1
|
Deng CH, Naithani S, Kumari S, Cobo-Simón I, Quezada-Rodríguez EH, Skrabisova M, Gladman N, Correll MJ, Sikiru AB, Afuwape OO, Marrano A, Rebollo I, Zhang W, Jung S. Genotype and phenotype data standardization, utilization and integration in the big data era for agricultural sciences. Database (Oxford) 2023; 2023:baad088. [PMID: 38079567 PMCID: PMC10712715 DOI: 10.1093/database/baad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Large-scale genotype and phenotype data have been increasingly generated to identify genetic markers, understand gene function and evolution and facilitate genomic selection. These datasets hold immense value for both current and future studies, as they are vital for crop breeding, yield improvement and overall agricultural sustainability. However, integrating these datasets from heterogeneous sources presents significant challenges and hinders their effective utilization. We established the Genotype-Phenotype Working Group in November 2021 as a part of the AgBioData Consortium (https://www.agbiodata.org) to review current data types and resources that support archiving, analysis and visualization of genotype and phenotype data to understand the needs and challenges of the plant genomic research community. For 2021-22, we identified different types of datasets and examined metadata annotations related to experimental design/methods/sample collection, etc. Furthermore, we thoroughly reviewed publicly funded repositories for raw and processed data as well as secondary databases and knowledgebases that enable the integration of heterogeneous data in the context of the genome browser, pathway networks and tissue-specific gene expression. Based on our survey, we recommend a need for (i) additional infrastructural support for archiving many new data types, (ii) development of community standards for data annotation and formatting, (iii) resources for biocuration and (iv) analysis and visualization tools to connect genotype data with phenotype data to enhance knowledge synthesis and to foster translational research. Although this paper only covers the data and resources relevant to the plant research community, we expect that similar issues and needs are shared by researchers working on animals. Database URL: https://www.agbiodata.org.
Collapse
Affiliation(s)
- Cecilia H Deng
- Molecular and Digital Breeding, New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, New York, NY 11724, USA
| | - Irene Cobo-Simón
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Institute of Forest Science (ICIFOR-INIA, CSIC), Madrid, Spain
| | - Elsa H Quezada-Rodríguez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maria Skrabisova
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Nick Gladman
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, New York, NY 11724, USA
- U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - Melanie J Correll
- Agricultural and Biological Engineering Department, University of Florida, 1741 Museum Rd, Gainesville, FL 32611, USA
| | | | | | - Annarita Marrano
- Phoenix Bioinformatics, 39899 Balentine Drive, Suite 200, Newark, CA 94560, USA
| | | | - Wentao Zhang
- National Research Council Canada, 110 Gymnasium Pl, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Sook Jung
- Department of Horticulture, Washington State University, 303c Plant Sciences Building, Pullman, WA 99164-6414, USA
| |
Collapse
|
2
|
Naithani S, Deng CH, Sahu SK, Jaiswal P. Exploring Pan-Genomes: An Overview of Resources and Tools for Unraveling Structure, Function, and Evolution of Crop Genes and Genomes. Biomolecules 2023; 13:1403. [PMID: 37759803 PMCID: PMC10527062 DOI: 10.3390/biom13091403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The availability of multiple sequenced genomes from a single species made it possible to explore intra- and inter-specific genomic comparisons at higher resolution and build clade-specific pan-genomes of several crops. The pan-genomes of crops constructed from various cultivars, accessions, landraces, and wild ancestral species represent a compendium of genes and structural variations and allow researchers to search for the novel genes and alleles that were inadvertently lost in domesticated crops during the historical process of crop domestication or in the process of extensive plant breeding. Fortunately, many valuable genes and alleles associated with desirable traits like disease resistance, abiotic stress tolerance, plant architecture, and nutrition qualities exist in landraces, ancestral species, and crop wild relatives. The novel genes from the wild ancestors and landraces can be introduced back to high-yielding varieties of modern crops by implementing classical plant breeding, genomic selection, and transgenic/gene editing approaches. Thus, pan-genomic represents a great leap in plant research and offers new avenues for targeted breeding to mitigate the impact of global climate change. Here, we summarize the tools used for pan-genome assembly and annotations, web-portals hosting plant pan-genomes, etc. Furthermore, we highlight a few discoveries made in crops using the pan-genomic approach and future potential of this emerging field of study.
