1
|
Zhang G, Wang Y, Jiang H, Wang Y. Genomic and transcriptomic analyses of Heteropoda venatoria reveal the expansion of P450 family for starvation resistance in spiders. Gigascience 2025; 14:giaf019. [PMID: 40117180 PMCID: PMC11927401 DOI: 10.1093/gigascience/giaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/09/2024] [Accepted: 02/06/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Research on the mechanism of starvation resistance can help reveal how animals adjust their physiology and behavior to adapt to the uncertainty of food resources. A low metabolic rate is a significant characteristic of spider physiological activity and can increase spider starvation resistance and adapt to complex ecological environments. RESULTS We sequenced the genome of Heteropoda venatoria and discovered significant expansions in gene families related to lipid metabolism, such as cytochrome P450 and steroid hormone biosynthesis genes, through comparative genomic analysis. We also systematically analyzed the gene expression characteristics of H. venatoria at different starvation resistance stages and reported that the fat body plays a crucial role during starvation in spiders. This study indicates that during the early stages of starvation, H. venatoria relies on glucose metabolism to meet its energy demands. In the middle stage, gene expression stabilizes, whereas in the late stage of starvation, pathways for fatty acid metabolism and protein degradation are significantly activated, and autophagy is increased, serving as a survival strategy under extreme starvation. Notably, analysis of expanded P450 gene families revealed that H. venatoria has many duplicated CYP3 clan genes that are highly expressed in the fat body, which may help maintain a low-energy metabolic state, allowing H. venatoria to endure longer periods of starvation. We also observed that the motifs of P450 families in H. venatoria are less conserved than those in insects are, which may be related to the greater polymorphism of spider genomes. CONCLUSIONS This research not only provides important genetic and transcriptomic evidence for understanding the starvation mechanisms of spiders but also offers new insights into the adaptive evolution of arthropods.
Collapse
Affiliation(s)
- Guoqing Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yiru Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Hongcen Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yi Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Li R, Yao J, Cai S, Fu Y, Lai C, Zhu X, Cui L, Li Y. Genome-wide characterization and evolution analysis of miniature inverted-repeat transposable elements in Barley ( Hordeum vulgare). FRONTIERS IN PLANT SCIENCE 2024; 15:1474846. [PMID: 39544535 PMCID: PMC11560428 DOI: 10.3389/fpls.2024.1474846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Miniature inverted-repeat transposable elements (MITEs) constitute a class of class II transposable elements (TEs) that are abundant in plant genomes, playing a crucial role in their evolution and diversity. Barley (Hordeum vulgare), the fourth-most important cereal crop globally, is widely used for brewing, animal feed, and human consumption. However, despite their significance, the mechanisms underlying the insertion or amplification of MITEs and their contributions to barley genome evolution and diversity remain poorly understood. Through our comprehensive analysis, we identified 32,258 full-length MITEs belonging to 2,992 distinct families, accounting for approximately 0.17% of the barley genome. These MITE families can be grouped into four well-known superfamilies (Tc1/Mariner-like, PIF/Harbinger-like, hAT-like, and Mutator-like) and one unidentified superfamily. Notably, we observed two major expansion events in the barley MITE population, occurring approximately 12-13 million years ago (Mya) and 2-3 Mya. Our investigation revealed a strong preference of MITEs for gene-related regions, particularly in promoters, suggesting their potential involvement in regulating host gene expression. Additionally, we discovered that 7.73% miRNAs are derived from MITEs, thereby influencing the origin of certain miRNAs and potentially exerting a significant impact on post-transcriptional gene expression control. Evolutionary analysis demonstrated that MITEs exhibit lower conservation compared to genes, consistent with their dynamic mobility. We also identified a series of MITE insertions or deletions associated with domestication, highlighting these regions as promising targets for crop improvement strategies. These findings significantly advance our understanding of the fundamental characteristics and evolutionary patterns of MITEs in the barley genome. Moreover, they contribute to our knowledge of gene regulatory networks and provide valuable insights for crop improvement endeavors.
