1
|
Noble A, Adams A, Nowak J, Cheng G, Nayak K, Quinn A, Kristiansen M, Kalla R, Ventham NT, Giachero F, Jayamanne C, Hansen R, Hold GL, El-Omar E, Croft NM, Wilson D, Beattie RM, Ashton JJ, Zilbauer M, Ennis S, Uhlig HH, Satsangi J. The Circulating Methylome in Childhood-Onset Inflammatory Bowel Disease. J Crohns Colitis 2025; 19:jjae157. [PMID: 39365013 PMCID: PMC11945304 DOI: 10.1093/ecco-jcc/jjae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/16/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND The genetic contribution to inflammatory bowel disease (IBD), encompassing both Crohn's disease (CD) and ulcerative colitis (UC), accounts for around 20% of disease variance, highlighting the need to characterize environmental and epigenetic influences. Recently, considerable progress has been made in characterizing the adult methylome in epigenome-wide association studies. METHODS We report detailed analysis of the circulating methylome in 86 patients with childhood-onset CD and UC and 30 controls using the Illumina Infinium Human MethylationEPIC platform. RESULTS We derived and validated a 4-probe methylation biomarker (RPS6KA2, VMP1, CFI, and ARHGEF3), with specificity and high diagnostic accuracy for pediatric IBD in UK and North American cohorts (area under the curve: 0.90-0.94). Significant epigenetic age acceleration is present at diagnosis, with the greatest observed in CD patients. Cis-methylation quantitative trait loci (meQTL) analysis identifies genetic determinants underlying epigenetic alterations notably within the HLA 6p22.1-p21.33 region. Passive smoking exposure is associated with the development of UC rather than CD, contrary to previous findings. CONCLUSIONS These data provide new insights into epigenetic alterations in IBD and illustrate the reproducibility and translational potential of epigenome-wide association studies in complex diseases.
Collapse
Affiliation(s)
- Alexandra Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
| | - Alex Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jan Nowak
- Department of Paediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Guo Cheng
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Komal Nayak
- Department of Paediatrics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Aisling Quinn
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
| | - Mark Kristiansen
- UCL Genomics, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Rahul Kalla
- Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nicholas T Ventham
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Federica Giachero
- Department of Paediatrics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals (CUH), Addenbrooke’s Hospital, Cambridge, UK
| | - Chamara Jayamanne
- Department of Paediatrics, John Radcliffe Hospital, Oxford University Hospital NHS Trust, Oxford, UK
| | - Richard Hansen
- Department of Child Health, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Georgina L Hold
- Microbiome Research Centre, St George and Sutherland Clinical Campuses, University of New South Wales, Sydney, New South Wales, Australia
| | - Emad El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical Campuses, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicholas M Croft
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Wilson
- Department of Paediatric Gastroenterology and Nutrition, Royal Hospital for Children and Young People, Edinburgh, UK
- Department of Child Life and Health, University of Edinburgh, Edinburgh, UK
| | - R Mark Beattie
- Department of Paediatric Gastroenterology, Southampton Children’s Hospital, Southampton, UK
| | - James J Ashton
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
- Department of Paediatric Gastroenterology, Southampton Children’s Hospital, Southampton, UK
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals (CUH), Addenbrooke’s Hospital, Cambridge, UK
| | - Sarah Ennis
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Lundin JI, Peters U, Hu Y, Ammous F, Avery CL, Benjamin EJ, Bis JC, Brody JA, Carlson C, Cushman M, Gignoux C, Guo X, Haessler J, Haiman C, Joehanes R, Kasela S, Kenny E, Lapalainien T, Levy D, Liu C, Liu Y, Loos RJ, Lu A, Matise T, North KE, Park SL, Ratliff SM, Reiner A, Rich SS, Rotter JI, Smith JA, Sotoodehnia N, Tracy R, Van den Berg D, Xu H, Ye T, Zhao W, Raffield LM, Kooperberg C. Methylation patterns associated with C-reactive protein in racially and ethnically diverse populations. Epigenetics 2024; 19:2333668. [PMID: 38571307 PMCID: PMC10996836 DOI: 10.1080/15592294.2024.2333668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
Systemic low-grade inflammation is a feature of chronic disease. C-reactive protein (CRP) is a common biomarker of inflammation and used as an indicator of disease risk; however, the role of inflammation in disease is not completely understood. Methylation is an epigenetic modification in the DNA which plays a pivotal role in gene expression. In this study we evaluated differential DNA methylation patterns associated with blood CRP level to elucidate biological pathways and genetic regulatory mechanisms to improve the understanding of chronic inflammation. The racially and ethnically diverse participants in this study were included as 50% White, 41% Black or African American, 7% Hispanic or Latino/a, and 2% Native Hawaiian, Asian American, American Indian, or Alaska Native (total n = 13,433) individuals. We replicated 113 CpG sites from 87 unique loci, of which five were novel (CADM3, NALCN, NLRC5, ZNF792, and cg03282312), across a discovery set of 1,150 CpG sites associated with CRP level (p < 1.2E-7). The downstream pathways affected by DNA methylation included the identification of IFI16 and IRF7 CpG-gene transcript pairs which contributed to the innate immune response gene enrichment pathway along with NLRC5, NOD2, and AIM2. Gene enrichment analysis also identified the nuclear factor-kappaB transcription pathway. Using two-sample Mendelian randomization (MR) we inferred methylation at three CpG sites as causal for CRP levels using both White and Black or African American MR instrument variables. Overall, we identified novel CpG sites and gene transcripts that could be valuable in understanding the specific cellular processes and pathogenic mechanisms involved in inflammation.