Collapse
Affiliation(s)
- Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| | - Cecilia H. Deng
- Molecular & Digital Breeing Group, New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand;
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China;
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
3
|
Moing A, Berton T, Roch L, Diarrassouba S, Bernillon S, Arrivault S, Deborde C, Maucourt M, Cabasson C, Bénard C, Prigent S, Jacob D, Gibon Y, Lemaire-Chamley M. Multi-omics quantitative data of tomato fruit unveils regulation modes of least variable metabolites. BMC PLANT BIOLOGY 2023; 23:365. [PMID: 37479985 PMCID: PMC10362748 DOI: 10.1186/s12870-023-04370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND The composition of ripe fruits depends on various metabolites which content evolves greatly throughout fruit development and may be influenced by the environment. The corresponding metabolism regulations have been widely described in tomato during fruit growth and ripening. However, the regulation of other metabolites that do not show large changes in content have scarcely been studied. RESULTS We analysed the metabolites of tomato fruits collected on different trusses during fruit development, using complementary analytical strategies. We identified the 22 least variable metabolites, based on their coefficients of variation. We first verified that they had a limited functional link with the least variable proteins and transcripts. We then posited that metabolite contents could be stabilized through complex regulations and combined their data with the quantitative proteome or transcriptome data, using sparse partial-least-square analyses. This showed shared regulations between several metabolites, which interestingly remained linked to early fruit development. We also examined regulations in specific metabolites using correlations with individual proteins and transcripts, which revealed that a stable metabolite does not always correlate with proteins and transcripts of its known related pathways. CONCLUSIONS The regulation of the least variable metabolites was then interpreted regarding their roles as hubs in metabolic pathways or as signalling molecules.
Collapse
Affiliation(s)
- Annick Moing
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Thierry Berton
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Léa Roch
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Salimata Diarrassouba
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: Laboratoire de Recherche en Sciences Végétales, UMR 5546 UPS/CNRS, Auzeville- Tolosane, F-31320 France
| | - Stéphane Bernillon
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: INRAE, Mycologie et Sécurité des Aliments, UR 1264, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, am Muehlenberg 14476, Potsdam-Golm, Germany
| | - Catherine Deborde
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: INRAE, UR1268 BIA, Centre INRAE Pays de Loire – Nantes, Nantes, F-44000 France
- Present address: INRAE, BIBS Facility, Centre INRAE Pays de Loire – Nantes, Nantes, F-44000 France
| | - Mickaël Maucourt
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Cécile Cabasson
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Camille Bénard
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Sylvain Prigent
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Daniel Jacob
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Martine Lemaire-Chamley
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| |
Collapse
|
4
|
Mesara SN, Dave KP, Subramanian RB. Comparative transcriptome analysis elucidates positive physiological effects of foliar application of pyraclostrobin on tomato ( Solanum lycopersicum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:971-986. [PMID: 35722521 PMCID: PMC9203623 DOI: 10.1007/s12298-022-01191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 05/03/2023]
Abstract
Strobilurins, including pyraclostrobin have frequently been reported showing positive physiological effects in various agricultural crops apart from fungicidal activity. Present study elucidates comparative transcriptome analysis of control and pyraclostrobin treated tomato leaf and identifies metabolic pathways and key genes responsible for positive effects of pyraclostrobin on tomato. Pair-end raw reads, generated by Illumina Hi-seq platform were pre-processed and good quality reads were mapped onto tomato reference genome using HISAT2 alignment programme. Transcript assembly and quantification were performed using StringTie assembler. Differential Gene Expression analysis by DESeq2 identified 1,952 upregulated genes including genes encoding pathogenesis related proteins and 835 downregulated genes. RT-PCR study showed increase in expression of RBCs (2.5-fold), GA20o (3-fold), and NR (1.4-fold) genes, which are the key genes of photosynthesis, gibberellic acid synthesis, and nitrogen assimilation pathways respectively identified in KEGG pathway analysis. Pyraclostrobin treated plants showed 1.6-folds increase in plant height, 3.3-folds increase in number of leaves, and 2.8-folds increase in number of flowers. Total protein content increased 1.7, 1.4, 1.2, 1.2, and 1.4 folds at 1 day after application (DAA), 4DAA, 7DAA, 10DAA, and 13DAA respectively in treated plants. Moreover, content of phenol also increased 1.14, 1.5, 2.4, and 1.5 folds in 4DAA, 7DAA, 10DAA, and 13DAA respectively. Nitrate reductase activity increased 2-fold, 1.8-fold, 1.5-fold and 1.15-fold in 1DAA, 7DAA, 10DAA and 13DAA respectively. Carbohydrate decreased in treated plants up to 7DAA. The present study is the first report of transcriptome analysis elucidating positive physiological effects of strobilurin on plant. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01191-7.
