1
|
Chen Q, Hu Y, Peng X, Xie Q, Jin Q, Gilson A, Singer MB, Ai X, Lai PT, Wang Z, Keloth VK, Raja K, Huang J, He H, Lin F, Du J, Zhang R, Zheng WJ, Adelman RA, Lu Z, Xu H. Benchmarking large language models for biomedical natural language processing applications and recommendations. Nat Commun 2025; 16:3280. [PMID: 40188094 PMCID: PMC11972378 DOI: 10.1038/s41467-025-56989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/07/2025] [Indexed: 04/07/2025] Open
Abstract
The rapid growth of biomedical literature poses challenges for manual knowledge curation and synthesis. Biomedical Natural Language Processing (BioNLP) automates the process. While Large Language Models (LLMs) have shown promise in general domains, their effectiveness in BioNLP tasks remains unclear due to limited benchmarks and practical guidelines. We perform a systematic evaluation of four LLMs-GPT and LLaMA representatives-on 12 BioNLP benchmarks across six applications. We compare their zero-shot, few-shot, and fine-tuning performance with the traditional fine-tuning of BERT or BART models. We examine inconsistencies, missing information, hallucinations, and perform cost analysis. Here, we show that traditional fine-tuning outperforms zero- or few-shot LLMs in most tasks. However, closed-source LLMs like GPT-4 excel in reasoning-related tasks such as medical question answering. Open-source LLMs still require fine-tuning to close performance gaps. We find issues like missing information and hallucinations in LLM outputs. These results offer practical insights for applying LLMs in BioNLP.
Collapse
Affiliation(s)
- Qingyu Chen
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, Yale University, New Haven, CT, USA
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Yan Hu
- McWilliams School of Biomedical Informatics, University of Texas Health Science at Houston, Houston, TX, USA
| | - Xueqing Peng
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Qianqian Xie
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Qiao Jin
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Aidan Gilson
- Department of Ophthalmology and Visual Science, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Maxwell B Singer
- Department of Ophthalmology and Visual Science, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Xuguang Ai
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Po-Ting Lai
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Zhizheng Wang
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Vipina K Keloth
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kalpana Raja
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Jimin Huang
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Huan He
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Fongci Lin
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Jingcheng Du
- McWilliams School of Biomedical Informatics, University of Texas Health Science at Houston, Houston, TX, USA
| | - Rui Zhang
- Division of Computational Health Sciences, Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN, USA
- Center for Learning Health System Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - W Jim Zheng
- McWilliams School of Biomedical Informatics, University of Texas Health Science at Houston, Houston, TX, USA
| | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Zhiyong Lu
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Hua Xu
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Ramos MC, Collison CJ, White AD. A review of large language models and autonomous agents in chemistry. Chem Sci 2025; 16:2514-2572. [PMID: 39829984 PMCID: PMC11739813 DOI: 10.1039/d4sc03921a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Large language models (LLMs) have emerged as powerful tools in chemistry, significantly impacting molecule design, property prediction, and synthesis optimization. This review highlights LLM capabilities in these domains and their potential to accelerate scientific discovery through automation. We also review LLM-based autonomous agents: LLMs with a broader set of tools to interact with their surrounding environment. These agents perform diverse tasks such as paper scraping, interfacing with automated laboratories, and synthesis planning. As agents are an emerging topic, we extend the scope of our review of agents beyond chemistry and discuss across any scientific domains. This review covers the recent history, current capabilities, and design of LLMs and autonomous agents, addressing specific challenges, opportunities, and future directions in chemistry. Key challenges include data quality and integration, model interpretability, and the need for standard benchmarks, while future directions point towards more sophisticated multi-modal agents and enhanced collaboration between agents and experimental methods. Due to the quick pace of this field, a repository has been built to keep track of the latest studies: https://github.com/ur-whitelab/LLMs-in-science.
Collapse
Affiliation(s)
- Mayk Caldas Ramos
- FutureHouse Inc. San Francisco CA USA
- Department of Chemical Engineering, University of Rochester Rochester NY USA
| | - Christopher J Collison
- School of Chemistry and Materials Science, Rochester Institute of Technology Rochester NY USA
| | - Andrew D White
- FutureHouse Inc. San Francisco CA USA
- Department of Chemical Engineering, University of Rochester Rochester NY USA
| |
Collapse
|
3
|
Savosina P, Druzhilovskiy D, Filimonov D, Poroikov V. WWAD: the most comprehensive small molecule World Wide Approved Drug database of therapeutics. Front Pharmacol 2024; 15:1473279. [PMID: 39359251 PMCID: PMC11444997 DOI: 10.3389/fphar.2024.1473279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Polina Savosina
- Laboratory of Structure-Function Based Drug Design, Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | |
Collapse
|
4
|
Islamaj R, Wei CH, Lai PT, Luo L, Coss C, Gokal Kochar P, Miliaras N, Rodionov O, Sekiya K, Trinh D, Whitman D, Lu Z. The biomedical relationship corpus of the BioRED track at the BioCreative VIII challenge and workshop. Database (Oxford) 2024; 2024:baae071. [PMID: 39126204 PMCID: PMC11315767 DOI: 10.1093/database/baae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
The automatic recognition of biomedical relationships is an important step in the semantic understanding of the information contained in the unstructured text of the published literature. The BioRED track at BioCreative VIII aimed to foster the development of such methods by providing the participants the BioRED-BC8 corpus, a collection of 1000 PubMed documents manually curated for diseases, gene/proteins, chemicals, cell lines, gene variants, and species, as well as pairwise relationships between them which are disease-gene, chemical-gene, disease-variant, gene-gene, chemical-disease, chemical-chemical, chemical-variant, and variant-variant. Furthermore, relationships are categorized into the following semantic categories: positive correlation, negative correlation, binding, conversion, drug interaction, comparison, cotreatment, and association. Unlike most of the previous publicly available corpora, all relationships are expressed at the document level as opposed to the sentence level, and as such, the entities are normalized to the corresponding concept identifiers of the standardized vocabularies, namely, diseases and chemicals are normalized to MeSH, genes (and proteins) to National Center for Biotechnology Information (NCBI) Gene, species to NCBI Taxonomy, cell lines to Cellosaurus, and gene/protein variants to Single Nucleotide Polymorphism Database. Finally, each annotated relationship is categorized as 'novel' depending on whether it is a novel finding or experimental verification in the publication it is expressed in. This distinction helps differentiate novel findings from other relationships in the same text that provides known facts and/or background knowledge. The BioRED-BC8 corpus uses the previous BioRED corpus of 600 PubMed articles as the training dataset and includes a set of newly published 400 articles to serve as the test data for the challenge. All test articles were manually annotated for the BioCreative VIII challenge by expert biocurators at the National Library of Medicine, using the original annotation guidelines, where each article is doubly annotated in a three-round annotation process until full agreement is reached between all curators. This manuscript details the characteristics of the BioRED-BC8 corpus as a critical resource for biomedical named entity recognition and relation extraction. Using this new resource, we have demonstrated advancements in biomedical text-mining algorithm development. Database URL: https://codalab.lisn.upsaclay.fr/competitions/16381.