Collapse
Affiliation(s)
- Jessica I. Lundin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yao Hu
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Christy L. Avery
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Emelia J. Benjamin
- Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston University School of Public Health, Boston, MA, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Chris Carlson
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - Chris Gignoux
- Interdisciplinary Quantitative Biology, University of Colorado, Boulder, CO, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Chris Haiman
- Department of Environmental Medicine and Public Health, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, USA
| | | | - Eimear Kenny
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yongmei Liu
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Ruth J.F. Loos
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ake Lu
- Department of Human Genetics, University of California LA, Los Angeles, CA, USA
| | - Tara Matise
- Department of Genetics, Rutgers University, New Brunswick, NJ, USA
| | - Kari E. North
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Sungshim L. Park
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alex Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, and Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Harborview Medical Center, Seattle, WA, USA
| | - Russell Tracy
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - David Van den Berg
- Department of Environmental Medicine and Public Health, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ting Ye
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - On Behalf of the PAGE Study
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston University School of Public Health, Boston, MA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
- Interdisciplinary Quantitative Biology, University of Colorado, Boulder, CO, USA
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Environmental Medicine and Public Health, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, USA
- New York Genome Center, New York, NY
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Human Genetics, University of California LA, Los Angeles, CA, USA
- Department of Genetics, Rutgers University, New Brunswick, NJ, USA
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Epidemiology, School of Public Health, and Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Cardiovascular Health Research Unit, Harborview Medical Center, Seattle, WA, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Chen J, Zhang H, Fu T, Zhao J, Nowak JK, Kalla R, Wellens J, Yuan S, Noble A, Ventham NT, Dunlop MG, Halfvarson J, Mao R, Theodoratou E, Satsangi J, Li X. Exposure to air pollution increases susceptibility to ulcerative colitis through epigenetic alterations in CXCR2 and MHC class III region. EBioMedicine 2024; 110:105443. [PMID: 39536393 PMCID: PMC11605448 DOI: 10.1016/j.ebiom.2024.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND This study aims to confirm the associations of air pollution with ulcerative colitis (UC) and Crohn's disease (CD); to explore interactions with genetics and lifestyle; and to characterize potential epigenetic mechanisms. METHODS We identified over 450,000 individuals from the UK Biobank and investigated the relationship between air pollution and incident inflammatory bowel disease (IBD). Cox regression was utilized to calculate hazard ratios (HRs), while also exploring potential interactions with genetics and lifestyle factors. Additionally, we conducted epigenetic Mendelian randomization (MR) analyses to examine the association between air pollution-related DNA methylation and UC. Finally, our findings were validated through genome-wide DNA methylation analysis of UC, as well as co-localization and gene expression analyses. FINDINGS Higher exposures to NOx (HR = 1.20, 95% CI 1.05-1.38), NO2 (HR = 1.19, 95% CI = 1.03-1.36), PM2.5 (HR = 1.19, 95% CI = 1.05-1.36) and combined air pollution score (HR = 1.26, 95% CI = 1.11-1.45) were associated with incident UC but not CD. Interactions with genetic risk score and lifestyle were observed. In MR analysis, we found five and 22 methylated CpG sites related to PM2.5 and NO2 exposure to be significantly associated with UC. DNA methylation alterations at CXCR2 and sites within the MHC class III region, were validated in genome-wide DNA methylation analysis, co-localization analysis and analysis of colonic tissue. INTERPRETATION We report a potential causal association between air pollution and UC, modified by lifestyle and genetic influences. Biological pathways implicated include epigenetic alterations in key genetic loci, including CXCR2 and susceptible loci within MHC class III region. FUNDING Xue Li was supported by the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR22H260001) and the National Nature Science Foundation of China (No. 82204019). ET was supported by the CRUK Career Development Fellowship (C31250/A22804) and the Research Foundation Flanders (FWO). JW was supported by Belgium by a PhD Fellowship strategic basic research (SB) grant (1S06023N). JKN was supported by the National Science Center, Poland (No. 2020/39/D/NZ5/02720). The IBD Character was supported by the European Union's Seventh Framework Programme [FP7] grant IBD Character (No. 2858546).
