1
|
Zhao L, Yuan H, Liu X, Chang H, Jing X, Nie Y, Huang Y. Evolutionary dynamics of repetitive elements and their relationship with genome size in Acrididae. Genomics 2025; 117:110971. [PMID: 39643065 DOI: 10.1016/j.ygeno.2024.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
It is widely accepted that repetitive elements (REs) represent the primary mechanism driving genome size variation across eukaryotes. The observed genome sizes and REs of 59 species within the Acrididae were obtained and characterized. The genome sizes observed ranged from 6.60 pg to 19.35 pg, while the proportion of REs varied from 57.92 % to 83.58 %. The primary contributors were identified as LTR (2.34 % ∼ 20.98 %) and LINEs (6.70 % ∼ 16.33 %). The results of ancestral reconstruction indicated that the proportion of REs in ancestral nodes was 69.53 %, which suggests that they have undergone extensive genome expansion or contraction. A significant positive correlation was identified between the proportion of REs and genome size. Transposable elements were found to account for approximately 41 % of the observed variation in genome size. Moreover, the LTR was identified as the most significant RE type in relation to genome size expansion within the Acrididae.
Collapse
Affiliation(s)
- Lina Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hao Yuan
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xuanzeng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huihui Chang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Xuan Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yimeng Nie
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
2
|
Chumová Z, Havlíčková E, Zeisek V, Šemberová K, Mandáková T, Euston-Brown D, Trávníček P. Deciphering Pteronia's evolution in the Cape Floristic Region: A comprehensive study disputes polyploid deficiency and affirms diploid radiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2236-2254. [PMID: 38981008 DOI: 10.1111/tpj.16914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/04/2024] [Accepted: 06/22/2024] [Indexed: 07/11/2024]
Abstract
The Greater Cape Floristic Region (GCFR) is renowned for its exceptional biodiversity, accommodating over 11 000 plant species, notable degree of endemism, and substantial diversification within limited plant lineages, a phenomenon ascribed to historical radiation events. While both abiotic and biotic factors contribute to this diversification, comprehensive genomic alterations, recognized as pivotal in the diversification of angiosperms, are perceived as uncommon. This investigation focuses on the genus Pteronia, a prominent representative of the Asteraceae family in the GCFR. Employing NGS-based HybSeq and RADSeq methodologies, flow cytometry, karyology, and ecological modeling, we scrutinize the intricacies of its polyploid evolution. Phylogenetic reconstructions using 951 low-copy nuclear genes confirm Pteronia as a well-supported, distinct clade within the tribe Astereae. The ingroup displays a structure indicative of rapid radiation likely antedating polyploid establishment, with the two main groups demarcated by their presence or absence in the fynbos biome. Genome size analysis encompasses 1293 individuals across 347 populations, elucidating significant variation ranging from 6.1 to 34.2 pg (2C-value). Pteronia demonstrates substantially large genome sizes within Astereae and phanerophytes. Polyploidy is identified in 31% of the studied species, with four discerned ploidy levels (2x, 4x, 6x, 8x). Cytotypes exhibit marked distinctions in environmental traits, influencing their distribution across biomes and augmenting their niche differentiation. These revelations challenge the presumed scarcity of polyploidy in the Cape flora, underscoring the imperative need for detailed population studies. The intricate evolutionary history of Pteronia, characterized by recent polyploidy and genome size variation, contributes substantially to the comprehension of diversification patterns within the GCFR biodiversity hotspot.
