1
|
Tauber E. Uncovering the circadian transcriptome of Nasonia vitripennis: insights into a non-canonical insect model. Proc Biol Sci 2024; 291:20241848. [PMID: 39591997 DOI: 10.1098/rspb.2024.1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
The study of the circadian clock has greatly benefited from using Drosophila as a model system. Yet accumulating evidence suggests that the fly might not be the canonical insect model. Here, I have analysed the circadian transcriptome of the jewel wasp Nasonia vitripennis by using RNA-seq in both constant darkness and constant light (in contrast to flies, the wasps are rhythmic under continuous light). I identify approximately 6% of the transcriptome as cycling under constant conditions, revealing a bimodal distribution of phases and low cycling amplitude. I examine the biological processes under circadian control in Nasonia, identifying clock control of functions such as metabolism, light response and a variety of neural processes, drawing comparisons between Nasonia and Drosophila. Although there was little similarity between cycling genes in Drosophila and Nasonia, the functions fulfilled by cycling transcripts were similar in both species. Interestingly, of the known Drosophila core clock genes, only Pdp1e, shaggy and Clock showed significant cycling in Nasonia, highlighting the potential diversity in molecular clock mechanisms across insect species.
Collapse
Affiliation(s)
- Eran Tauber
- Department of Evolutionary & Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
2
|
Sun W, Lange MI, Gadau J, Buellesbach J. Decoding the genetic and chemical basis of sexual attractiveness in parasitic wasps. eLife 2023; 12:e86182. [PMID: 37431891 PMCID: PMC10435230 DOI: 10.7554/elife.86182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023] Open
Abstract
Attracting and securing potential mating partners is of fundamental importance for reproduction. Therefore, signaling sexual attractiveness is expected to be tightly coordinated in communication systems synchronizing senders and receivers. Chemical signaling has permeated through all taxa of life as the earliest and most widespread form of communication and is particularly prevalent in insects. However, it has been notoriously difficult to decipher how exactly information related to sexual signaling is encoded in complex chemical profiles. Similarly, our knowledge of the genetic basis of sexual signaling is very limited and usually restricted to a few case studies with comparably simple pheromonal communication mechanisms. The present study jointly addresses these two knowledge gaps by characterizing two fatty acid synthase genes that most likely evolved by tandem gene duplication and that simultaneously impact sexual attractiveness and complex chemical surface profiles in parasitic wasps. Gene knockdown in female wasps dramatically reduces their sexual attractiveness coinciding with a drastic decrease in male courtship and copulation behavior. Concordantly, we found a striking shift of methyl-branching patterns in the female surface pheromonal compounds, which we subsequently demonstrate to be the main cause for the greatly reduced male mating response. Intriguingly, this suggests a potential coding mechanism for sexual attractiveness mediated by specific methyl-branching patterns in complex cuticular hydrocarbon (CHC) profiles. So far, the genetic underpinnings of methyl-branched CHCs are not well understood despite their high potential for encoding information. Our study sheds light on how biologically relevant information can be encoded in complex chemical profiles and on the genetic basis of sexual attractiveness.
Collapse
Affiliation(s)
- Weizhao Sun
- Institute for Evolution & Biodiversity, University of Münster, HüfferstrMünsterGermany
| | - Michelle Ina Lange
- Institute for Evolution & Biodiversity, University of Münster, HüfferstrMünsterGermany
| | - Jürgen Gadau
- Institute for Evolution & Biodiversity, University of Münster, HüfferstrMünsterGermany
| | - Jan Buellesbach
- Institute for Evolution & Biodiversity, University of Münster, HüfferstrMünsterGermany
| |
Collapse
|
3
|
Effect of using green fluorescent proteindouble-stranded RNA as non-target negative control in Nasonia vitripennisRNA interference assays. EXPERIMENTAL RESULTS 2021. [DOI: 10.1017/exp.2020.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractRNA interference (RNAi) is a technique used in many insects to study gene function. However, prior research suggests possible off-target effects when usingGreen Fluorescent Protein(GFP) sequence as a non-target control. We used a transcriptomic approach to study the effect ofGFPRNAi (GFP-i) inNasonia vitripennis, a widely used parasitoid wasp model system. Our study identified 3.4% of total genes being differentially expressed in response toGFP-i. A subset of these genes appears involved in microtubule and sperm functions.In silicoanalysis identified 17 potential off-targets, of which only one was differentially expressed afterGFP-i. We suggest the primary cause for differential expression afterGFP-i is the non-specific activation of the RNAi machinery at the injection site, and a potentially disturbed spermatogenesis. Still, we advise that any RNAi study involving the genes deregulated in this study, exercises caution in drawing conclusions and uses a different non-target control.