Collapse
Affiliation(s)
- Jie Chen
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Han Zhang
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tian Fu
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University Medical College, Hangzhou, China
| | - Jianhui Zhao
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jan Krzysztof Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60572, Poznan, Poland
| | - Rahul Kalla
- Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Judith Wellens
- KU Leuven Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium; Translational Gastro-Intestinal Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Noble
- Translational Gastro-Intestinal Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Nicholas T Ventham
- Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Evropi Theodoratou
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Jack Satsangi
- Translational Gastro-Intestinal Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK.
| | - Xue Li
- The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Dong XX, Chen DL, Chen HM, Li DL, Hu DN, Lanca C, Grzybowski A, Pan CW. DNA methylation biomarkers and myopia: a multi-omics study integrating GWAS, mQTL and eQTL data. Clin Epigenetics 2024; 16:157. [PMID: 39538342 PMCID: PMC11562087 DOI: 10.1186/s13148-024-01772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND This study aimed to identify DNA methylation biomarkers associated with myopia using summary-data-based Mendelian randomization (SMR). METHODS A systematic search of the PubMed, Web of Science, Cochrane Library, and Embase databases was conducted up to March 27, 2024. SMR analyses were performed to integrate genome-wide association study (GWAS) with methylation quantitative trait loci (mQTL) and expression quantitative trait loci (eQTL) studies. The heterogeneity in the dependent instrument (HEIDI) test was utilized to distinguish pleiotropic associations from linkage disequilibrium. RESULTS The systematic review identified 26 DNA methylation biomarkers in five studies, with no overlap observed among those identified by different studies. After integrating GWAS with multi-omics data of mQTL and eQTL, six genes were significantly associated with myopia: PRMT6 (cg00944433 and cg15468180), SH3YL1 (cg03299269, cg11361895, and cg13354988), ZKSCAN4 (cg01192291), GATS (cg17830204), NPAT (cg04826772), and UBE2I (cg03545757 and cg08025960). CONCLUSIONS We identified six methylation biomarkers associated with the risk of myopia that may be helpful to elucidate the etiology mechanisms of myopia. Further experimental validation studies are required to corroborate these findings.