Collapse
Affiliation(s)
- Ruiying Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ju Yao
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shaoshuai Cai
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yi Fu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chongde Lai
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- The Public Instrument Platform of Jiangxi Agricultural University, Jiangxi Agricultural University, Nanchang, China
| | - Xiangdong Zhu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Sicat JPA, Visendi P, Sewe SO, Bouvaine S, Seal SE. Characterization of transposable elements within the Bemisia tabaci species complex. Mob DNA 2022; 13:12. [PMID: 35440097 PMCID: PMC9017028 DOI: 10.1186/s13100-022-00270-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background Whiteflies are agricultural pests that cause negative impacts globally to crop yields resulting at times in severe economic losses and food insecurity. The Bemisia tabaci whitefly species complex is the most damaging in terms of its broad crop host range and its ability to serve as vector for over 400 plant viruses. Genomes of whiteflies belonging to this species complex have provided valuable genomic data; however, transposable elements (TEs) within these genomes remain unexplored. This study provides the first accurate characterization of TE content within the B. tabaci species complex. Results This study identified that an average of 40.61% of the genomes of three whitefly species (MEAM1, MEDQ, and SSA-ECA) consists of TEs. The majority of the TEs identified were DNA transposons (22.85% average) while SINEs (0.14% average) were the least represented. This study also compared the TE content of the three whitefly genomes with three other hemipteran genomes and found significantly more DNA transposons and less LINEs in the whitefly genomes. A total of 63 TE superfamilies were identified to be present across the three whitefly species (39 DNA transposons, six LTR, 16 LINE, and two SINE). The sequences of the identified TEs were clustered which generated 5766 TE clusters. A total of 2707 clusters were identified as uniquely found within the whitefly genomes while none of the generated clusters were from both whitefly and non-whitefly TE sequences. This study is the first to characterize TEs found within different B. tabaci species and has created a standardized annotation workflow that could be used to analyze future whitefly genomes. Conclusion This study is the first to characterize the landscape of TEs within the B. tabaci whitefly species complex. The characterization of these elements within the three whitefly genomes shows that TEs occupy significant portions of B. tabaci genomes, with DNA transposons representing the vast majority. This study also identified TE superfamilies and clusters of TE sequences of potential interest, providing essential information, and a framework for future TE studies within this species complex. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00270-6.
Collapse
Affiliation(s)
- Juan Paolo A Sicat
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK.
| | - Paul Visendi
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Steven O Sewe
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| | - Sophie Bouvaine
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Gillingham, Chatham, ME4 4TB, UK
| |
Collapse
|
4
|
Haq IU, Muhammad M, Yuan H, Ali S, Abbasi A, Asad M, Ashraf HJ, Khurshid A, Zhang K, Zhang Q, Liu C. Satellitome Analysis and Transposable Elements Comparison in Geographically Distant Populations of Spodoptera frugiperda. Life (Basel) 2022; 12:521. [PMID: 35455012 PMCID: PMC9026859 DOI: 10.3390/life12040521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Spodoptera frugiperda (fall armyworm) is a member of the superfamily Noctuoidea that accounts for more than a third of all Lepidoptera and includes a considerable number of agricultural and forest pest species. Spodoptera frugiperda is a polyphagous species that is a significant agricultural pest worldwide, emphasizing its economic importance. Spodoptera frugiperda's genome size, assembly, phylogenetic classification, and transcriptome analysis have all been previously described. However, the different studies reported different compositions of repeated DNA sequences that occupied the whole assembled genome, and the Spodoptera frugiperda genome also lacks the comprehensive study of dynamic satellite DNA. We conducted a comparative analysis of repetitive DNA across geographically distant populations of Spodoptera frugiperda, particularly satellite DNA, using publicly accessible raw genome data from eight different geographical regions. Our results showed that most transposable elements (TEs) were commonly shared across all geographically distant samples, except for the Maverick and PIF/Harbinger elements, which have divergent repeat copies. The TEs age analysis revealed that most TEs families consist of young copies 1-15 million years old; however, PIF/Harbinger has some older/degenerated copies of 30-35 million years old. A total of seven satellite DNA families were discovered, accounting for approximately 0.65% of the entire genome of the Spodoptera frugiperda fall armyworm. The repeat profiling analysis of satellite DNA families revealed differential read depth coverage or copy numbers. The satellite DNA families range in size from the lowest 108 bp SfrSat06-108 families to the largest (1824 bp) SfrSat07-1824 family. We did not observe a statistically significant correlation between monomer length and K2P divergence, copy number, or abundance of each satellite family. Our findings suggest that the satellite DNA families identified in Spodoptera frugiperda account for a considerable proportion of the genome's repetitive fraction. The satellite DNA families' repeat profiling revealed a point mutation along the reference sequences. Limited TEs differentiation exists among geographically distant populations of Spodoptera frugiperda.