Collapse
Affiliation(s)
- Zuzana Chumová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
| | - Eliška Havlíčková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-12800, Czech Republic
| | - Vojtěch Zeisek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague, CZ-12800, Czech Republic
| | - Kristýna Šemberová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | | | - Pavel Trávníček
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, Průhonice, CZ-25243, Czech Republic
| |
Collapse
|
3
|
Wang H, Liu J, Xu X, Li Y, Yuan J, Zeng Y, Xuan Y, Wang S, Liu G, He N, Ma B. MGCPdb, a collective resource for mulberry genome size, chromosome number, and ploidy. FORESTRY RESEARCH 2024; 4:e027. [PMID: 39524427 PMCID: PMC11524241 DOI: 10.48130/forres-0024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 11/16/2024]
Abstract
Mulberry is a critical economic tree with a high diversity of germplasm resources. However, the lack of primary data on genome size, chromosome number, and ploidy for this species limits the exploitation of mulberry resources. In this study, the genome size of 323 mulberry germplasm resources were examined using flow cytometry and chromosome numbers analyzed. The genome sizes ranged from 0.36 to 3.08 Gb, and seven different ploidies of mulberry germplasm resources were identified, with chromosome numbers ranging from 14 to 308. Correlation analysis indicated that genome size (1C) and chromosome number positively correlated. Here, the genome size, chromosome number, and ploidy database MGCPdb (https://mgcpdb.biodb.org) were constructed for mulberry plants, which contains 323 core mulberry germplasm resources and provides raw data of flow cytometry analysis, genome size, and chromosome count. This database is significant and valuable for mulberry genome evolution, polyploidy breeding, and genetic diversity research.
Collapse
Affiliation(s)
- Honghong Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jingchun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xiaofei Xu
- School of Computing Technologies, Royal Melbourne Institute of Technology University, Melbourne, Vic 3000, Australia
| | - Yan Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jianglian Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yichun Zeng
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong 610066, Sichuan, China
| | - Yahui Xuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Sheng Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Gang Liu
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong 610066, Sichuan, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Bi Ma
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Xavier A, Yadav R, Gowda V. Evolutionary patterns of variations in chromosome counts and genome sizes show positive correlations with taxonomic diversity in tropical gingers. AMERICAN JOURNAL OF BOTANY 2024; 111:e16334. [PMID: 38825815 DOI: 10.1002/ajb2.16334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/04/2024]
Abstract
PREMISE Cytogenetic traits such as an organism's chromosome number and genome size are taxonomically critical as they are instrumental in defining angiosperm diversity. Variations in these traits can be traced to evolutionary processes such as polyploidization, although geographic variations across cytogenetic traits remain underexplored. In the pantropical monocot family Zingiberaceae (~1500 species), cytogenetic traits have been well documented; however, the role of these traits in shaping taxonomic diversity and biogeographic patterns of gingers is not known. METHODS A time-calibrated Bayesian phylogenetic tree was constructed for 290 taxa covering three of the four subfamilies in Zingiberaceae. We tested models of chromosome number and genome size evolution within the family and whether lineage age, taxonomic diversity, and distributional range explain the variations in the cytogenetic traits. Tests were carried out at two taxonomic ranks: within Zingiberaceae and within genus Hedychium using correlations, generalized linear models and phylogenetic least square models. RESULTS The most frequent changes in chromosome number within Zingiberaceae were noted to be demi-polyploidization and polyploidization (~57% of the time), followed by ascending dysploidy (~27%). The subfamily Zingiberoideae showed descending dysploidy at its base, while Alpinioideae showed polyploidization at its internal nodes. Although chromosome counts and genome sizes did not corroborate with each other, suggesting that they are not equivalent; higher chromosome number variations and higher genome size variations were associated with higher taxonomic diversity and wider biogeographic distribution. CONCLUSIONS Within Zingiberaceae, multiple incidences of polyploidization were discovered, and cytogenetic events appear to have reduced the genome sizes and increased taxonomic diversity, distributional ranges and invasiveness.