Collapse
Affiliation(s)
- Xing-Xuan Dong
- School of Public Health, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dong-Ling Chen
- School of Public Health, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hui-Min Chen
- School of Public Health, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dan-Lin Li
- School of Public Health, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dan-Ning Hu
- New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Carla Lanca
- Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
- Comprehensive Health Research Center (CHRC), Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland
| | - Chen-Wei Pan
- School of Public Health, The Fourth Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Monfort-Ferré D, Boronat-Toscano A, Sánchez-Herrero JF, Caro A, Menacho M, Vañó-Segarra I, Martí M, Espina B, Pluvinet R, Cabrinety L, Abadia C, Ejarque M, Nuñez-Roa C, Maymo-Masip E, Sumoy L, Vendrell J, Fernández-Veledo S, Serena C. Genome-wide DNA Methylome and Transcriptome Profiling Reveals Key Genes Involved in the Dysregulation of Adipose Stem Cells in Crohn's Disease. J Crohns Colitis 2024; 18:1644-1659. [PMID: 38747506 DOI: 10.1093/ecco-jcc/jjae072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 10/17/2024]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] is characterised by the expansion of mesenteric adipose tissue [MAT], named creeping fat [CF], which seems to be directly related to disease activity. Adipose-stem cells [ASCs] isolated from the CF of patients with CD are extremely pro-inflammatory, which persists during disease remission. We hypothesised that the dysfunctional ASCs in CD accumulate epigenetic modifications triggered by the inflammatory environment, that could serve as molecular markers. METHODS Genome-wide DNA methylome and transcriptome profiling were performed in ASCs isolated from MAT biopsies of patients with active and inactive disease and from non-Crohn's disease patients [non-CD]. A validation cohort was used to test the main candidate genes via quantitative polymerase chain reaction in other fat depots and immune cells. RESULTS We found differences in DNA methylation and gene expression between ASCs isolated from patients with CD and from non-CD subjects, but we found no differences related to disease activity. Pathway enrichment analysis revealed that oxidative stress and immune response were significantly enriched in active CD, and integration analysis identified MAB21L2, a cell fate-determining gene, as the most affected gene in CD. Validation analysis confirmed the elevated gene expression of MAB21L2 in MAT and in adipose tissue macrophages in active CD. We also found a strong association between expression of the calcium channel subunit gene CACNA1H and disease remission, as CACNA1H expression was higher in ASCs and MAT from patients with inactive CD, and correlates negatively with C-reactive protein in peripheral blood mononuclear cells. CONCLUSION We identified a potential gene signature of CD in ASCs obtained from MAT. Integration analysis highlighted two novel genes demonstrating a negative correlation between promoter DNA methylation and transcription: one linked to ASCs in CD [MAB21L2] and the other [CACNA1H] related to disease remission.
Collapse
Affiliation(s)
- Diandra Monfort-Ferré
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Albert Boronat-Toscano
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | | | - Aleidis Caro
- Unitat de Cirurgia Colorectal, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Margarita Menacho
- Servei de Digestiu, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Irene Vañó-Segarra
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Marc Martí
- Unitat de Cirurgia Colorectal, Servei de Cirurgia General, Hospital Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Beatriz Espina
- Unitat de Cirurgia Colorectal, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Raquel Pluvinet
- Genòmica d'Alt Contingut i Bioinformàtica, Institut d'Investigació Germans Trias i Pujol, Badalona, Spain
- Unitat de Genòmica, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Lidia Cabrinety
- Servei de Digestiu, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Carme Abadia
- Servei de Digestiu, Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Miriam Ejarque
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Cati Nuñez-Roa
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| | - Elsa Maymo-Masip
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud, Carlos III, Madrid, Spain
| | - Lauro Sumoy
- Genòmica d'Alt Contingut i Bioinformàtica, Institut d'Investigació Germans Trias i Pujol, Badalona, Spain
| | - Joan Vendrell
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud, Carlos III, Madrid, Spain
| | - Sonia Fernández-Veledo
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud, Carlos III, Madrid, Spain
| | - Carolina Serena
- Hospital Universitari Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
6
|
Lin S, Hannon E, Reppell M, Waring JF, Smaoui N, Pivorunas V, Guay H, Chanchlani N, Bewshea C, Bai BYH, Kennedy NA, Goodhand JR, Mill J, Ahmad T. Whole Blood DNA Methylation Changes Are Associated with Anti-TNF Drug Concentration in Patients with Crohn's Disease. J Crohns Colitis 2024; 18:1190-1201. [PMID: 37551994 PMCID: PMC11324340 DOI: 10.1093/ecco-jcc/jjad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/23/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND AND AIMS Anti-tumour necrosis factor [TNF] treatment failure in patients with inflammatory bowel disease [IBD] is common and frequently related to low drug concentrations. In order to identify patients who may benefit from dose optimisation at the outset of anti-TNF therapy, we sought to define epigenetic biomarkers in whole blood at baseline associated with anti-TNF drug concentrations at week 14. METHODS DNA methylation from 1104 whole blood samples from 385 patients in the Personalised Anti-TNF Therapy in Crohn's disease [PANTS] study were assessed using the Illumina EPIC Beadchip [v1.0] at baseline and weeks 14, 30, and 54. We compared DNA methylation profiles in anti-TNF-treated patients who experienced primary non-response at week 14 if they were assessed at subsequent time points and were not in remission at week 30 or 54 [infliximab n = 99, adalimumab n = 94], with patients who responded at week 14 and when assessed at subsequent time points were in remission at week 30 or 54 [infliximab n = 99, adalimumab n = 93]. RESULTS Overall, between baseline and week 14, we observed 4999 differentially methylated positions [DMPs] annotated to 2376 genes following anti-TNF treatment. Pathway analysis identified 108 significant gene ontology terms enriched in biological processes related to immune system processes and responses. Epigenome-wide association [EWAS] analysis identified 323 DMPs annotated to 210 genes at baseline associated with higher anti-TNF drug concentrations at Week 14. Of these, 125 DMPs demonstrated shared associations with other common traits [proportion of shared CpGs compared with DMPs] including body mass index [23.2%], followed by C-reactive protein [CRP] [11.5%], smoking [7.4%], alcohol consumption per day [7.1%], and IBD type [6.8%]. EWAS of primary non-response to anti-TNF identified 20 DMPs that were associated with both anti-TNF drug concentration and primary non-response to anti-TNF with a strong correlation of the coefficients [Spearman's rho = -0.94, p <0.001]. CONCLUSION Baseline DNA methylation profiles may be used as a predictor for anti-TNF drug concentration at week 14 to identify patients who may benefit from dose optimisation at the outset of anti-TNF therapy.