Collapse
Affiliation(s)
- Rezarta Islamaj
- National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Chih-Hsuan Wei
- National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Po-Ting Lai
- National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Ling Luo
- School of Computer Science and Technology, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Cathleen Coss
- National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Preeti Gokal Kochar
- National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Nicholas Miliaras
- National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Oleg Rodionov
- National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Keiko Sekiya
- National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Dorothy Trinh
- National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Deborah Whitman
- National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Zhiyong Lu
- National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| |
Collapse
|
5
|
Islamaj R, Lai PT, Wei CH, Luo L, Almeida T, Jonker RAA, Conceição SIR, Sousa DF, Phan CP, Chiang JH, Li J, Pan D, Meesawad W, Tsai RTH, Sarol MJ, Hong G, Valiev A, Tutubalina E, Lee SM, Hsu YY, Li M, Verspoor K, Lu Z. The overview of the BioRED (Biomedical Relation Extraction Dataset) track at BioCreative VIII. Database (Oxford) 2024; 2024:baae069. [PMID: 39114977 PMCID: PMC11306928 DOI: 10.1093/database/baae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 08/11/2024]
Abstract
The BioRED track at BioCreative VIII calls for a community effort to identify, semantically categorize, and highlight the novelty factor of the relationships between biomedical entities in unstructured text. Relation extraction is crucial for many biomedical natural language processing (NLP) applications, from drug discovery to custom medical solutions. The BioRED track simulates a real-world application of biomedical relationship extraction, and as such, considers multiple biomedical entity types, normalized to their specific corresponding database identifiers, as well as defines relationships between them in the documents. The challenge consisted of two subtasks: (i) in Subtask 1, participants were given the article text and human expert annotated entities, and were asked to extract the relation pairs, identify their semantic type and the novelty factor, and (ii) in Subtask 2, participants were given only the article text, and were asked to build an end-to-end system that could identify and categorize the relationships and their novelty. We received a total of 94 submissions from 14 teams worldwide. The highest F-score performances achieved for the Subtask 1 were: 77.17% for relation pair identification, 58.95% for relation type identification, 59.22% for novelty identification, and 44.55% when evaluating all of the above aspects of the comprehensive relation extraction. The highest F-score performances achieved for the Subtask 2 were: 55.84% for relation pair, 43.03% for relation type, 42.74% for novelty, and 32.75% for comprehensive relation extraction. The entire BioRED track dataset and other challenge materials are available at https://ftp.ncbi.nlm.nih.gov/pub/lu/BC8-BioRED-track/ and https://codalab.lisn.upsaclay.fr/competitions/13377 and https://codalab.lisn.upsaclay.fr/competitions/13378. Database URL: https://ftp.ncbi.nlm.nih.gov/pub/lu/BC8-BioRED-track/https://codalab.lisn.upsaclay.fr/competitions/13377https://codalab.lisn.upsaclay.fr/competitions/13378.
Collapse
Affiliation(s)
- Rezarta Islamaj
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Po-Ting Lai
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Chih-Hsuan Wei
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| | - Ling Luo
- School of Computer Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, China
| | - Tiago Almeida
- Department of Electronics, Telecommunications and Informatics (DETI), Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Richard A. A Jonker
- Department of Electronics, Telecommunications and Informatics (DETI), Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Sofia I. R Conceição
- Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa, Edifício C6 Campo Grande, Lisbon 1749-016, Portugal
| | - Diana F Sousa
- Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa, Edifício C6 Campo Grande, Lisbon 1749-016, Portugal
| | - Cong-Phuoc Phan
- Department of Computer Science and Information Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, Republic of China
| | - Jung-Hsien Chiang
- Department of Computer Science and Information Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan, Republic of China
| | - Jiru Li
- School of Computer Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, China
| | - Dinghao Pan
- School of Computer Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, China
| | - Wilailack Meesawad
- Department of Computer Science and Information Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan, Republic of China
| | - Richard Tzong-Han Tsai
- Department of Computer Science and Information Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan, Republic of China
- Research Center for Humanities and Social Sciences, Academia Sinica, No. 128, Section 2, Academia Rd., Nangang District, Taoyuan City 115201, Taiwan, Republic of China
| | - M. Janina Sarol
- School of Information Sciences, University of Illinois at Urbana-Champaign, 614 E. Daniel St, Champaign, IL 61820, United States
| | - Gibong Hong
- School of Information Sciences, University of Illinois at Urbana-Champaign, 614 E. Daniel St, Champaign, IL 61820, United States
| | - Airat Valiev
- Higher School of Economics University, 20 Myasnitskaya St, Moscow 101000, Russia
| | - Elena Tutubalina
- Artificial Intelligence Research Institute (AIRI), 32 Kutuzovskiy St, Moscow 121170, Russia
- Kazan Federal University, 18 Kremlevskaya St, Kazan 420008, Russia
| | - Shao-Man Lee
- Miin Wu School of Computing, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan, Republic of China
| | - Yi-Yu Hsu
- Miin Wu School of Computing, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan, Republic of China
| | - Mingjie Li
- School of Computing Technologies, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Karin Verspoor
- School of Computing Technologies, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), 8600 Rockville Pike, Bethesda, MD 20894, United States
| |
Collapse
|
6
|
Lai PT, Wei CH, Luo L, Chen Q, Lu Z. BioREx: Improving biomedical relation extraction by leveraging heterogeneous datasets. J Biomed Inform 2023; 146:104487. [PMID: 37673376 DOI: 10.1016/j.jbi.2023.104487] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Biomedical relation extraction (RE) is the task of automatically identifying and characterizing relations between biomedical concepts from free text. RE is a central task in biomedical natural language processing (NLP) research and plays a critical role in many downstream applications, such as literature-based discovery and knowledge graph construction. State-of-the-art methods were used primarily to train machine learning models on individual RE datasets, such as protein-protein interaction and chemical-induced disease relation. Manual dataset annotation, however, is highly expensive and time-consuming, as it requires domain knowledge. Existing RE datasets are usually domain-specific or small, which limits the development of generalized and high-performing RE models. In this work, we present a novel framework for systematically addressing the data heterogeneity of individual datasets and combining them into a large dataset. Based on the framework and dataset, we report on BioREx, a data-centric approach for extracting relations. Our evaluation shows that BioREx achieves significantly higher performance than the benchmark system trained on the individual dataset, setting a new SOTA from 74.4% to 79.6% in F-1 measure on the recently released BioRED corpus. We further demonstrate that the combined dataset can improve performance for five different RE tasks. In addition, we show that on average BioREx compares favorably to current best-performing methods such as transfer learning and multi-task learning. Finally, we demonstrate BioREx's robustness and generalizability in two independent RE tasks not previously seen in training data: drug-drug N-ary combination and document-level gene-disease RE. The integrated dataset and optimized method have been packaged as a stand-alone tool available at https://github.com/ncbi/BioREx.