Collapse
|
4
|
Pannebakker BA, Cook N, van den Heuvel J, van de Zande L, Shuker DM. Genomics of sex allocation in the parasitoid wasp Nasonia vitripennis. BMC Genomics 2020; 21:499. [PMID: 32689940 PMCID: PMC7372847 DOI: 10.1186/s12864-020-06904-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Whilst adaptive facultative sex allocation has been widely studied at the phenotypic level across a broad range of organisms, we still know remarkably little about its genetic architecture. Here, we explore the genome-wide basis of sex ratio variation in the parasitoid wasp Nasonia vitripennis, perhaps the best studied organism in terms of sex allocation, and well known for its response to local mate competition. RESULTS We performed a genome-wide association study (GWAS) for single foundress sex ratios using iso-female lines derived from the recently developed outbred N. vitripennis laboratory strain HVRx. The iso-female lines capture a sample of the genetic variation in HVRx and we present them as the first iteration of the Nasonia vitripennis Genome Reference Panel (NVGRP 1.0). This panel provides an assessment of the standing genetic variation for sex ratio in the study population. Using the NVGRP, we discovered a cluster of 18 linked SNPs, encompassing 9 annotated loci associated with sex ratio variation. Furthermore, we found evidence that sex ratio has a shared genetic basis with clutch size on three different chromosomes. CONCLUSIONS Our approach provides a thorough description of the quantitative genetic basis of sex ratio variation in Nasonia at the genome level and reveals a number of inter-related candidate loci underlying sex allocation regulation.
Collapse
Affiliation(s)
- Bart A Pannebakker
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands.
| | - Nicola Cook
- School of Biology, University of St Andrews, Fife, UK
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Louis van de Zande
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
5
|
Rago A, Werren JH, Colbourne JK. Sex biased expression and co-expression networks in development, using the hymenopteran Nasonia vitripennis. PLoS Genet 2020; 16:e1008518. [PMID: 31986136 PMCID: PMC7004391 DOI: 10.1371/journal.pgen.1008518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/06/2020] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
Sexual dimorphism requires regulation of gene expression in developing organisms. These developmental differences are caused by differential expression of genes and isoforms. The effect of expressing a gene is also influenced by which other genes are simultaneously expressed (functional interactions). However, few studies have described how these processes change across development. We compare the dynamics of differential expression, isoform switching and functional interactions in the sexual development of the model parasitoid wasp Nasonia vitripennis, a system that permits genome wide analysis of sex bias from early embryos to adults. We find relatively little sex-bias in embryos and larvae at the gene level, but several sub-networks show sex-biased functional interactions in early developmental stages. These networks provide new candidates for hymenopteran sex determination, including histone modification. In contrast, sex-bias in pupae and adults is driven by the differential expression of genes. We observe sex-biased isoform switching consistently across development, but mostly in genes that are already differentially expressed. Finally, we discover that sex-biased networks are enriched by genes specific to the Nasonia clade, and that those genes possess the topological properties of key regulators. These findings suggest that regulators in sex-biased networks evolve more rapidly than regulators of other developmental networks.
Collapse
Affiliation(s)
- Alfredo Rago
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, NY, United States of America
| | - John K. Colbourne
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Li F, Zhao X, Li M, He K, Huang C, Zhou Y, Li Z, Walters JR. Insect genomes: progress and challenges. INSECT MOLECULAR BIOLOGY 2019; 28:739-758. [PMID: 31120160 DOI: 10.1111/imb.12599] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/22/2019] [Accepted: 05/14/2019] [Indexed: 05/24/2023]
Abstract
In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a brief introduction to the basic concepts of genome assembly, annotation and metrics for evaluating the quality of draft assemblies. We then provide an overview of genome information for numerous insect species, highlighting examples from prominent model organisms, agricultural pests and disease vectors. We also introduce the major insect genome databases. The increasing availability of insect genomic resources is beneficial for developing alternative pest control methods. However, many opportunities remain for developing data-mining tools that make maximal use of the available insect genome resources. Although rapid progress has been achieved, many challenges remain in the field of insect genomics.