Collapse
Affiliation(s)
- Aleena Xavier
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, Madhya Pradesh, India
| | - Ritu Yadav
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, Madhya Pradesh, India
| | - Vinita Gowda
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
5
|
Shen F, He H, Huang X, Deng Y, Yang X. Insights into the convergent evolution of fructan biosynthesis in angiosperms from the highly characteristic chicory genome. THE NEW PHYTOLOGIST 2023; 238:1245-1262. [PMID: 36751914 DOI: 10.1111/nph.18796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Fructans in angiosperms play essential roles in physiological functions and environmental adaptations. As a major source of industrial fructans (especially inulin-type), chicory (Cichorium intybus L.) is a model species for studying fructan biosynthesis. However, the genes underlying this process and their evolutionary history in angiosperms remain elusive. We combined multiple sequencing technologies to assemble and annotate the chicory genome and scan its (epi)genomic features, such as genomic components, DNA methylation, and three-dimensional (3D) structure. We also performed a comparative genomics analysis to uncover the associations between key traits and gene families. We achieved a nearly complete chicory genome assembly and found that continuous bursts of a few highly active retrotransposon families largely shaped the (epi)genomic characteristics. The highly methylated genome with its unique 3D structure potentially influences critical biological processes. Our comprehensive comparative genomics analysis deciphered the genetic basis for the rich sesquiterpene content in chicory and indicated that the fructan-accumulating trait resulted from convergent evolution in angiosperms due to shifts in critical sites of fructan-active enzymes. The highly characterized chicory genome provides insight into Asteraceae evolution and fructan biosynthesis in angiosperms.
Collapse
Affiliation(s)
- Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hao He
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Huang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yang Deng
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaozeng Yang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
6
|
Luo D, Zeng Z, Wu Z, Chen C, Zhao T, Du H, Miao Y, Liu D. Intraspecific variation in genome size in Artemisia argyi determined using flow cytometry and a genome survey. 3 Biotech 2023; 13:57. [PMID: 36698769 PMCID: PMC9868218 DOI: 10.1007/s13205-022-03412-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/26/2022] [Indexed: 01/23/2023] Open
Abstract
Different collections and accessions of Artemisia argyi (Chinese mugwort) harbour considerable diversity in morphology and bioactive compounds, but no mechanisms have been reported that explain these variations. We studied genome size in A. argyi accessions from different regions of China by flow cytometry. Genome size was significantly distinct among origins of these 42 Chinese mugwort accessions, ranging from 8.428 to 11.717 pg. There were no significant intraspecific differences among the 42 accessions from the five regions of China. The clustering analysis showed that these 42 A. argyi accessions could be divided into three groups, which had no significant relationship with geographical location. In a genome survey, the total genome size of A. argyi (A15) was estimated to be 7.852 Gb (or 8.029 pg) by K-mer analysis. This indicated that the results from the two independent methods are consistent, and that the genome survey can be used as an adjunct to flow cytometry to compensate for its deficiencies. In addition, genome survey can provide the information about heterozygosity, repeat sequences, GC content and ploidy of A. argyi genome. The nuclear DNA contents determined here provide a new reference for intraspecific variation in genome size in A. argyi, and may also be a potential resource for the study of genetic diversity and for breeding new cultivar.
Collapse
Affiliation(s)
- Dandan Luo
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Zeyi Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Zongqi Wu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Changjie Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Tingting Zhao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Hongzhi Du
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Yuhuan Miao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Dahui Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| |
Collapse
|
7
|
Gutiérrez ML, Rodríguez-González R, Pascual-Díaz JP, Fuentes I, Garcia S. Online Resources Useful for Plant Cytogenetics and Cytogenomics Research. Methods Mol Biol 2023; 2672:549-560. [PMID: 37335499 DOI: 10.1007/978-1-0716-3226-0_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The advancements in research in the field of plant cytogenetics and genomics in recent decades have led to a significant increase in publications. To simplify access to the widely dispersed data, there has been a rise in the number of online databases, repositories, and analytical tools. This chapter presents a comprehensive overview of these resources, which can be beneficial to researchers in these areas. It includes, among others, databases on chromosome numbers, special chromosomes (such as B chromosomes or sex chromosomes), some of which are taxon-specific; genome sizes, cytogenetics; and online applications and tools for genomic analysis and visualization.