Collapse
Affiliation(s)
- Simeng Lin
- Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Mark Reppell
- Precision Medicine Immunology, AbbVie Inc., Chicago, IL, USA
| | | | - Nizar Smaoui
- Precision Medicine Immunology, AbbVie Inc., Chicago, IL, USA
| | | | - Heath Guay
- Precision Medicine Immunology, AbbVie Inc., Chicago, IL, USA
| | - Neil Chanchlani
- Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Claire Bewshea
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Benjamin Y H Bai
- Genomics of Inflammation and Immunity Group, Wellcome Sanger Institute, Hinxton, UK
- Postgraduate School of Life Sciences, University of Cambridge, Cambridge, UK
| | - Nicholas A Kennedy
- Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - James R Goodhand
- Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Jonathan Mill
- University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Tariq Ahmad
- Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| |
Collapse
|
7
|
Minea H, Singeap AM, Minea M, Juncu S, Muzica C, Sfarti CV, Girleanu I, Chiriac S, Miftode ID, Stanciu C, Trifan A. The Contribution of Genetic and Epigenetic Factors: An Emerging Concept in the Assessment and Prognosis of Inflammatory Bowel Diseases. Int J Mol Sci 2024; 25:8420. [PMID: 39125988 PMCID: PMC11313574 DOI: 10.3390/ijms25158420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents heterogeneous and relapsing intestinal conditions with a severe impact on the quality of life of individuals and a continuously increasing prevalence. In recent years, the development of sequencing technology has provided new means of exploring the complex pathogenesis of IBD. An ideal solution is represented by the approach of precision medicine that investigates multiple cellular and molecular interactions, which are tools that perform a holistic, systematic, and impartial analysis of the genomic, transcriptomic, proteomic, metabolomic, and microbiomics sets. Hence, it has led to the orientation of current research towards the identification of new biomarkers that could be successfully used in the management of IBD patients. Multi-omics explores the dimension of variation in the characteristics of these diseases, offering the advantage of understanding the cellular and molecular mechanisms that affect intestinal homeostasis for a much better prediction of disease development and choice of treatment. This review focuses on the progress made in the field of prognostic and predictive biomarkers, highlighting the limitations, challenges, and also the opportunities associated with the application of genomics and epigenomics technologies in clinical practice.
Collapse
Affiliation(s)
- Horia Minea
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ana-Maria Singeap
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Manuela Minea
- Department of Microbiology, The National Institute of Public Health, 700464 Iasi, Romania;
| | - Simona Juncu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Cristina Muzica
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Catalin Victor Sfarti
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Irina Girleanu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Stefan Chiriac
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Ioana Diandra Miftode
- Department of Radiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Department of Radiology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Carol Stanciu
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Anca Trifan
- Department of Gastroenterology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (H.M.); (S.J.); (C.V.S.); (I.G.); (S.C.); (C.S.); (A.T.)