Collapse
Affiliation(s)
- F Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - X Zhao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - M Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - K He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - C Huang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Y Zhou
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Z Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - J R Walters
- Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
7
|
Kraaijeveld K, Oostra V, Liefting M, Wertheim B, de Meijer E, Ellers J. Regulatory and sequence evolution in response to selection for improved associative learning ability in Nasonia vitripennis. BMC Genomics 2018; 19:892. [PMID: 30526508 PMCID: PMC6288879 DOI: 10.1186/s12864-018-5310-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Background Selection acts on the phenotype, yet only the genotype is inherited. While both the phenotypic and genotypic response to short-term selection can be measured, the link between these is a major unsolved problem in evolutionary biology, in particular for complex behavioural phenotypes. Results Here we characterize the genomic and the transcriptomic basis of associative learning ability in the parasitic wasp Nasonia vitripennis and use gene network analysis to link the two. We artificially selected for improved associative learning ability in four independent pairs of lines and identified signatures of selection across the genome. Allele frequency diverged consistently between the selected and control lines in 118 single nucleotide polymorphisms (SNPs), clustering in 51 distinct genomic regions containing 128 genes. The majority of SNPs were found in regulatory regions, suggesting a potential role for gene expression evolution. We therefore sequenced the transcriptomes of selected and control lines and identified 36 consistently differentially expressed transcripts with large changes in expression. None of the differentially expressed genes also showed sequence divergence as a result of selection. Instead, gene network analysis showed many of the genes with consistent allele frequency differences and all of the differentially expressed genes to cluster in a single co-expression network. At a functional level, both genomic and transcriptomic analyses implicated members of gene networks known to be involved in neural plasticity and cognitive processes. Conclusions Taken together, our results reveal how specific cognitive abilities can readily respond to selection via a complex interplay between regulatory and sequence evolution. Electronic supplementary material The online version of this article (10.1186/s12864-018-5310-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ken Kraaijeveld
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands.
| | - Vicencio Oostra
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK
| | - Maartje Liefting
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Emile de Meijer
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacintha Ellers
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Kraaijeveld K, Anvar SY, Frank J, Schmitz A, Bast J, Wilbrandt J, Petersen M, Ziesmann T, Niehuis O, de Knijff P, den Dunnen JT, Ellers J. Decay of Sexual Trait Genes in an Asexual Parasitoid Wasp. Genome Biol Evol 2018; 8:3685-3695. [PMID: 28172869 PMCID: PMC5381511 DOI: 10.1093/gbe/evw273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2016] [Indexed: 12/25/2022] Open
Abstract
Trait loss is a widespread phenomenon with pervasive consequences for a species’ evolutionary potential. The genetic changes underlying trait loss have only been clarified in a small number of cases. None of these studies can identify whether the loss of the trait under study was a result of neutral mutation accumulation or negative selection. This distinction is relatively clear-cut in the loss of sexual traits in asexual organisms. Male-specific sexual traits are not expressed and can only decay through neutral mutations, whereas female-specific traits are expressed and subject to negative selection. We present the genome of an asexual parasitoid wasp and compare it to that of a sexual lineage of the same species. We identify a short-list of 16 genes for which the asexual lineage carries deleterious SNP or indel variants, whereas the sexual lineage does not. Using tissue-specific expression data from other insects, we show that fifteen of these are expressed in male-specific reproductive tissues. Only one deleterious variant was found that is expressed in the female-specific spermathecae, a trait that is heavily degraded and thought to be under negative selection in L. clavipes. Although the phenotypic decay of male-specific sexual traits in asexuals is generally slow compared with the decay of female-specific sexual traits, we show that male-specific traits do indeed accumulate deleterious mutations as expected by theory. Our results provide an excellent starting point for detailed study of the genomics of neutral and selected trait decay.