Collapse
Affiliation(s)
- Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Majid Muhammad
- College of Life Sciences, Shaanxi Normal University, Xi’an 710100, China; (M.M.); (H.Y.)
| | - Huang Yuan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710100, China; (M.M.); (H.Y.)
| | - Shahbaz Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan;
| | - Asim Abbasi
- Department of Zoology, Bahawalpur Campus, University of Central Punjab, Bahawalpur 63100, Pakistan;
| | - Muhammad Asad
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hafiza Javaria Ashraf
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Aroosa Khurshid
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Kexin Zhang
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Qiangyan Zhang
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou 730070, China; (I.U.H.); (A.K.); (K.Z.); (Q.Z.)
| |
Collapse
|
5
|
Miniature Inverted-Repeat Transposable Elements (MITEs) in the Two Lepidopteran Genomes of Helicoverpa armigera and Helicoverpa zea. INSECTS 2022; 13:insects13040313. [PMID: 35447755 PMCID: PMC9033116 DOI: 10.3390/insects13040313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Miniature inverted-repeat transposable elements (MITEs) are non-autonomous transposable elements that play important roles in genome organization and evolution. Helicoverpa armigera and Helicoverpa zea shows a high number of reported cases of insecticide resistance worldwide, having evolved resistance against pyrethroids, organophosphates, carbamates, organochlorines, and recently to macrocyclic lactone spinosad and several Bacillus thuringiensis toxins. In the present study, we conducted a genome screening of MITEs in the H. armigera and H. zea genomes using bioinformatics approaches, and the results revealed a total of 3570 and 7405 MITE sequences in the H. armigera and H. zea genomes, respectively. Among these MITEs, we highlighted eleven MITE insertions in the H. armigera defensome genes and only one MITE insertion in those of H. zea. Abstract Miniature inverted-repeat transposable elements MITEs are ubiquitous, non-autonomous class II transposable elements. The moths, Helicoverpa armigera and Helicoverpa zea, are recognized as the two most serious pest species within the genus. Moreover, these pests have the ability to develop insecticide resistance. In the present study, we conducted a genome-wide analysis of MITEs present in H. armigera and H. zea genomes using the bioinformatics tool, MITE tracker. Overall, 3570 and 7405 MITE sequences were identified in H. armigera and H. zea genomes, respectively. Comparative analysis of identified MITE sequences in the two genomes led to the identification of 18 families, comprising 140 MITE members in H. armigera and 161 MITE members in H. zea. Based on target site duplication (TSD) sequences, the identified families were classified into three superfamilies (PIF/harbinger, Tc1/mariner and CACTA). Copy numbers varied from 6 to 469 for each MITE family. Finally, the analysis of MITE insertion sites in defensome genes showed intronic insertions of 11 MITEs in the cytochrome P450, ATP-binding cassette transporter (ABC) and esterase genes in H. armigera whereas for H. zea, only one MITE was retrieved in the ABC-C2 gene. These insertions could thus be involved in the insecticide resistance observed in these pests.
Collapse
|
6
|
Zidi M, Denis F, Klai K, Chénais B, Caruso A, Djebbi S, Mezghani M, Casse N. Genome-wide characterization of Mariner-like transposons and their derived MITEs in the Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). G3 (BETHESDA, MD.) 2021; 11:jkab287. [PMID: 34849769 PMCID: PMC8664452 DOI: 10.1093/g3journal/jkab287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022]
Abstract
The whitefly, Bemisia tabaci is a hemipteran pest of vegetable crops vectoring a broad category of viruses. Currently, this insect pest showed a high adaptability and resistance to almost all the chemical compounds commonly used for its control. In many cases, transposable elements (TEs) contributed to the evolution of host genomic plasticity. This study focuses on the annotation of Mariner-like elements (MLEs) and their derived Miniature Inverted repeat Transposable Elements (MITEs) in the genome of B. tabaci. Two full-length MLEs belonging to mauritiana and irritans subfamilies were detected and named Btmar1.1 and Btmar2.1, respectively. Additionally, 548 defective MLE sequences clustering mainly into 19 different Mariner lineages of mauritiana and irritans subfamilies were identified. Each subfamily showed a significant variation in MLE copy number and size. Furthermore, 71 MITEs were identified as MLEs derivatives that could be mobilized via the potentially active transposases encoded by Btmar 1.1 and Btmar2.1. The vast majority of sequences detected in the whitefly genome present unusual terminal inverted repeats (TIRs) of up to 400 bp in length. However, some exceptions are sequences without TIRs. This feature of the MLEs and their derived MITEs in B. tabaci genome that distinguishes them from all the other MLEs so far described in insects, which have TIRs size ranging from 20 to 40 bp. Overall, our study provides an overview of MLEs, especially those with large TIRs, and their related MITEs, as well as diversity of their families, which will provide a better understanding of the evolution and adaptation of the whitefly genome.