Collapse
Affiliation(s)
- Po-Ting Lai
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), MD, 20894 Bethesda, USA
| | - Chih-Hsuan Wei
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), MD, 20894 Bethesda, USA
| | - Ling Luo
- School of Computer Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Qingyu Chen
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), MD, 20894 Bethesda, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), MD, 20894 Bethesda, USA.
| |
Collapse
|
7
|
Bachman JA, Gyori BM, Sorger PK. Automated assembly of molecular mechanisms at scale from text mining and curated databases. Mol Syst Biol 2023; 19:e11325. [PMID: 36938926 PMCID: PMC10167483 DOI: 10.15252/msb.202211325] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/21/2023] Open
Abstract
The analysis of omic data depends on machine-readable information about protein interactions, modifications, and activities as found in protein interaction networks, databases of post-translational modifications, and curated models of gene and protein function. These resources typically depend heavily on human curation. Natural language processing systems that read the primary literature have the potential to substantially extend knowledge resources while reducing the burden on human curators. However, machine-reading systems are limited by high error rates and commonly generate fragmentary and redundant information. Here, we describe an approach to precisely assemble molecular mechanisms at scale using multiple natural language processing systems and the Integrated Network and Dynamical Reasoning Assembler (INDRA). INDRA identifies full and partial overlaps in information extracted from published papers and pathway databases, uses predictive models to improve the reliability of machine reading, and thereby assembles individual pieces of information into non-redundant and broadly usable mechanistic knowledge. Using INDRA to create high-quality corpora of causal knowledge we show it is possible to extend protein-protein interaction databases and explain co-dependencies in the Cancer Dependency Map.
Collapse
Affiliation(s)
- John A Bachman
- Laboratory of Systems PharmacologyHarvard Medical SchoolBostonMAUSA
| | - Benjamin M Gyori
- Laboratory of Systems PharmacologyHarvard Medical SchoolBostonMAUSA
| | - Peter K Sorger
- Laboratory of Systems PharmacologyHarvard Medical SchoolBostonMAUSA
- Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
8
|
Zhao W, Zhang J, Yang J, Jiang X, He T. Document-Level Chemical-Induced Disease Relation Extraction via Hierarchical Representation Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2782-2793. [PMID: 34077368 DOI: 10.1109/tcbb.2021.3086090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Over the past decades, Chemical-induced Disease (CID) relations have attracted extensive attention in biomedical community, reflecting wide applications in biomedical research and healthcare field. However, prior efforts fail to make full use of the interaction between local and global contexts in biomedical document, and the derived performance needs to be improved accordingly. In this paper, we propose a novel framework for document-level CID relation extraction. More specifically, a stacked Hypergraph Aggregation Neural Network (HANN) layers are introduced to model the complicated interaction between local and global contexts, based on which better contextualized representations are obtained for CID relation extraction. In addition, the CID Relation Heterogeneous Graph is constructed to capture the information with different granularities and improve further the performance of CID relation classification. Experiments on a real-world dataset demonstrate the effectiveness of the proposed framework.
Collapse
|
9
|
Chen Q, Du J, Allot A, Lu Z. LitMC-BERT: Transformer-Based Multi-Label Classification of Biomedical Literature With An Application on COVID-19 Literature Curation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2584-2595. [PMID: 35536809 PMCID: PMC9647722 DOI: 10.1109/tcbb.2022.3173562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 05/20/2023]
Abstract
The rapid growth of biomedical literature poses a significant challenge for curation and interpretation. This has become more evident during the COVID-19 pandemic. LitCovid, a literature database of COVID-19 related papers in PubMed, has accumulated over 200,000 articles with millions of accesses. Approximately 10,000 new articles are added to LitCovid every month. A main curation task in LitCovid is topic annotation where an article is assigned with up to eight topics, e.g., Treatment and Diagnosis. The annotated topics have been widely used both in LitCovid (e.g., accounting for ∼18% of total uses) and downstream studies such as network generation. However, it has been a primary curation bottleneck due to the nature of the task and the rapid literature growth. This study proposes LITMC-BERT, a transformer-based multi-label classification method in biomedical literature. It uses a shared transformer backbone for all the labels while also captures label-specific features and the correlations between label pairs. We compare LITMC-BERT with three baseline models on two datasets. Its micro-F1 and instance-based F1 are 5% and 4% higher than the current best results, respectively, and only requires ∼18% of the inference time than the Binary BERT baseline. The related datasets and models are available via https://github.com/ncbi/ml-transformer.