Collapse
Affiliation(s)
| | | | | | - Inés Fuentes
- Institut Botànic de Barcelona (IBB-CSIC), Barcelona, Catalonia, Spain
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
8
|
Mo C, Wu Z, Shang X, Shi P, Wei M, Wang H, Xiao L, Cao S, Lu L, Zeng W, Yan H, Kong Q. Chromosome-level and graphic genomes provide insights into metabolism of bioactive metabolites and cold-adaption of Pueraria lobata var. montana. DNA Res 2022; 29:6663990. [PMID: 35961033 PMCID: PMC9397507 DOI: 10.1093/dnares/dsac030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Pueraria lobata var. montana (P. montana) belongs to the genus Pueraria and originated in Asia. Compared with its sister P. thomsonii, P. montana has stronger growth vigour and cold-adaption but contains less bioactive metabolites such as puerarin. To promote the investigation of metabolic regulation and genetic improvement of Pueraria, the present study reports a chromosome-level genome of P. montana with length of 978.59 Mb and scaffold N50 of 80.18 Mb. Comparative genomics analysis showed that P. montana possesses smaller genome size than that of P. thomsonii owing to less repeat sequences and duplicated genes. A total of 6,548 and 4,675 variety-specific gene families were identified in P. montana and P. thomsonii, respectively. The identified variety-specific and expanded/contracted gene families related to biosynthesis of bioactive metabolites and microtubules are likely the causes for the different characteristics of metabolism and cold-adaption of P. montana and P. thomsonii. Moreover, a graphic genome was constructed based on 11 P. montana accessions. Total 92 structural variants were identified and most of which are related to stimulus-response. In conclusion, the chromosome-level and graphic genomes of P. montana will not only facilitate the studies of evolution and metabolic regulation, but also promote the breeding of Pueraria.
Collapse
Affiliation(s)
| | | | - Xiaohong Shang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Pingli Shi
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Minghua Wei
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Xiao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Liuying Lu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wendan Zeng
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Huabing Yan
- To whom correspondence should be addressed. Tel. 86-13877165487. (H.Y.); Tel. 86-18942928088. (Q.K.)
| | - Qiusheng Kong
- To whom correspondence should be addressed. Tel. 86-13877165487. (H.Y.); Tel. 86-18942928088. (Q.K.)
| |
Collapse
|
9
|
Borowska-Zuchowska N, Senderowicz M, Trunova D, Kolano B. Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060784. [PMID: 35336666 PMCID: PMC8953110 DOI: 10.3390/plants11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 05/05/2023]
Abstract
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the simultaneous two- or three-dimensional, multicolour visualisation of both single-copy and highly-repetitive sequences in the plant genome. The data that is gathered using the cytogenetic methods in the phylogenetic background enable tracing the evolution of the plant genome that involve changes in: (i) genome sizes; (ii) chromosome numbers and morphology; (iii) the content of repetitive sequences and (iv) ploidy level. Modern cytogenetic approaches such as FISH using chromosome- and genome-specific probes have been widely used in studies of the evolution of diploids and the consequences of polyploidy. Nowadays, modern cytogenetics complements analyses in other fields of cell biology and constitutes the linkage between genetics, molecular biology and genomics.
Collapse
|
10
|
Breman FC, Chen G, Snijder RC, Schranz ME, Bakker FT. Repeatome-Based Phylogenetics in Pelargonium Section Ciconium (Sweet) Harvey. Genome Biol Evol 2021; 13:6454096. [PMID: 34893846 PMCID: PMC8684485 DOI: 10.1093/gbe/evab269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
The repetitive part of the genome (the repeatome) contains a wealth of often overlooked information that can be used to resolve phylogenetic relationships and test evolutionary hypotheses for clades of related plant species such as Pelargonium. We have generated genome skimming data for 18 accessions of Pelargonium section Ciconium and one outgroup. We analyzed repeat abundancy and repeat similarity in order to construct repeat profiles and then used these for phylogenetic analyses. We found that phylogenetic trees based on read similarity were largely congruent with previous work based on morphological and chloroplast sequence data. For example, results agreed in identifying a “Core Ciconium” group which evolved after the split with P. elongatum. We found that this group was characterized by a unique set of repeats, which confirmed currently accepted phylogenetic hypotheses. We also found four species groups within P. sect. Ciconium that reinforce previous plastome-based reconstructions. A second repeat expansion was identified in a subclade which contained species that are considered to have dispersed from Southern Africa into Eastern Africa and the Arabian Peninsula. We speculate that the Core Ciconium repeat set correlates with a possible WGD event leading to this branch.