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| |
Collapse
|
8
|
Puca P, Capobianco I, Coppola G, Di Vincenzo F, Trapani V, Petito V, Laterza L, Pugliese D, Lopetuso LR, Scaldaferri F. Cellular and Molecular Determinants of Biologic Drugs Resistance and Therapeutic Failure in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:2789. [PMID: 38474034 DOI: 10.3390/ijms25052789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The advent of biologic drugs has revolutionized the treatment of Inflammatory Bowel Disease, increasing rates of response and mucosal healing in comparison to conventional therapies by allowing the treatment of corticosteroid-refractory cases and reducing corticosteroid-related side effects. However, biologic therapies (anti-TNFα inhibitors, anti-α4β7 integrin and anti-IL12/23) are still burdened by rates of response that hover around 40% (in biologic-naïve patients) or lower (for biologic-experienced patients). Moreover, knowledge of the mechanisms underlying drug resistance or loss of response is still scarce. Several cellular and molecular determinants are implied in therapeutic failure; genetic predispositions, in the form of single nucleotide polymorphisms in the sequence of cytokines or Human Leukocyte Antigen, or an altered expression of cytokines and other molecules involved in the inflammation cascade, play the most important role. Accessory mechanisms include gut microbiota dysregulation. In this narrative review of the current and most recent literature, we shed light on the mentioned determinants of therapeutic failure in order to pave the way for a more personalized approach that could help avoid unnecessary treatments and toxicities.
Collapse
Affiliation(s)
- Pierluigi Puca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ivan Capobianco
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gaetano Coppola
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Federica Di Vincenzo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Trapani
- Alleanza Contro il Cancro, Istituto Superiore di Sanità, 00144 Rome, Italy
| | - Valentina Petito
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lucrezia Laterza
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Daniela Pugliese
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Loris Riccardo Lopetuso
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Franco Scaldaferri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
9
|
Krishnamoorthy A, Chandrapalan S, Ahmed M, Arasaradnam RP. The Diagnostic Utility of Volatile Organic Compounds in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. J Crohns Colitis 2024; 18:320-330. [PMID: 37540200 PMCID: PMC10896633 DOI: 10.1093/ecco-jcc/jjad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Volatile organic compounds [VOCs] show promise as potential biomarkers of for ulcerative colitis and Crohn's disease, two chronic, idiopathic, gastrointestinal disorders with diagnostic and management challenges. Non-invasive biomarkers aid early diagnosis and management. In this study we review studies of diagnostic accuracy of VOCs in inflammatory bowel disease. METHODS A systematic search was carried out on the Pubmed and Scopus databases; with 16 studies reviewed and meta-analysis carried out on 10. RESULTS Meta-analysis of 696 inflammatory bowel disease [IBD] cases against 605 controls revealed a pooled sensitivity and specificity of 87% (95% confidence interval [CI], 0.79 - 0.92) and 83% [95% CI, 0.73 - 0.90], respectively. Area under the curve [AUC] was 0.92. CONCLUSION VOCs perform very well as non-invasive biomarkers of IBD, with much scope for future improvement and research.
Collapse
Affiliation(s)
| | - Subashini Chandrapalan
- Department of Gastroenterology, Epsom and St Helier University Hospitals NHS Trust, Carshalton, Surrey, UK
| | - Marriam Ahmed
- Department of Surgery University Hospital Coventry and Warwickshire, Coventry, UK
| | - Ramesh P Arasaradnam
- Department of Gastroenterology, University Hospital Coventry and Warwickshire, Coventry, UK
| |
Collapse
|
10
|
de Ponthaud C, Abdalla S, Belot MP, Shao X, Penna C, Brouquet A, Bougnères P. Increased CpG methylation at the CDH1 locus in inflamed ileal mucosa of patients with Crohn disease. Clin Epigenetics 2024; 16:28. [PMID: 38355645 PMCID: PMC10865720 DOI: 10.1186/s13148-024-01631-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND E-cadherin, a major actor of cell adhesion in the intestinal barrier, is encoded by the CDH1 gene associated with susceptibility to Crohn Disease (CD) and colorectal cancer. Since epigenetic mechanisms are suspected to contribute to the multifactorial pathogenesis of CD, we studied CpG methylation at the CDH1 locus. The methylation of the CpG island (CGI) and of the 1st enhancer, two critical regulatory positions, was quantified in surgical specimens of inflamed ileal mucosa and in peripheral blood mononuclear cells (PBMC) of 21 CD patients. Sixteen patients operated on for a non-inflammatory bowel disease, although not normal controls, provided a macroscopically normal ileal mucosa and PBMC for comparison. RESULTS In ileal mucosa, 19/21 (90%) CD patients vs 8/16 control patients (50%) (p < 0.01) had a methylated CDH1 promoter CGI. In PBMC, CD patients with methylated CGI were 11/21 (52%) vs 7/16 controls (44%), respectively. Methylation in the 1st enhancer of CDH1 was also higher in the CD group for each of the studied CpGs and for their average value (45 ± 17% in CD patients vs 36 ± 17% in controls; p < 0.001). Again, methylation was comparable in PBMC. Methylation of CGI and 1st enhancer were not correlated in mucosa or PBMC. CONCLUSIONS Methylation of several CpGs at the CDH1 locus was increased in the inflamed ileal mucosa, not in the PBMC, of CD patients, suggesting the association of CDH1 methylation with ileal inflammation. Longitudinal studies will explore if this increased methylation is a risk marker for colorectal cancer.