Collapse
|
10
|
Chen Q, Allot A, Leaman R, Islamaj R, Du J, Fang L, Wang K, Xu S, Zhang Y, Bagherzadeh P, Bergler S, Bhatnagar A, Bhavsar N, Chang YC, Lin SJ, Tang W, Zhang H, Tavchioski I, Pollak S, Tian S, Zhang J, Otmakhova Y, Yepes AJ, Dong H, Wu H, Dufour R, Labrak Y, Chatterjee N, Tandon K, Laleye FAA, Rakotoson L, Chersoni E, Gu J, Friedrich A, Pujari SC, Chizhikova M, Sivadasan N, Vg S, Lu Z. Multi-label classification for biomedical literature: an overview of the BioCreative VII LitCovid Track for COVID-19 literature topic annotations. Database (Oxford) 2022; 2022:baac069. [PMID: 36043400 PMCID: PMC9428574 DOI: 10.1093/database/baac069] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 05/03/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been severely impacting global society since December 2019. The related findings such as vaccine and drug development have been reported in biomedical literature-at a rate of about 10 000 articles on COVID-19 per month. Such rapid growth significantly challenges manual curation and interpretation. For instance, LitCovid is a literature database of COVID-19-related articles in PubMed, which has accumulated more than 200 000 articles with millions of accesses each month by users worldwide. One primary curation task is to assign up to eight topics (e.g. Diagnosis and Treatment) to the articles in LitCovid. The annotated topics have been widely used for navigating the COVID literature, rapidly locating articles of interest and other downstream studies. However, annotating the topics has been the bottleneck of manual curation. Despite the continuing advances in biomedical text-mining methods, few have been dedicated to topic annotations in COVID-19 literature. To close the gap, we organized the BioCreative LitCovid track to call for a community effort to tackle automated topic annotation for COVID-19 literature. The BioCreative LitCovid dataset-consisting of over 30 000 articles with manually reviewed topics-was created for training and testing. It is one of the largest multi-label classification datasets in biomedical scientific literature. Nineteen teams worldwide participated and made 80 submissions in total. Most teams used hybrid systems based on transformers. The highest performing submissions achieved 0.8875, 0.9181 and 0.9394 for macro-F1-score, micro-F1-score and instance-based F1-score, respectively. Notably, these scores are substantially higher (e.g. 12%, higher for macro F1-score) than the corresponding scores of the state-of-art multi-label classification method. The level of participation and results demonstrate a successful track and help close the gap between dataset curation and method development. The dataset is publicly available via https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/ for benchmarking and further development. Database URL https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/.
Collapse
Affiliation(s)
- Qingyu Chen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, MD, Bethesda 20892, USA
| | - Alexis Allot
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, MD, Bethesda 20892, USA
| | - Robert Leaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, MD, Bethesda 20892, USA
| | - Rezarta Islamaj
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, MD, Bethesda 20892, USA
| | - Jingcheng Du
- School of Biomedical Informatics, UT Health, TX, Houston 77030, USA
| | - Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shuo Xu
- College of Economics and Management, Beijing University of Technology, Beijing, QC, China
| | - Yuefu Zhang
- College of Economics and Management, Beijing University of Technology, Beijing, QC, China
| | | | | | | | | | - Yung-Chun Chang
- Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Jie Lin
- Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Wentai Tang
- College of Computer Science and Technology, Dalian University of Technology, Dalian, China
| | - Hongtong Zhang
- College of Computer Science and Technology, Dalian University of Technology, Dalian, China
| | - Ilija Tavchioski
- Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Shubo Tian
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Yulia Otmakhova
- School of Computing and Information Systems, University of Melbourne, Melbourne, AU-VIC, Australia
| | | | - Hang Dong
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Honghan Wu
- Institute of Health Informatics, University College London, London, UK
| | | | | | - Niladri Chatterjee
- Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India
| | - Kushagri Tandon
- Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India
| | | | | | - Emmanuele Chersoni
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jinghang Gu
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong, China
| | | | - Subhash Chandra Pujari
- Institute of Computer Science, Heidelberg University, Heidelberg, Germany
- Bosch Center for Artificial Intelligence, Renningen, Germany
| | - Mariia Chizhikova
- SINAI Group, Department of Computer Science, Advanced Studies Center in ICT (CEATIC), Universidad de Jaén, Jaén, Spain
| | | | | | - Zhiyong Lu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, MD, Bethesda 20892, USA
| |
Collapse
|
11
|
Sharma VS, Fossati A, Ciuffa R, Buljan M, Williams EG, Chen Z, Shao W, Pedrioli PGA, Purcell AW, Martínez MR, Song J, Manica M, Aebersold R, Li C. PCfun: a hybrid computational framework for systematic characterization of protein complex function. Brief Bioinform 2022; 23:6611913. [PMID: 35724564 PMCID: PMC9310514 DOI: 10.1093/bib/bbac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 11/14/2022] Open
Abstract
In molecular biology, it is a general assumption that the ensemble of expressed molecules, their activities and interactions determine biological function, cellular states and phenotypes. Stable protein complexes—or macromolecular machines—are, in turn, the key functional entities mediating and modulating most biological processes. Although identifying protein complexes and their subunit composition can now be done inexpensively and at scale, determining their function remains challenging and labor intensive. This study describes Protein Complex Function predictor (PCfun), the first computational framework for the systematic annotation of protein complex functions using Gene Ontology (GO) terms. PCfun is built upon a word embedding using natural language processing techniques based on 1 million open access PubMed Central articles. Specifically, PCfun leverages two approaches for accurately identifying protein complex function, including: (i) an unsupervised approach that obtains the nearest neighbor (NN) GO term word vectors for a protein complex query vector and (ii) a supervised approach using Random Forest (RF) models trained specifically for recovering the GO terms of protein complex queries described in the CORUM protein complex database. PCfun consolidates both approaches by performing a hypergeometric statistical test to enrich the top NN GO terms within the child terms of the GO terms predicted by the RF models. The documentation and implementation of the PCfun package are available at https://github.com/sharmavaruns/PCfun. We anticipate that PCfun will serve as a useful tool and novel paradigm for the large-scale characterization of protein complex function.