Collapse
Affiliation(s)
- Ken Kraaijeveld
- Animal Ecology, Department of Ecological Sciences, VU University Amsterdam, The Netherlands.,Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Seyed Yahya Anvar
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Frank
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud Schmitz
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jeanne Wilbrandt
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Bonn, Germany
| | - Malte Petersen
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Bonn, Germany
| | - Tanja Ziesmann
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Bonn, Germany
| | - Oliver Niehuis
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Bonn, Germany
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan T den Dunnen
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacintha Ellers
- Animal Ecology, Department of Ecological Sciences, VU University Amsterdam, The Netherlands
| |
Collapse
|
9
|
Geuverink E, Rensink AH, Rondeel I, Beukeboom LW, van de Zande L, Verhulst EC. Maternal provision of transformer-2 is required for female development and embryo viability in the wasp Nasonia vitripennis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:23-33. [PMID: 28927841 DOI: 10.1016/j.ibmb.2017.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
In insect sex determination a primary signal starts the genetic sex determination cascade that, in most insect orders, is subsequently transduced down the cascade by a transformer (tra) ortholog. Only a female-specifically spliced tra mRNA yields a functional TRA-protein that forms a complex with TRA2, encoded by a transformer-2 (tra2) ortholog, to act as a sex specific splicing regulator of the downstream transcription factors doublesex (dsx) and fruitless (fru). Here, we identify the tra2 ortholog of the haplodiploid parasitoid wasp N. vitripennis (Nv-tra2) and confirm its function in N. vitripennis sex determination. Knock down of Nv-tra2 by parental RNA interference (pRNAi) results in complete sex reversal of diploid offspring from female to male, indicating the requirement of Nv-tra2 for female sex determination. As Nv-tra2 pRNAi leads to frequent lethality in early developmental stages, maternal provision of Nv-tra2 transcripts is apparently also required for another, non-sex determining function during embryogenesis. In addition, lethality following Nv-tra2 pRNAi appears more pronounced in diploid than in haploid offspring. This diploid lethal effect was also observed following Nv-tra pRNAi, which served as a positive control in our experiments. As diploid embryos from fertilized eggs have a paternal chromosome set in addition to the maternal one, this suggests that either the presence of this paternal chromosome set or the dosage effect resulting from the diploid state is incompatible with the induced male development in N. vitripennis caused by either Nv-tra2 or Nv-tra pRNAi. The role of Nv-tra2 in activating the female sex determination pathway yields more insight into the sex determination mechanism of Nasonia.
Collapse
Affiliation(s)
- Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Anna H Rensink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Inge Rondeel
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Eveline C Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands; Laboratory of Genetics, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
10
|
Rago A, Gilbert DG, Choi JH, Sackton TB, Wang X, Kelkar YD, Werren JH, Colbourne JK. OGS2: genome re-annotation of the jewel wasp Nasonia vitripennis. BMC Genomics 2016; 17:678. [PMID: 27561358 PMCID: PMC5000498 DOI: 10.1186/s12864-016-2886-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 07/06/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Nasonia vitripennis is an emerging insect model system with haplodiploid genetics. It holds a key position within the insect phylogeny for comparative, evolutionary and behavioral genetic studies. The draft genomes for N. vitripennis and two sibling species were published in 2010, yet a considerable amount of transcriptiome data have since been produced thereby enabling improvements to the original (OGS1.2) annotated gene set. We describe and apply the EvidentialGene method used to produce an updated gene set (OGS2). We also carry out comparative analyses showcasing the usefulness of the revised annotated gene set. RESULTS The revised annotation (OGS2) now consists of 24,388 genes with supporting evidence, compared to 18,850 for OGS1.2. Improvements include the nearly complete annotation of untranslated regions (UTR) for 97 % of the genes compared to 28 % of genes for OGS1.2. The fraction of RNA-Seq validated introns also grow from 85 to 98 % in this latest gene set. The EST and RNA-Seq expression data provide support for several non-protein coding loci and 7712 alternative transcripts for 4146 genes. Notably, we report 180 alternative transcripts for the gene lola. Nasonia now has among the most complete insect gene set; only 27 conserved single copy orthologs in arthropods are missing from OGS2. Its genome also contains 2.1-fold more duplicated genes and 1.4-fold more single copy genes than the Drosophila melanogaster genome. The Nasonia gene count is larger than those of other sequenced hymenopteran species, owing both to improvements in the genome annotation and to unique genes in the wasp lineage. We identify 1008 genes and 171 gene families that deviate significantly from other hymenopterans in their rates of protein evolution and duplication history, respectively. We also provide an analysis of alternative splicing that reveals that genes with no annotated isoforms are characterized by shorter transcripts, fewer introns, faster protein evolution and higher probabilities of duplication than genes having alternative transcripts. CONCLUSIONS Genome-wide expression data greatly improves the annotation of the N. vitripennis genome, by increasing the gene count, reducing the number of missing genes and providing more comprehensive data on splicing and gene structure. The improved gene set identifies lineage-specific genomic features tied to Nasonia's biology, as well as numerous novel genes. OGS2 and its associated search tools are available at http://arthropods.eugenes.org/EvidentialGene/nasonia/ , www.hymenopteragenome.org/nasonia/ and waspAtlas: www.tinyURL.com/waspAtlas . The EvidentialGene pipeline is available at https://sourceforge.net/projects/evidentialgene/ .