Collapse
Affiliation(s)
- Charles de Ponthaud
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Solafah Abdalla
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Marie-Pierre Belot
- Groupe d'Études sur le Diabète, l'Obésité, la Croissance, GETDOC, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Xiaojian Shao
- Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Christophe Penna
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Antoine Brouquet
- Department of Visceral and Digestive Surgery, Hôpital Bicêtre AP-HP, Paris Saclay University, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Pierre Bougnères
- UMR INSERM 1169 and Université Paris Saclay, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France.
- Groupe d'Études sur le Diabète, l'Obésité, la Croissance, GETDOC, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France.
- MIRCEN Institute, CEA Paris-Saclay/site de Fontenay-aux-Roses, Bâtiment 56 PC 103, 18 route du Panorama, BP6 92265, Fontenay-aux-Roses Cedex, France.
| |
Collapse
|
11
|
Mohammed BI, Amin BK. Differential Gene Expression Profiles in Inflammatory Bowel Disease Patients from Kurdistan, Iraq. Sultan Qaboos Univ Med J 2024; 24:85-90. [PMID: 38434468 PMCID: PMC10906752 DOI: 10.18295/squmj.10.2023.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 03/05/2024] Open
Abstract
Objectives Inflammatory bowel disease (IBD), generally comprising Crohn's disease (CD) and ulcerative colitis (UC), has become a significant global public health concern in the last decade. This study aimed to determine the alternations in the whole genomic expression profile of patients with IBD in this geographic location for the first time, as there are very few articles in the literature addressing this specific aspect of the field. Methods The study was conducted in Erbil Governorate in the Kurdistan region of Iraq from July 2021 to July 2022. The genome expression profiles of 10 patients with IBD were compared to their matched controls. The sequences used in the design of the array were selected from GenBank®, dbEST and RefSeq. Whole blood RNA was extracted and hybridisation was conducted on the GeneChip® human genome U133A 2.0 array. The Scanner 3000 was used to scan high-resolution images and the General Comprehensive Operating System was used to read the results. Results The upregulated genes shared between patients with UC and CD were RIT2, BCL2L1, MDM2 and FKBP8, while the downregulated genes they shared were the NFKBIB, DDX24 and RASA3 genes. Conclusions Upregulated and downregulated gene expression patterns were detected in individuals with IBD, offering diagnostic potential and opportunities for treatment by targeting the associated pathways.
Collapse
Affiliation(s)
| | - Bushra K. Amin
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| |
Collapse
|
12
|
Zhang H, Kalla R, Chen J, Zhao J, Zhou X, Adams A, Noble A, Ventham NT, Wellens J, Ho GT, Dunlop MG, Nowak JK, Ding Y, Liu Z, Satsangi J, Theodoratou E, Li X. Altered DNA methylation within DNMT3A, AHRR, LTA/TNF loci mediates the effect of smoking on inflammatory bowel disease. Nat Commun 2024; 15:595. [PMID: 38238335 PMCID: PMC10796384 DOI: 10.1038/s41467-024-44841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
This work aims to investigate how smoking exerts effect on the development of inflammatory bowel disease (IBD). A prospective cohort study and a Mendelian randomization study are first conducted to evaluate the association between smoking behaviors, smoking-related DNA methylation and the risks of Crohn's disease (CD) and ulcerative colitis (UC). We then perform both genome-wide methylation analysis and co-localization analysis to validate the observed associations. Compared to never smoking, current and previous smoking habits are associated with increased CD (P = 7.09 × 10-10) and UC (P < 2 × 10-16) risk, respectively. DNA methylation alteration at cg17742416 [DNMT3A] is linked to both CD (P = 7.30 × 10-8) and UC (P = 1.04 × 10-4) risk, while cg03599224 [LTA/TNF] is associated with CD risk (P = 1.91 × 10-6), and cg14647125 [AHRR] and cg23916896 [AHRR] are linked to UC risk (P = 0.001 and 0.002, respectively). Our study identifies biological mechanisms and pathways involved in the effects of smoking on the pathogenesis of IBD.