Collapse
Affiliation(s)
- Varun S Sharma
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Fossati
- Quantitative Biosciences Institute (QBI) and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.,J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Rodolfo Ciuffa
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Marija Buljan
- Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette Luxembourg
| | - Zhen Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenguang Shao
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Patrick G A Pedrioli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Anthony W Purcell
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | | | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | | | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland.,Faculty of Science, University of Zurich, Switzerland
| | - Chen Li
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland.,Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
12
|
Liu X, Tan K, Dong S. Multi-granularity sequential neural network for document-level biomedical relation extraction. Inf Process Manag 2021. [DOI: 10.1016/j.ipm.2021.102718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Islamaj R, Wei CH, Cissel D, Miliaras N, Printseva O, Rodionov O, Sekiya K, Ward J, Lu Z. NLM-Gene, a richly annotated gold standard dataset for gene entities that addresses ambiguity and multi-species gene recognition. J Biomed Inform 2021; 118:103779. [PMID: 33839304 PMCID: PMC11037554 DOI: 10.1016/j.jbi.2021.103779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
The automatic recognition of gene names and their corresponding database identifiers in biomedical text is an important first step for many downstream text-mining applications. While current methods for tagging gene entities have been developed for biomedical literature, their performance on species other than human is substantially lower due to the lack of annotation data. We therefore present the NLM-Gene corpus, a high-quality manually annotated corpus for genes developed at the US National Library of Medicine (NLM), covering ambiguous gene names, with an average of 29 gene mentions (10 unique identifiers) per document, and a broader representation of different species (including Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, etc.) when compared to previous gene annotation corpora. NLM-Gene consists of 550 PubMed abstracts from 156 biomedical journals, doubly annotated by six experienced NLM indexers, randomly paired for each document to control for bias. The annotators worked in three annotation rounds until they reached complete agreement. This gold-standard corpus can serve as a benchmark to develop & test new gene text mining algorithms. Using this new resource, we have developed a new gene finding algorithm based on deep learning which improved both on precision and recall from existing tools. The NLM-Gene annotated corpus is freely available at ftp://ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene. We have also applied this tool to the entire PubMed/PMC with their results freely accessible through our web-based tool PubTator (www.ncbi.nlm.nih.gov/research/pubtator).
Collapse
Affiliation(s)
- Rezarta Islamaj
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Chih-Hsuan Wei
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David Cissel
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Miliaras
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Olga Printseva
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Oleg Rodionov
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Keiko Sekiya
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Janice Ward
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Zhiyong Lu
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Islamaj R, Leaman R, Kim S, Kwon D, Wei CH, Comeau DC, Peng Y, Cissel D, Coss C, Fisher C, Guzman R, Kochar PG, Koppel S, Trinh D, Sekiya K, Ward J, Whitman D, Schmidt S, Lu Z. NLM-Chem, a new resource for chemical entity recognition in PubMed full text literature. Sci Data 2021; 8:91. [PMID: 33767203 PMCID: PMC7994842 DOI: 10.1038/s41597-021-00875-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Automatically identifying chemical and drug names in scientific publications advances information access for this important class of entities in a variety of biomedical disciplines by enabling improved retrieval and linkage to related concepts. While current methods for tagging chemical entities were developed for the article title and abstract, their performance in the full article text is substantially lower. However, the full text frequently contains more detailed chemical information, such as the properties of chemical compounds, their biological effects and interactions with diseases, genes and other chemicals. We therefore present the NLM-Chem corpus, a full-text resource to support the development and evaluation of automated chemical entity taggers. The NLM-Chem corpus consists of 150 full-text articles, doubly annotated by ten expert NLM indexers, with ~5000 unique chemical name annotations, mapped to ~2000 MeSH identifiers. We also describe a substantially improved chemical entity tagger, with automated annotations for all of PubMed and PMC freely accessible through the PubTator web-based interface and API. The NLM-Chem corpus is freely available.
Collapse
Affiliation(s)
- Rezarta Islamaj
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Robert Leaman
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Sun Kim
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Dongseop Kwon
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Chih-Hsuan Wei
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Donald C Comeau
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Yifan Peng
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - David Cissel
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Cathleen Coss
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Carol Fisher
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Rob Guzman
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Preeti Gokal Kochar
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Stella Koppel
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Dorothy Trinh
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Keiko Sekiya
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Janice Ward
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Deborah Whitman
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Susan Schmidt
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Zhiyong Lu
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
15
|
Identifying protein subcellular localisation in scientific literature using bidirectional deep recurrent neural network. Sci Rep 2021; 11:1696. [PMID: 33462256 PMCID: PMC7813825 DOI: 10.1038/s41598-020-80441-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
The increased diversity and scale of published biological data has to led to a growing appreciation for the applications of machine learning and statistical methodologies to gain new insights. Key to achieving this aim is solving the Relationship Extraction problem which specifies the semantic interaction between two or more biological entities in a published study. Here, we employed two deep neural network natural language processing (NLP) methods, namely: the continuous bag of words (CBOW), and the bi-directional long short-term memory (bi-LSTM). These methods were employed to predict relations between entities that describe protein subcellular localisation in plants. We applied our system to 1700 published Arabidopsis protein subcellular studies from the SUBA manually curated dataset. The system combines pre-processing of full-text articles in a machine-readable format with relevant sentence extraction for downstream NLP analysis. Using the SUBA corpus, the neural network classifier predicted interactions between protein name, subcellular localisation and experimental methodology with an average precision, recall rate, accuracy and F1 scores of 95.1%, 82.8%, 89.3% and 88.4% respectively (n = 30). Comparable scoring metrics were obtained using the CropPAL database as an independent testing dataset that stores protein subcellular localisation in crop species, demonstrating wide applicability of prediction model. We provide a framework for extracting protein functional features from unstructured text in the literature with high accuracy, improving data dissemination and unlocking the potential of big data text analytics for generating new hypotheses.