Collapse
Affiliation(s)
- Floris C Breman
- Biosystematics Group, Wageningen University & Research, Netherlands
| | - Guangnan Chen
- Biosystematics Group, Wageningen University & Research, Netherlands
| | | | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Netherlands
| | - Freek T Bakker
- Biosystematics Group, Wageningen University & Research, Netherlands
| |
Collapse
|
11
|
Schramm S, Rozhon W, Adedeji-Badmus AN, Liang Y, Nayem S, Winkelmann T, Poppenberger B. The Orphan Crop Crassocephalum crepidioides Accumulates the Pyrrolizidine Alkaloid Jacobine in Response to Nitrogen Starvation. FRONTIERS IN PLANT SCIENCE 2021; 12:702985. [PMID: 34394157 PMCID: PMC8355542 DOI: 10.3389/fpls.2021.702985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Crassocephalum crepidioides is an African orphan crop that is used as a leafy vegetable and medicinal plant. Although it is of high regional importance in Sub-Saharan Africa, the plant is still mainly collected from the wild and therefore efforts are made to promote its domestication. However, in addition to beneficial properties, there was first evidence that C. crepidioides can accumulate the highly toxic pyrrolizidine alkaloid (PA) jacobine and here it was investigated, how jacobine production is controlled. Using ecotypes from Africa and Asia that were characterized in terms of their PA profiles, it is shown that the tetraploid C. crepidioides forms jacobine, an ability that its diploid close relative Crassocephalum rubens appears to lack. Evidence is provided that nitrogen (N) deficiency strongly increases jacobine in the leaves of C. crepidioides, that this capacity depends more strongly on the shoot than the root system, and that homospermidine synthase (HSS) activity is not rate-limiting for this reaction. A characterization of HSS gene representation and transcription showed that C. crepidioides and C. rubens possess two functional versions, one of which is conserved, that the HSS transcript is mainly present in roots and that its abundance is not controlled by N deficiency. In summary, this work improves our understanding of how environmental cues impact PA biosynthesis in plants and provides a basis for the development of PA-free C. crepidioides cultivars, which will aid its domestication and safe use.
Collapse
Affiliation(s)
- Sebastian Schramm
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Adebimpe N. Adedeji-Badmus
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Yuanyuan Liang
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Shahran Nayem
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Traud Winkelmann
- Woody Plant and Propagation Physiology Section, Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
12
|
Garnatje T, Hidalgo O, Vallés J, Garcia S, Romo À, Vilatersana R. Primeras medidas del tamaño del genoma en Carduncellusy los géneros afines Femeniasia y Phonus (Asteraceae, Cardueae), con datos para 21 táxones. COLLECTANEA BOTANICA 2021. [DOI: 10.3989/collectbot.2021.v40.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
El tamaño del genoma de 18 especies del género Carduncellus, dos especies de los géneros relacionados, Phonus y el género monotípico Femeniasia (F. balearica) ha sido medido por primera vez mediante citometría de flujo. Los niveles de ploidía se asignaron utilizando datos de tamaño del genoma junto con los recuentos de cromosomas previamente reportados. Se construyó un marco filogenético para visualizar la distribución de las características citogenéticas de los táxones. Los resultados confirmaron tres niveles de ploidía (2x, 4x y 6x), con un predominio de los táxones diploides. Los valores de 2C oscilaron entre 3,24 pg en Carduncellus calvus y 11,16 pg en C. eriocephalus, mientras que el tamaño del genoma monoploide (1Cx) osciló entre 1,29 pg en C. duvauxii (4x) y 2,30 pg en Phonus rhiphaeus (2x). La media de los valores 1Cx para los tetraploides fue menor que para los diploides. Los valores de tamaño del genoma de Carduncellus, Femeniasia y Phonus fueron más elevados que los de Carthamus dentro del mismo nivel de ploidía. Este resultado concuerda con una tendencia frecuentemente observada en plantas en la que los táxones con ciclos de vida largos presentan tamaños del genoma más elevados que los táxones relacionados que poseen ciclos de vida cortos.