Collapse
Affiliation(s)
- Sureshkumar N. Mesara
- Department of Biosciences, Sardar Patel University, Satellite campus, Bakrol-Vadtal road, Bakrol, Anand, Gujarat 388315 India
| | - Kirtan P. Dave
- Indukaka Ipcowala Centre of Interdisciplinary Studies in Science and Technology–IICISST, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat 388120 India
| | - Ramalingam B. Subramanian
- Department of Biosciences, Sardar Patel University, Satellite campus, Bakrol-Vadtal road, Bakrol, Anand, Gujarat 388315 India
| |
Collapse
|
5
|
Foerster H, Battey JND, Sierro N, Ivanov NV, Mueller LA. Metabolic networks of the Nicotiana genus in the spotlight: content, progress and outlook. Brief Bioinform 2021; 22:bbaa136. [PMID: 32662816 PMCID: PMC8138835 DOI: 10.1093/bib/bbaa136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023] Open
Abstract
Manually curated metabolic databases residing at the Sol Genomics Network comprise two taxon-specific databases for the Solanaceae family, i.e. SolanaCyc and the genus Nicotiana, i.e. NicotianaCyc as well as six species-specific databases for Nicotiana tabacum TN90, N. tabacum K326, Nicotiana benthamiana, N. sylvestris, N. tomentosiformis and N. attenuata. New pathways were created through the extraction, examination and verification of related data from the literature and the aid of external database guided by an expert-led curation process. Here we describe the curation progress that has been achieved in these databases since the first release version 1.0 in 2016, the curation flow and the curation process using the example metabolic pathway for cholesterol in plants. The current content of our databases comprises 266 pathways and 36 superpathways in SolanaCyc and 143 pathways plus 21 superpathways in NicotianaCyc, manually curated and validated specifically for the Solanaceae family and Nicotiana genus, respectively. The curated data have been propagated to the respective Nicotiana-specific databases, which resulted in the enrichment and more accurate presentation of their metabolic networks. The quality and coverage in those databases have been compared with related external databases and discussed in terms of literature support and metabolic content.
Collapse
|
6
|
Jamil IN, Remali J, Azizan KA, Nor Muhammad NA, Arita M, Goh HH, Aizat WM. Systematic Multi-Omics Integration (MOI) Approach in Plant Systems Biology. FRONTIERS IN PLANT SCIENCE 2020; 11:944. [PMID: 32754171 PMCID: PMC7371031 DOI: 10.3389/fpls.2020.00944] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/10/2020] [Indexed: 05/03/2023]
Abstract
Across all facets of biology, the rapid progress in high-throughput data generation has enabled us to perform multi-omics systems biology research. Transcriptomics, proteomics, and metabolomics data can answer targeted biological questions regarding the expression of transcripts, proteins, and metabolites, independently, but a systematic multi-omics integration (MOI) can comprehensively assimilate, annotate, and model these large data sets. Previous MOI studies and reviews have detailed its usage and practicality on various organisms including human, animals, microbes, and plants. Plants are especially challenging due to large poorly annotated genomes, multi-organelles, and diverse secondary metabolites. Hence, constructive and methodological guidelines on how to perform MOI for plants are needed, particularly for researchers newly embarking on this topic. In this review, we thoroughly classify multi-omics studies on plants and verify workflows to ensure successful omics integration with accurate data representation. We also propose three levels of MOI, namely element-based (level 1), pathway-based (level 2), and mathematical-based integration (level 3). These MOI levels are described in relation to recent publications and tools, to highlight their practicality and function. The drawbacks and limitations of these MOI are also discussed for future improvement toward more amenable strategies in plant systems biology.