Collapse
|
16
|
Oughtred R, Rust J, Chang C, Breitkreutz B, Stark C, Willems A, Boucher L, Leung G, Kolas N, Zhang F, Dolma S, Coulombe‐Huntington J, Chatr‐aryamontri A, Dolinski K, Tyers M. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci 2021; 30:187-200. [PMID: 33070389 PMCID: PMC7737760 DOI: 10.1002/pro.3978] [Citation(s) in RCA: 914] [Impact Index Per Article: 228.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
The BioGRID (Biological General Repository for Interaction Datasets, thebiogrid.org) is an open-access database resource that houses manually curated protein and genetic interactions from multiple species including yeast, worm, fly, mouse, and human. The ~1.93 million curated interactions in BioGRID can be used to build complex networks to facilitate biomedical discoveries, particularly as related to human health and disease. All BioGRID content is curated from primary experimental evidence in the biomedical literature, and includes both focused low-throughput studies and large high-throughput datasets. BioGRID also captures protein post-translational modifications and protein or gene interactions with bioactive small molecules including many known drugs. A built-in network visualization tool combines all annotations and allows users to generate network graphs of protein, genetic and chemical interactions. In addition to general curation across species, BioGRID undertakes themed curation projects in specific aspects of cellular regulation, for example the ubiquitin-proteasome system, as well as specific disease areas, such as for the SARS-CoV-2 virus that causes COVID-19 severe acute respiratory syndrome. A recent extension of BioGRID, named the Open Repository of CRISPR Screens (ORCS, orcs.thebiogrid.org), captures single mutant phenotypes and genetic interactions from published high throughput genome-wide CRISPR/Cas9-based genetic screens. BioGRID-ORCS contains datasets for over 1,042 CRISPR screens carried out to date in human, mouse and fly cell lines. The biomedical research community can freely access all BioGRID data through the web interface, standardized file downloads, or via model organism databases and partner meta-databases.
Collapse
Affiliation(s)
- Rose Oughtred
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Jennifer Rust
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Christie Chang
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | | | - Chris Stark
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Andrew Willems
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Lorrie Boucher
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Genie Leung
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Nadine Kolas
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Frederick Zhang
- Arthur and Sonia Labatt Brain Tumor Research Center and Developmental and Stem Cell BiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Sonam Dolma
- Arthur and Sonia Labatt Brain Tumor Research Center and Developmental and Stem Cell BiologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | | | | | - Kara Dolinski
- Lewis‐Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonNew JerseyUSA
| | - Mike Tyers
- The Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
- Institute for Research in Immunology and CancerUniversité de MontréalQuebecCanada
| |
Collapse
|
17
|
Maier-Hein L, Reinke A, Kozubek M, Martel AL, Arbel T, Eisenmann M, Hanbury A, Jannin P, Müller H, Onogur S, Saez-Rodriguez J, van Ginneken B, Kopp-Schneider A, Landman BA. BIAS: Transparent reporting of biomedical image analysis challenges. Med Image Anal 2020; 66:101796. [PMID: 32911207 PMCID: PMC7441980 DOI: 10.1016/j.media.2020.101796] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
The number of biomedical image analysis challenges organized per year is steadily increasing. These international competitions have the purpose of benchmarking algorithms on common data sets, typically to identify the best method for a given problem. Recent research, however, revealed that common practice related to challenge reporting does not allow for adequate interpretation and reproducibility of results. To address the discrepancy between the impact of challenges and the quality (control), the Biomedical Image Analysis ChallengeS (BIAS) initiative developed a set of recommendations for the reporting of challenges. The BIAS statement aims to improve the transparency of the reporting of a biomedical image analysis challenge regardless of field of application, image modality or task category assessed. This article describes how the BIAS statement was developed and presents a checklist which authors of biomedical image analysis challenges are encouraged to include in their submission when giving a paper on a challenge into review. The purpose of the checklist is to standardize and facilitate the review process and raise interpretability and reproducibility of challenge results by making relevant information explicit.
Collapse
Affiliation(s)
- Lena Maier-Hein
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, Heidelberg 69120, Germany.
| | - Annika Reinke
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, Heidelberg 69120, Germany
| | - Michal Kozubek
- Centre for Biomedical Image Analysis, Masaryk University, Botanická 68a, Brno 60200, Czech Republic
| | - Anne L Martel
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Rm M6-609, Toronto ON M4N 3M5, Canada; Department Medical Biophysics, University of Toronto, 101 College St Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Tal Arbel
- Centre for Intelligent Machines, McGill University, 3480 University Street, McConnell Engineering Building, Room 425, Montreal QC H3A 0E9, Canada
| | - Matthias Eisenmann
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, Heidelberg 69120, Germany
| | - Allan Hanbury
- Institute of Information Systems Engineering, Technische Universität (TU) Wien, Favoritenstraße 9-11/194-04, Vienna 1040, Austria; Complexity Science Hub Vienna, Josefstädter Straße 39, Vienna 1080, Austria
| | - Pierre Jannin
- Laboratoire Traitement du Signal et de l'Image (LTSI) - UMR_S 1099, Université de Rennes 1, Inserm, Rennes, Cedex 35043, France
| | - Henning Müller
- University of Applied Sciences Western Switzerland (HES-SO), Rue du Technopole 3, Sierre 3960, Switzerland; Medical Faculty, University of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva 1211, Switzerland
| | - Sinan Onogur
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, Heidelberg 69120, Germany
| | - Julio Saez-Rodriguez
- Institute of Computational Biomedicine, Heidelberg University, Faculty of Medicine, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Heidelberg University Hospital, Im Neuenheimer Feld 267, Heidelberg 69120, Germany; Joint Research Centre for Computational Biomedicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Faculty of Medicine, Aachen 52074, Germany
| | - Bram van Ginneken
- Department of Radiology and Nuclear Medicine, Medical Image Analysis, Radboud University Center, Nijmegen 6525 GA, The Netherlands
| | - Annette Kopp-Schneider
- Division of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, 69120, Germany
| | - Bennett A Landman
- Electrical Engineering, Vanderbilt University, Nashville, Tennessee TN 37235-1679, USA
| |
Collapse
|
18
|
Qu J, Steppi A, Zhong D, Hao J, Wang J, Lung PY, Zhao T, He Z, Zhang J. Triage of documents containing protein interactions affected by mutations using an NLP based machine learning approach. BMC Genomics 2020; 21:773. [PMID: 33167858 PMCID: PMC7654050 DOI: 10.1186/s12864-020-07185-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Information on protein-protein interactions affected by mutations is very useful for understanding the biological effect of mutations and for developing treatments targeting the interactions. In this study, we developed a natural language processing (NLP) based machine learning approach for extracting such information from literature. Our aim is to identify journal abstracts or paragraphs in full-text articles that contain at least one occurrence of a protein-protein interaction (PPI) affected by a mutation. RESULTS Our system makes use of latest NLP methods with a large number of engineered features including some based on pre-trained word embedding. Our final model achieved satisfactory performance in the Document Triage Task of the BioCreative VI Precision Medicine Track with highest recall and comparable F1-score. CONCLUSIONS The performance of our method indicates that it is ideally suited for being combined with manual annotations. Our machine learning framework and engineered features will also be very helpful for other researchers to further improve this and other related biological text mining tasks using either traditional machine learning or deep learning based methods.