Collapse
Affiliation(s)
- Alfredo Rago
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Jeong-Hyeon Choi
- Cancer Center, Department of Biostatistics and Epidemiology, Medical College of Georgia, Georgia Regents University, Augusta, USA
| | - Timothy B. Sackton
- Department of Organismic and Evolutionary Biology, and FAS Informatics Group, Harvard University, Cambridge, USA
| | - Xu Wang
- Department of Molecular Biology and Genetics, Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, USA
| | - Yogeshwar D. Kelkar
- Department of Biostatistics and Computational Biology, University of Rochester Medical School, Rochester, USA
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, USA
| | - John K. Colbourne
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Shropshire JD, van Opstal EJ, Bordenstein SR. An optimized approach to germ-free rearing in the jewel wasp Nasonia. PeerJ 2016; 4:e2316. [PMID: 27602283 PMCID: PMC4991892 DOI: 10.7717/peerj.2316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/12/2016] [Indexed: 01/14/2023] Open
Abstract
Development of a Nasonia in vitrogerm-free rearing system in 2012 enabled investigation of Nasonia-microbiota interactions and real-time visualization of parasitoid metamorphosis. However, the use of antibiotics, bleach, and fetal bovine serum introduced artifacts relative to conventional rearing of Nasonia. Here, we optimize the germ-free rearing procedure by using filter sterilization in lieu of antibiotics and by removing residual bleach and fetal bovine serum. Comparison of these methods reveals no influence on larval survival or growth, and a 52% improvement in adult production. Additionally, adult males produced in the new germ-free system are similar in size to conventionally reared males. Experimental implications of these changes are discussed.
Collapse
Affiliation(s)
- J Dylan Shropshire
- Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | | | - Seth R Bordenstein
- Biological Sciences, Vanderbilt University, Nashville, TN, United States.,Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
12
|
Pers D, Buchta T, Özüak O, Wolff S, Pietsch JM, Memon MB, Roth S, Lynch JA. Global analysis of dorsoventral patterning in the wasp Nasonia reveals extensive incorporation of novelty in a regulatory network. BMC Biol 2016; 14:63. [PMID: 27480122 PMCID: PMC4968023 DOI: 10.1186/s12915-016-0285-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/18/2016] [Indexed: 01/23/2023] Open
Abstract
Background Gene regulatory networks (GRNs) underlie developmental patterning and morphogenetic processes, and changes in the interactions within the underlying GRNs are a major driver of evolutionary processes. In order to make meaningful comparisons that can provide significant insights into the evolution of regulatory networks, homologous networks from multiple taxa must be deeply characterized. One of the most thoroughly characterized GRNs is the dorsoventral (DV) patterning system of the Drosophila melanogaster embryo. We have developed the wasp Nasonia as a comparative DV patterning model because it has shown the convergent evolution of a mode of early embryonic patterning very similar to that of the fly, and it is of interest to know whether the similarity at the gross level also extends to the molecular level. Results We used RNAi to dorsalize and ventralize Nasonia embryos, RNAseq to quantify transcriptome-wide expression levels, and differential expression analysis to identify genes whose expression levels change in either RNAi case. This led to the identification of >100 genes differentially expressed and regulated along the DV axis. Only a handful of these genes are shared DV components in both fly and wasp. Many of those unique to Nasonia are cytoskeletal and adhesion molecules, which may be related to the divergent cell and tissue behavior observed at gastrulation. In addition, many transcription factors and signaling components are only DV regulated in Nasonia, likely reflecting the divergent upstream patterning mechanisms involved in producing the conserved pattern of cell fates observed at gastrulation. Finally, several genes that lack Drosophila orthologs show robust and distinct expression patterns. These include genes with vertebrate homologs that have been lost in the fly lineage, genes that are found only among Hymenoptera, and several genes that entered the Nasonia genome through lateral transfer from endosymbiotic bacteria. Conclusions Altogether, our results provide insights into how GRNs respond to new functional demands and how they can incorporate novel components. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0285-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Pers