Collapse
|
13
|
Genome size variation in Cactaceae and its relationship with invasiveness and seed traits. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02557-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Baránková S, Pascual-Díaz JP, Sultana N, Alonso-Lifante MP, Balant M, Barros K, D'Ambrosio U, Malinská H, Peska V, Pérez Lorenzo I, Kovařík A, Vyskot B, Janoušek B, Garcia S. Sex-chrom, a database on plant sex chromosomes. THE NEW PHYTOLOGIST 2020; 227:1594-1604. [PMID: 32357248 DOI: 10.1111/nph.16635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/25/2020] [Indexed: 05/15/2023]
Affiliation(s)
- Simona Baránková
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Joan Pere Pascual-Díaz
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Nusrat Sultana
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
- Department of Botany, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
| | - Maria Pilar Alonso-Lifante
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Manica Balant
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Karina Barros
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Ugo D'Ambrosio
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Hana Malinská
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
- Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic
| | - Vratislav Peska
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Iván Pérez Lorenzo
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Aleš Kovařík
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Boris Vyskot
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Bohuslav Janoušek
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Sònia Garcia
- Institut Botanic de Barcelona (IBB-CSIC, Ajuntament de Barcelona), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Vitales D, Álvarez I, Garcia S, Hidalgo O, Nieto Feliner G, Pellicer J, Vallès J, Garnatje T. Genome size variation at constant chromosome number is not correlated with repetitive DNA dynamism in Anacyclus (Asteraceae). ANNALS OF BOTANY 2020; 125:611-623. [PMID: 31697800 PMCID: PMC7103019 DOI: 10.1093/aob/mcz183] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/06/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Changes in the amount of repetitive DNA (dispersed and tandem repeats) are considered the main contributors to genome size variation across plant species in the absence of polyploidy. However, the study of repeatome dynamism in groups showing contrasting genomic features and complex evolutionary histories is needed to determine whether other processes underlying genome size variation may have been overlooked. The main aim here was to elucidate which mechanism best explains genome size evolution in Anacyclus (Asteraceae). METHODS Using data from Illumina sequencing, we analysed the repetitive DNA in all species of Anacyclus, a genus with a reticulate evolutionary history, which displays significant genome size and karyotype diversity albeit presenting a stable chromosome number. KEY RESULTS By reconstructing ancestral genome size values, we inferred independent episodes of genome size expansions and contractions during the evolution of the genus. However, analysis of the repeatome revealed a similar DNA repeat composition across species, both qualitative and quantitative. Using comparative methods to study repeatome dynamics in the genus, we found no evidence for repeat activity causing genome size variation among species. CONCLUSIONS Our results, combined with previous cytogenetic data, suggest that genome size differences in Anacyclus are probably related to chromosome rearrangements involving losses or gains of chromosome fragments, possibly associated with homoploid hybridization. These could represent balanced rearrangements that do not disrupt gene dosage in merged genomes, for example via chromosome segment exchanges.
Collapse
Affiliation(s)
- Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
- For correspondence. Email
| | - Inés Álvarez
- Department of Biodiversity and Conservation, Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
| | - Oriane Hidalgo
- Laboratori de Botànica – Unitat associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Catalonia, Spain
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, UK
| | - Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014 Madrid, Spain
| | - Jaume Pellicer
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, UK
| | - Joan Vallès
- Laboratori de Botànica – Unitat associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Catalonia, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del Migdia sn, 08038 Barcelona, Catalonia, Spain
| |
Collapse
|