Collapse
Affiliation(s)
- Ili Nadhirah Jamil
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Juwairiah Remali
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Kamalrul Azlan Azizan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Masanori Arita
- Bioinformation & DDBJ Center, National Institute of Genetics (NIG), Mishima, Japan
- Metabolome Informatics Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hoe-Han Goh
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| |
Collapse
|
7
|
Enfissi EM, Nogueira M, D'Ambrosio C, Stigliani AL, Giorio G, Misawa N, Fraser PD. The road to astaxanthin production in tomato fruit reveals plastid and metabolic adaptation resulting in an unintended high lycopene genotype with delayed over-ripening properties. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1501-1513. [PMID: 30623551 PMCID: PMC6662112 DOI: 10.1111/pbi.13073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 05/23/2023]
Abstract
Tomato fruit are an important nutritional component of the human diet and offer potential to act as a cell factory for speciality chemicals, which are often produced by chemical synthesis. In the present study our goal was to produce competitive levels of the high value ketocarotenoid, astaxanthin, in tomato fruit. The initial stage in this process was achieved by expressing the 4, 4' carotenoid oxygenase (crtW) and 3, 3' hydroxylase (crtZ) from marine bacteria in tomato under constitutive control. Characterization of this genotype showed a surprising low level production of ketocarotenoids in ripe fruit but over production of lycopene (~3.5 mg/g DW), accompanied by delayed ripening. In order to accumulate these non-endogenous carotenoids, metabolite induced plastid differentiation was evident as well as esterification. Metabolomic and pathway based transcription studies corroborated the delayed onset of ripening. The data also revealed the importance of determining pheno/chemotype inheritance, with ketocarotenoid producing progeny displaying loss of vigour in the homozygous state but stability and robustness in the hemizygous state. To iteratively build on these data and optimize ketocarotenoid production in this genotype, a lycopene β-cyclase was incorporated to avoid precursor limitations and a more efficient hydroxylase was introduced. These combinations resulted in the production of astaxanthin (and ketocarotenoid esters) in ripe fruit at ~3 mg/g DW. Based on previous studies, this level of product formation represents an economic competitive value in a Generally Regarded As Safe (GRAS) matrix that requires minimal downstream processing.
Collapse
Affiliation(s)
| | - Marilise Nogueira
- School of Biological SciencesRoyal HollowayUniversity of LondonEghamSurreyUK
| | | | | | | | - Norihiko Misawa
- Res Inst Bioresources & BiotechnolIshikawa Prefectural UniversityNonoichiIshikawaJapan
| | - Paul D. Fraser
- School of Biological SciencesRoyal HollowayUniversity of LondonEghamSurreyUK
| |
Collapse
|
8
|
Chen F, Song Y, Li X, Chen J, Mo L, Zhang X, Lin Z, Zhang L. Genome sequences of horticultural plants: past, present, and future. HORTICULTURE RESEARCH 2019; 6:112. [PMID: 31645966 PMCID: PMC6804536 DOI: 10.1038/s41438-019-0195-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/27/2019] [Accepted: 08/10/2019] [Indexed: 05/18/2023]
Abstract
Horticultural plants play various and critical roles for humans by providing fruits, vegetables, materials for beverages, and herbal medicines and by acting as ornamentals. They have also shaped human art, culture, and environments and thereby have influenced the lifestyles of humans. With the advent of sequencing technologies, there has been a dramatic increase in the number of sequenced genomes of horticultural plant species in the past decade. The genomes of horticultural plants are highly diverse and complex, often with a high degree of heterozygosity and a high ploidy due to their long and complex history of evolution and domestication. Here we summarize the advances in the genome sequencing of horticultural plants, the reconstruction of pan-genomes, and the development of horticultural genome databases. We also discuss past, present, and future studies related to genome sequencing, data storage, data quality, data sharing, and data visualization to provide practical guidance for genomic studies of horticultural plants. Finally, we propose a horticultural plant genome project as well as the roadmap and technical details toward three goals of the project.
Collapse
Affiliation(s)
- Fei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yunfeng Song
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaojiang Li
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Junhao Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300 China
| | - Lan Mo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300 China
| | - Xingtan Zhang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO 63103 USA
| | - Liangsheng Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology and Quality Science and Processing Technology in Special Starch, Key Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of Crops, College of Crop Science, Fuzhou, China
| |
Collapse
|