Collapse
Affiliation(s)
- Jinchan Qu
- Department of Statistics, Florida State University, Tallahassee, FL, 32306, USA
| | - Albert Steppi
- Laboratory of Systems Pharmacology at Harvard Medical School, Boston, MA, 02115, USA
| | - Dongrui Zhong
- Department of Statistics, Florida State University, Tallahassee, FL, 32306, USA
| | - Jie Hao
- Department of Statistics, Florida State University, Tallahassee, FL, 32306, USA
| | - Jian Wang
- CloudMedx, Palo Alto, CA, 94301, USA
| | - Pei-Yau Lung
- Verisk - Insurance Solutions, Middletown, CT, 06457, USA
| | - Tingting Zhao
- Department of Geography, Florida State University, Tallahassee, FL, 32306, USA
| | - Zhe He
- College of Communication and Information, Florida State University, Tallahassee, FL, 32306, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
19
|
Wang J, Li M, Diao Q, Lin H, Yang Z, Zhang Y. Biomedical document triage using a hierarchical attention-based capsule network. BMC Bioinformatics 2020; 21:380. [PMID: 32938366 PMCID: PMC7495737 DOI: 10.1186/s12859-020-03673-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biomedical document triage is the foundation of biomedical information extraction, which is important to precision medicine. Recently, some neural networks-based methods have been proposed to classify biomedical documents automatically. In the biomedical domain, documents are often very long and often contain very complicated sentences. However, the current methods still find it difficult to capture important features across sentences. RESULTS In this paper, we propose a hierarchical attention-based capsule model for biomedical document triage. The proposed model effectively employs hierarchical attention mechanism and capsule networks to capture valuable features across sentences and construct a final latent feature representation for a document. We evaluated our model on three public corpora. CONCLUSIONS Experimental results showed that both hierarchical attention mechanism and capsule networks are helpful in biomedical document triage task. Our method proved itself highly competitive or superior compared with other state-of-the-art methods.
Collapse
Affiliation(s)
- Jian Wang
- Dalian University of Technology, The School of Computer Science and Technology, Dalian, 116024 China
| | - Mengying Li
- Dalian University of Technology, The School of Computer Science and Technology, Dalian, 116024 China
| | - Qishuai Diao
- Dalian University of Technology, The School of Computer Science and Technology, Dalian, 116024 China
| | - Hongfei Lin
- Dalian University of Technology, The School of Computer Science and Technology, Dalian, 116024 China
| | - Zhihao Yang
- Dalian University of Technology, The School of Computer Science and Technology, Dalian, 116024 China
| | - YiJia Zhang
- Dalian University of Technology, The School of Computer Science and Technology, Dalian, 116024 China
| |
Collapse
|
20
|
Chen Q, Du J, Kim S, Wilbur WJ, Lu Z. Deep learning with sentence embeddings pre-trained on biomedical corpora improves the performance of finding similar sentences in electronic medical records. BMC Med Inform Decis Mak 2020; 20:73. [PMID: 32349758 PMCID: PMC7191680 DOI: 10.1186/s12911-020-1044-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Capturing sentence semantics plays a vital role in a range of text mining applications. Despite continuous efforts on the development of related datasets and models in the general domain, both datasets and models are limited in biomedical and clinical domains. The BioCreative/OHNLP2018 organizers have made the first attempt to annotate 1068 sentence pairs from clinical notes and have called for a community effort to tackle the Semantic Textual Similarity (BioCreative/OHNLP STS) challenge. Methods We developed models using traditional machine learning and deep learning approaches. For the post challenge, we focused on two models: the Random Forest and the Encoder Network. We applied sentence embeddings pre-trained on PubMed abstracts and MIMIC-III clinical notes and updated the Random Forest and the Encoder Network accordingly. Results The official results demonstrated our best submission was the ensemble of eight models. It achieved a Person correlation coefficient of 0.8328 – the highest performance among 13 submissions from 4 teams. For the post challenge, the performance of both Random Forest and the Encoder Network was improved; in particular, the correlation of the Encoder Network was improved by ~ 13%. During the challenge task, no end-to-end deep learning models had better performance than machine learning models that take manually-crafted features. In contrast, with the sentence embeddings pre-trained on biomedical corpora, the Encoder Network now achieves a correlation of ~ 0.84, which is higher than the original best model. The ensembled model taking the improved versions of the Random Forest and Encoder Network as inputs further increased performance to 0.8528. Conclusions Deep learning models with sentence embeddings pre-trained on biomedical corpora achieve the highest performance on the test set. Through error analysis, we find that end-to-end deep learning models and traditional machine learning models with manually-crafted features complement each other by finding different types of sentences. We suggest a combination of these models can better find similar sentences in practice.