- Department of Biological Sciences, University of Illinois at Chicago, MBRB 4020, 900 S. Ashland Avenue, Chicago, IL, 60402, USA
| | - Thomas Buchta
- Institute for Developmental Biology, University at Cologne, Cologne, Germany
| | - Orhan Özüak
- Institute for Developmental Biology, University at Cologne, Cologne, Germany
| | - Selma Wolff
- Institute for Developmental Biology, University at Cologne, Cologne, Germany
| | - Jessica M Pietsch
- Institute for Developmental Biology, University at Cologne, Cologne, Germany
| | - Mohammad Bilal Memon
- Department of Biological Sciences, University of Illinois at Chicago, MBRB 4020, 900 S. Ashland Avenue, Chicago, IL, 60402, USA
| | - Siegfried Roth
- Institute for Developmental Biology, University at Cologne, Cologne, Germany
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, MBRB 4020, 900 S. Ashland Avenue, Chicago, IL, 60402, USA.
| |
Collapse
|
13
|
Schmidt-Ott U, Lynch JA. Emerging developmental genetic model systems in holometabolous insects. Curr Opin Genet Dev 2016; 39:116-128. [PMID: 27399647 DOI: 10.1016/j.gde.2016.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/25/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023]
Abstract
The number of insect species that are amenable to functional genetic studies is growing rapidly and provides many new research opportunities in developmental and evolutionary biology. The holometabolous insects represent a disproportionate percentage of animal diversity and are thus well positioned to provide model species for a wide variety of developmental processes. Here we discuss emerging holometabolous models, and review some recent breakthroughs. For example, flies and midges were found to use structurally unrelated long-range pattern organizers, butterflies and moths revealed extensive pattern formation during oogenesis, new imaging possibilities in the flour beetle Tribolium castaneum showed how embryos break free of their extraembryonic membranes, and the complex genetics governing interspecies difference in head shape were revealed in Nasonia wasps.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, United States.
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, United States.
| |
Collapse
|
14
|
Pegoraro M, Bafna A, Davies NJ, Shuker DM, Tauber E. DNA methylation changes induced by long and short photoperiods in Nasonia. Genome Res 2015; 26:203-10. [PMID: 26672019 PMCID: PMC4728373 DOI: 10.1101/gr.196204.115] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Many organisms monitor the annual change in day length and use this information for the timing of their seasonal response. However, the molecular mechanisms underlying photoperiodic timing are largely unknown. The wasp Nasonia vitripennis is an emerging model organism that exhibits a strong photoperiodic response: Short autumnal days experienced by females lead to the induction of developmental arrest (diapause) in their progeny, allowing winter survival of the larvae. How female Nasonia control the developmental trajectory of their offspring is unclear. Here, we took advantage of the recent discovery that DNA methylation is pervasive in Nasonia and tested its role in photoperiodism. We used reduced representation bisulfite sequencing (RRBS) to profile DNA methylation in adult female wasps subjected to different photoperiods and identified substantial differential methylation at the single base level. We also show that knocking down DNA methyltransferase 1a (Dnmt1a), Dnmt3, or blocking DNA methylation pharmacologically, largely disrupts the photoperiodic diapause response of the wasps. To our knowledge, this is the first example for a role of DNA methylation in insect photoperiodic timing.
Collapse
Affiliation(s)
- Mirko Pegoraro
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Akanksha Bafna
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Nathaniel J Davies
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - David M Shuker
- School of Biology, University of St Andrews, St Andrews KY16 9TH, United Kingdom
| | - Eran Tauber
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|