Collapse
Affiliation(s)
- Marwa Zidi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Françoise Denis
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
- Laboratoire BOREA MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, 75231 Paris, France
| | - Khouloud Klai
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Benoît Chénais
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Aurore Caruso
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Salma Djebbi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Maha Mezghani
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Nathalie Casse
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| |
Collapse
|
7
|
Loiseau V, Peccoud J, Bouzar C, Guillier S, Fan J, Alletti GG, Meignin C, Herniou EA, Federici BA, Wennmann JT, Jehle JA, Cordaux R, Gilbert C. Monitoring insect transposable elements in large double-stranded DNA viruses reveals host-to-virus and virus-to-virus transposition. Mol Biol Evol 2021; 38:3512-3530. [PMID: 34191026 PMCID: PMC8383894 DOI: 10.1093/molbev/msab198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms by which transposable elements (TEs) can be horizontally transferred between animals are unknown, but viruses are possible candidate vectors. Here, we surveyed the presence of host-derived TEs in viral genomes in 35 deep sequencing data sets produced from 11 host–virus systems, encompassing nine arthropod host species (five lepidopterans, two dipterans, and two crustaceans) and six different double-stranded (ds) DNA viruses (four baculoviruses and two iridoviruses). We found evidence of viral-borne TEs in 14 data sets, with frequencies of viral genomes carrying a TE ranging from 0.01% to 26.33% for baculoviruses and from 0.45% to 7.36% for iridoviruses. The analysis of viral populations separated by a single replication cycle revealed that viral-borne TEs originating from an initial host species can be retrieved after viral replication in another host species, sometimes at higher frequencies. Furthermore, we detected a strong increase in the number of integrations in a viral population for a TE absent from the hosts’ genomes, indicating that this TE has undergone intense transposition within the viral population. Finally, we provide evidence that many TEs found integrated in viral genomes (15/41) have been horizontally transferred in insects. Altogether, our results indicate that multiple large dsDNA viruses have the capacity to shuttle TEs in insects and they underline the potential of viruses to act as vectors of horizontal transfer of TEs. Furthermore, the finding that TEs can transpose between viral genomes of a viral species sets viruses as possible new niches in which TEs can persist and evolve.
Collapse
Affiliation(s)
- Vincent Loiseau
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Jean Peccoud
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Clémence Bouzar
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Sandra Guillier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Jiangbin Fan
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
| | | | - Carine Meignin
- Modèles Insectes d'Immunité antivirale (M3i), Université de Strasbourg, IBMC CNRS-UPR9022, F-67000, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261 CNRS - Université de Tours, 37200 Tours, France
| | - Brian A Federici
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Jörg T Wennmann
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
| | - Johannes A Jehle
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
| | - Richard Cordaux
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Gilbert C, Peccoud J, Cordaux R. Transposable Elements and the Evolution of Insects. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:355-372. [PMID: 32931312 DOI: 10.1146/annurev-ento-070720-074650] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects are major contributors to our understanding of the interaction between transposable elements (TEs) and their hosts, owing to seminal discoveries, as well as to the growing number of sequenced insect genomes and population genomics and functional studies. Insect TE landscapes are highly variable both within and across insect orders, although phylogenetic relatedness appears to correlate with similarity in insect TE content. This correlation is unlikely to be solely due to inheritance of TEs from shared ancestors and may partly reflect preferential horizontal transfer of TEs between closely related species. The influence of insect traits on TE landscapes, however, remains unclear. Recent findings indicate that, in addition to being involved in insect adaptations and aging, TEs are seemingly at the cornerstone of insect antiviral immunity. Thus, TEs are emerging as essential insect symbionts that may have deleterious or beneficial consequences on their hosts, depending on context.