Collapse
Affiliation(s)
- Qingyu Chen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Jingcheng Du
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA.,School of Biomedical Informatics, UTHealth, Houston, USA
| | - Sun Kim
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - W John Wilbur
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
21
|
Chen Q, Lee K, Yan S, Kim S, Wei CH, Lu Z. BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale. PLoS Comput Biol 2020; 16:e1007617. [PMID: 32324731 PMCID: PMC7237030 DOI: 10.1371/journal.pcbi.1007617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 05/19/2020] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
A massive number of biological entities, such as genes and mutations, are mentioned in the biomedical literature. The capturing of the semantic relatedness of biological entities is vital to many biological applications, such as protein-protein interaction prediction and literature-based discovery. Concept embeddings—which involve the learning of vector representations of concepts using machine learning models—have been employed to capture the semantics of concepts. To develop concept embeddings, named-entity recognition (NER) tools are first used to identify and normalize concepts from the literature, and then different machine learning models are used to train the embeddings. Despite multiple attempts, existing biomedical concept embeddings generally suffer from suboptimal NER tools, small-scale evaluation, and limited availability. In response, we employed high-performance machine learning-based NER tools for concept recognition and trained our concept embeddings, BioConceptVec, via four different machine learning models on ~30 million PubMed abstracts. BioConceptVec covers over 400,000 biomedical concepts mentioned in the literature and is of the largest among the publicly available biomedical concept embeddings to date. To evaluate the validity and utility of BioConceptVec, we respectively performed two intrinsic evaluations (identifying related concepts based on drug-gene and gene-gene interactions) and two extrinsic evaluations (protein-protein interaction prediction and drug-drug interaction extraction), collectively using over 25 million instances from nine independent datasets (17 million instances from six intrinsic evaluation tasks and 8 million instances from three extrinsic evaluation tasks), which is, by far, the most comprehensive to our best knowledge. The intrinsic evaluation results demonstrate that BioConceptVec consistently has, by a large margin, better performance than existing concept embeddings in identifying similar and related concepts. More importantly, the extrinsic evaluation results demonstrate that using BioConceptVec with advanced deep learning models can significantly improve performance in downstream bioinformatics studies and biomedical text-mining applications. Our BioConceptVec embeddings and benchmarking datasets are publicly available at https://github.com/ncbi-nlp/BioConceptVec. Capturing the semantics of related biological concepts, such as genes and mutations, is of significant importance to many research tasks in computational biology such as protein-protein interaction detection, gene-drug association prediction, and biomedical literature-based discovery. Here, we propose to leverage state-of-the-art text mining tools and machine learning models to learn the semantics via vector representations (aka. embeddings) of over 400,000 biological concepts mentioned in the entire PubMed abstracts. Our learned embeddings, namely BioConceptVec, can capture related concepts based on their surrounding contextual information in the literature, which is beyond exact term match or co-occurrence-based methods. BioConceptVec has been thoroughly evaluated in multiple bioinformatics tasks consisting of over 25 million instances from nine different biological datasets. The evaluation results demonstrate that BioConceptVec has better performance than existing methods in all tasks. Finally, BioConceptVec is made freely available to the research community and general public.
Collapse
Affiliation(s)
- Qingyu Chen
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Kyubum Lee
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Shankai Yan
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sun Kim
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Chih-Hsuan Wei
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| |
Collapse
|
22
|
Döring K, Qaseem A, Becer M, Li J, Mishra P, Gao M, Kirchner P, Sauter F, Telukunta KK, Moumbock AFA, Thomas P, Günther S. Automated recognition of functional compound-protein relationships in literature. PLoS One 2020; 15:e0220925. [PMID: 32126064 PMCID: PMC7053725 DOI: 10.1371/journal.pone.0220925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/29/2020] [Indexed: 11/18/2022] Open
Abstract
MOTIVATION Much effort has been invested in the identification of protein-protein interactions using text mining and machine learning methods. The extraction of functional relationships between chemical compounds and proteins from literature has received much less attention, and no ready-to-use open-source software is so far available for this task. METHOD We created a new benchmark dataset of 2,613 sentences from abstracts containing annotations of proteins, small molecules, and their relationships. Two kernel methods were applied to classify these relationships as functional or non-functional, named shallow linguistic and all-paths graph kernel. Furthermore, the benefit of interaction verbs in sentences was evaluated. RESULTS The cross-validation of the all-paths graph kernel (AUC value: 84.6%, F1 score: 79.0%) shows slightly better results than the shallow linguistic kernel (AUC value: 82.5%, F1 score: 77.2%) on our benchmark dataset. Both models achieve state-of-the-art performance in the research area of relation extraction. Furthermore, the combination of shallow linguistic and all-paths graph kernel could further increase the overall performance slightly. We used each of the two kernels to identify functional relationships in all PubMed abstracts (29 million) and provide the results, including recorded processing time. AVAILABILITY The software for the tested kernels, the benchmark, the processed 29 million PubMed abstracts, all evaluation scripts, as well as the scripts for processing the complete PubMed database are freely available at https://github.com/KerstenDoering/CPI-Pipeline.
Collapse
Affiliation(s)
- Kersten Döring
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Ammar Qaseem
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Michael Becer
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Jianyu Li
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Pankaj Mishra
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Mingjie Gao
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Pascal Kirchner
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Florian Sauter
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Kiran K. Telukunta
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Aurélien F. A. Moumbock
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - Stefan Günther
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
23
|
Caufield JH, Ping P. New advances in extracting and learning from protein-protein interactions within unstructured biomedical text data. Emerg Top Life Sci 2019; 3:357-369. [PMID: 33523203 DOI: 10.1042/etls20190003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions, or PPIs, constitute a basic unit of our understanding of protein function. Though substantial effort has been made to organize PPI knowledge into structured databases, maintenance of these resources requires careful manual curation. Even then, many PPIs remain uncurated within unstructured text data. Extracting PPIs from experimental research supports assembly of PPI networks and highlights relationships crucial to elucidating protein functions. Isolating specific protein-protein relationships from numerous documents is technically demanding by both manual and automated means. Recent advances in the design of these methods have leveraged emerging computational developments and have demonstrated impressive results on test datasets. In this review, we discuss recent developments in PPI extraction from unstructured biomedical text. We explore the historical context of these developments, recent strategies for integrating and comparing PPI data, and their application to advancing the understanding of protein function. Finally, we describe the challenges facing the application of PPI mining to the text concerning protein families, using the multifunctional 14-3-3 protein family as an example.
Collapse
Affiliation(s)
- J Harry Caufield
- The NIH BD2K Center of Excellence in Biomedical Computing, University of California at Los Angeles, Los Angeles, CA 90095, U.S.A
- Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095, U.S.A
| | - Peipei Ping
- The NIH BD2K Center of Excellence in Biomedical Computing, University of California at Los Angeles, Los Angeles, CA 90095, U.S.A
- Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095, U.S.A
- Department of Medicine/Cardiology, University of California at Los Angeles, Los Angeles, CA 90095, U.S.A
- Department of Bioinformatics, University of California at Los Angeles, Los Angeles, CA 90095, U.S.A
- Scalable Analytics Institute (ScAi), University of California at Los Angeles, Los Angeles, CA 90095, U.S.A
| |
Collapse
|