapse
|
25
|
Ernst P, Siu A, Weikum G. KnowLife: a versatile approach for constructing a large knowledge graph for biomedical sciences. BMC Bioinformatics 2015; 16:157. [PMID: 25971816 PMCID: PMC4448285 DOI: 10.1186/s12859-015-0549-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/25/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Biomedical knowledge bases (KB's) have become important assets in life sciences. Prior work on KB construction has three major limitations. First, most biomedical KBs are manually built and curated, and cannot keep up with the rate at which new findings are published. Second, for automatic information extraction (IE), the text genre of choice has been scientific publications, neglecting sources like health portals and online communities. Third, most prior work on IE has focused on the molecular level or chemogenomics only, like protein-protein interactions or gene-drug relationships, or solely address highly specific topics such as drug effects. RESULTS We address these three limitations by a versatile and scalable approach to automatic KB construction. Using a small number of seed facts for distant supervision of pattern-based extraction, we harvest a huge number of facts in an automated manner without requiring any explicit training. We extend previous techniques for pattern-based IE with confidence statistics, and we combine this recall-oriented stage with logical reasoning for consistency constraint checking to achieve high precision. To our knowledge, this is the first method that uses consistency checking for biomedical relations. Our approach can be easily extended to incorporate additional relations and constraints. We ran extensive experiments not only for scientific publications, but also for encyclopedic health portals and online communities, creating different KB's based on different configurations. We assess the size and quality of each KB, in terms of number of facts and precision. The best configured KB, KnowLife, contains more than 500,000 facts at a precision of 93% for 13 relations covering genes, organs, diseases, symptoms, treatments, as well as environmental and lifestyle risk factors. CONCLUSION KnowLife is a large knowledge base for health and life sciences, automatically constructed from different Web sources. As a unique feature, KnowLife is harvested from different text genres such as scientific publications, health portals, and online communities. Thus, it has the potential to serve as one-stop portal for a wide range of relations and use cases. To showcase the breadth and usefulness, we make the KnowLife KB accessible through the health portal (http://knowlife.mpi-inf.mpg.de).
Collapse
Affiliation(s)
- Patrick Ernst
- Max-Planck-Institute for Informatics, Campus E1 4, Saarbrücken, 66123, Germany.
| | - Amy Siu
- Max-Planck-Institute for Informatics, Campus E1 4, Saarbrücken, 66123, Germany.
| | - Gerhard Weikum
- Max-Planck-Institute for Informatics, Campus E1 4, Saarbrücken, 66123, Germany.
| |
Collapse
|
26
|
Huang CC, Lu Z. Community challenges in biomedical text mining over 10 years: success, failure and the future. Brief Bioinform 2015; 17:132-44. [PMID: 25935162 DOI: 10.1093/bib/bbv024] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 11/13/2022] Open
Abstract
One effective way to improve the state of the art is through competitions. Following the success of the Critical Assessment of protein Structure Prediction (CASP) in bioinformatics research, a number of challenge evaluations have been organized by the text-mining research community to assess and advance natural language processing (NLP) research for biomedicine. In this article, we review the different community challenge evaluations held from 2002 to 2014 and their respective tasks. Furthermore, we examine these challenge tasks through their targeted problems in NLP research and biomedical applications, respectively. Next, we describe the general workflow of organizing a Biomedical NLP (BioNLP) challenge and involved stakeholders (task organizers, task data producers, task participants and end users). Finally, we summarize the impact and contributions by taking into account different BioNLP challenges as a whole, followed by a discussion of their limitations and difficulties. We conclude with future trends in BioNLP challenge evaluations.
Collapse
|
27
|
Khare R, Good BM, Leaman R, Su AI, Lu Z. Crowdsourcing in biomedicine: challenges and opportunities. Brief Bioinform 2015; 17:23-32. [PMID: 25888696 DOI: 10.1093/bib/bbv021] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and encompasses a wide variety of approaches. The crowd is diverse and includes online marketplace workers, health information seekers, science enthusiasts and domain experts. In this article, we review and highlight recent studies that use crowdsourcing to advance biomedicine. We classify these studies into two broad categories: (i) mining big data generated from a crowd (e.g. search logs) and (ii) active crowdsourcing via specific technical platforms, e.g. labor markets, wikis, scientific games and community challenges. Through describing each study in detail, we demonstrate the applicability of different methods in a variety of domains in biomedical research, including genomics, biocuration and clinical research. Furthermore, we discuss and highlight the strengths and limitations of different crowdsourcing platforms. Finally, we identify important emerging trends, opportunities and remaining challenges for future crowdsourcing research in biomedicine.
Collapse
|
28
|
Khare R, Burger JD, Aberdeen JS, Tresner-Kirsch DW, Corrales TJ, Hirchman L, Lu Z. Scaling drug indication curation through crowdsourcing. Database (Oxford) 2015; 2015:bav016. [PMID: 25797061 PMCID: PMC4369375 DOI: 10.1093/database/bav016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 01/24/2023]
Abstract
Motivated by the high cost of human curation of biological databases, there is an increasing interest in using computational approaches to assist human curators and accelerate the manual curation process. Towards the goal of cataloging drug indications from FDA drug labels, we recently developed LabeledIn, a human-curated drug indication resource for 250 clinical drugs. Its development required over 40 h of human effort across 20 weeks, despite using well-defined annotation guidelines. In this study, we aim to investigate the feasibility of scaling drug indication annotation through a crowdsourcing technique where an unknown network of workers can be recruited through the technical environment of Amazon Mechanical Turk (MTurk). To translate the expert-curation task of cataloging indications into human intelligence tasks (HITs) suitable for the average workers on MTurk, we first simplify the complex task such that each HIT only involves a worker making a binary judgment of whether a highlighted disease, in context of a given drug label, is an indication. In addition, this study is novel in the crowdsourcing interface design where the annotation guidelines are encoded into user options. For evaluation, we assess the ability of our proposed method to achieve high-quality annotations in a time-efficient and cost-effective manner. We posted over 3000 HITs drawn from 706 drug labels on MTurk. Within 8 h of posting, we collected 18 775 judgments from 74 workers, and achieved an aggregated accuracy of 96% on 450 control HITs (where gold-standard answers are known), at a cost of $1.75 per drug label. On the basis of these results, we conclude that our crowdsourcing approach not only results in significant cost and time saving, but also leads to accuracy comparable to that of domain experts.
Collapse
Affiliation(s)
- Ritu Khare
- National Center for Biotechnology Information (NCBI), 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - John D Burger
- The MITRE Corporation, 202 Burlington Road, Bedford, MA 01730, USA
| | - John S Aberdeen
- The MITRE Corporation, 202 Burlington Road, Bedford, MA 01730, USA
| | | | - Theodore J Corrales
- National Center for Biotechnology Information (NCBI), 8600 Rockville Pike, Bethesda, MD 20894, USA, Montgomery Blair High School, 57 University Blvd E., Silver Spring, MD 20901, USA
| | - Lynette Hirchman
- The MITRE Corporation, 202 Burlington Road, Bedford, MA 01730, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), 8600 Rockville Pike, Bethesda, MD 20894, USA.
| |
Collapse
|
29
|
Leaman R, Good BM, Su AI, Lu Z. Crowdsourcing and mining crowd data. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2015:267-269. [PMID: 25592587 PMCID: PMC4376322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The following sections are included: Introduction, Session articles, Acknowledgements and References.
Collapse
Affiliation(s)
- Robert Leaman
- National Center for Biotechnology Information (NCBI), 8600 Rockville Pike, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|