Collapse
Affiliation(s)
- Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France;
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86073 Poitiers CEDEX 9, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86073 Poitiers CEDEX 9, France
| |
Collapse
|
9
|
Zhang HH, Zhou QZ, Wang PL, Xiong XM, Luchetti A, Raoult D, Levasseur A, Santini S, Abergel C, Legendre M, Drezen JM, Béliveau C, Cusson M, Jiang SH, Bao HO, Sun C, Bureau TE, Cheng PF, Han MJ, Zhang Z, Zhang XG, Dai FY. Unexpected invasion of miniature inverted-repeat transposable elements in viral genomes. Mob DNA 2018; 9:19. [PMID: 29946369 PMCID: PMC6004678 DOI: 10.1186/s13100-018-0125-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
Background Transposable elements (TEs) are common and often present with high copy numbers in cellular genomes. Unlike in cellular organisms, TEs were previously thought to be either rare or absent in viruses. Almost all reported TEs display only one or two copies per viral genome. In addition, the discovery of pandoraviruses with genomes up to 2.5-Mb emphasizes the need for biologists to rethink the fundamental nature of the relationship between viruses and cellular life. Results Herein, we performed the first comprehensive analysis of miniature inverted-repeat transposable elements (MITEs) in the 5170 viral genomes for which sequences are currently available. Four hundred and fifty one copies of ten miniature inverted-repeat transposable elements (MITEs) were found and each MITE had reached relatively large copy numbers (some up to 90) in viruses. Eight MITEs belonging to two DNA superfamilies (hobo/Activator/Tam3 and Chapaev-Mirage-CACTA) were for the first time identified in viruses, further expanding the organismal range of these two superfamilies. TEs may play important roles in shaping the evolution of pandoravirus genomes, which were here found to be very rich in MITEs. We also show that putative autonomous partners of seven MITEs are present in the genomes of viral hosts, suggesting that viruses may borrow the transpositional machinery of their cellular hosts' autonomous elements to spread MITEs and colonize their own genomes. The presence of seven similar MITEs in viral hosts, suggesting horizontal transfers (HTs) as the major mechanism for MITEs propagation. Conclusions Our discovery highlights that TEs contribute to shape genome evolution of pandoraviruses. We concluded that as for cellular organisms, TEs are part of the pandoraviruses' diverse mobilome.
Collapse
Affiliation(s)
- Hua-Hao Zhang
- 1College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.,2State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Qiu-Zhong Zhou
- 3School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Ping-Lan Wang
- 1College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xiao-Min Xiong
- 4Clinical Medical College, Jiujiang University, Jiujiang, China
| | - Andrea Luchetti
- 5Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Didier Raoult
- 6Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | - Anthony Levasseur
- 6Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille University, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, AP-HM, 19-21 Boulevard Jean Moulin, 13385 Marseille, France
| | - Sebastien Santini
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique and Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), 13288 Marseille Cedex 9, France
| | - Chantal Abergel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique and Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), 13288 Marseille Cedex 9, France
| | - Matthieu Legendre
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique and Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), 13288 Marseille Cedex 9, France
| | - Jean-Michel Drezen
- 8Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François-Rabelais de Tours, UFR Sciences et Techniques, 37200 Tours, France
| | - Catherine Béliveau
- 9Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Quebec, Canada
| | - Michel Cusson
- 9Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Quebec, Canada
| | - Shen-Hua Jiang
- 1College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Hai-Ou Bao
- 1College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Cheng Sun
- 10Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Thomas E Bureau
- 11Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Peng-Fei Cheng
- 12Poyang Lake Eco-economy Research Center, Jiujiang University, Jiujiang, China
| | - Min-Jin Han
- 2State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Ze Zhang
- 3School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Xiao-Gu Zhang
- 1College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Fang-Yin Dai
- 2State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Ge R, Mai G, Zhang R, Wu X, Wu Q, Zhou F. MUSTv2: An Improved De Novo Detection Program for Recently Active Miniature Inverted Repeat Transposable Elements (MITEs). J Integr Bioinform 2017; 14:/j/jib.ahead-of-print/jib-2017-0029/jib-2017-0029.xml. [PMID: 28796642 PMCID: PMC6042816 DOI: 10.1515/jib-2017-0029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 11/15/2022] Open
Abstract
Background Miniature inverted repeat transposable element (MITE) is a short transposable element, carrying no protein-coding regions. However, its high proliferation rate and sequence-specific insertion preference renders it as a good genetic tool for both natural evolution and experimental insertion mutagenesis. Recently active MITE copies are those with clear signals of Terminal Inverted Repeats (TIRs) and Direct Repeats (DRs), and are recently translocated into their current sites. Their proliferation ability renders them good candidates for the investigation of genomic evolution. Results This study optimizes the C++ code and running pipeline of the MITE Uncovering SysTem (MUST) by assuming no prior knowledge of MITEs required from the users, and the current version, MUSTv2, shows significantly increased detection accuracy for recently active MITEs, compared with similar programs. The running speed is also significantly increased compared with MUSTv1. We prepared a benchmark dataset, the simulated genome with 150 MITE copies for researchers who may be of interest. Conclusions MUSTv2 represents an accurate detection program of recently active MITE copies, which is complementary to the existing template-based MITE mapping programs. We believe that the release of MUSTv2 will greatly facilitate the genome annotation and structural analysis of the bioOMIC big data researchers.
Collapse
|