Collapse
Affiliation(s)
- Han Zhang
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rahul Kalla
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Jie Chen
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuan Zhou
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Alex Adams
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexandra Noble
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nicholas T Ventham
- Academic Coloproctology, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Judith Wellens
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Gwo-Tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Malcolm G Dunlop
- Cancer Research UK Scotland Centre and Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Jan Krzysztof Nowak
- Department of Paediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhanju Liu
- Center for IBD Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Evropi Theodoratou
- Cancer Research UK Scotland Centre and Medical Research Council Human Genetics Unit, University of Edinburgh, Edinburgh, UK.
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK.
| | - Xue Li
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
Kamal S, Parkash N, Beattie W, Christensen B, Segal JP. Are We Ready to Reclassify Crohn's Disease Using Molecular Classification? J Clin Med 2023; 12:5786. [PMID: 37762727 PMCID: PMC10532006 DOI: 10.3390/jcm12185786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Crohn's disease (CD) is a type of inflammatory bowel disease. The number of IBD cases worldwide was estimated to be 4.9 million in 2019. CD exhibits heterogeneity in clinical presentation, anatomical involvement, disease behaviour, clinical course and response to treatment. The classical description of CD involves transmural inflammation with skip lesions anywhere along the entire gastrointestinal tract. The complexity and heterogeneity of Crohn's disease is not currently reflected in the conventional classification system. Though the knowledge of Crohn's pathophysiology remains far from understood, the established complex interplay of the omics-genomics, transcriptomics, proteomics, epigenomics, metagenomics, metabolomics, lipidomics and immunophenomics-provides numerous targets for potential molecular markers of disease. Advancing technology has enabled identification of small molecules within these omics, which can be extrapolated to differentiate types of Crohn's disease. The multi-omic future of Crohn's disease is promising, with potential for advancements in understanding of its pathogenesis and implementation of personalised medicine.
Collapse
Affiliation(s)
- Shahed Kamal
- Department of Gastroenterology, Northern Hospital, Epping, Melbourne VIC 3076, Australia
| | - Nikita Parkash
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
| | - William Beattie
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
| | - Britt Christensen
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
- Department of Gastroenterology, The University of Melbourne, Parkville, Melbourne VIC 3010, Australia
| | - Jonathan P. Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Melbourne VIC 3052, Australia
- Department of Gastroenterology, The University of Melbourne, Parkville, Melbourne VIC 3010, Australia
| |
Collapse
|
14
|
Wang SS, Lewis MJ, Pitzalis C. DNA Methylation Signatures of Response to Conventional Synthetic and Biologic Disease-Modifying Antirheumatic Drugs (DMARDs) in Rheumatoid Arthritis. Biomedicines 2023; 11:1987. [PMID: 37509625 PMCID: PMC10377185 DOI: 10.3390/biomedicines11071987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a complex condition that displays heterogeneity in disease severity and response to standard treatments between patients. Failure rates for conventional, target synthetic, and biologic disease-modifying rheumatic drugs (DMARDs) are significant. Although there are models for predicting patient response, they have limited accuracy, require replication/validation, or for samples to be obtained through a synovial biopsy. Thus, currently, there are no prediction methods approved for routine clinical use. Previous research has shown that genetics and environmental factors alone cannot explain the differences in response between patients. Recent studies have demonstrated that deoxyribonucleic acid (DNA) methylation plays an important role in the pathogenesis and disease progression of RA. Importantly, specific DNA methylation profiles associated with response to conventional, target synthetic, and biologic DMARDs have been found in the blood of RA patients and could potentially function as predictive biomarkers. This review will summarize and evaluate the evidence for DNA methylation signatures in treatment response mainly in blood but also learn from the progress made in the diseased tissue in cancer in comparison to RA and autoimmune diseases. We will discuss the benefits and challenges of using DNA methylation signatures as predictive markers and the potential for future progress in this area.
Collapse
Affiliation(s)
- Susan Siyu Wang
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts Health NIHR BRC & NHS Trust, London EC1M 6BQ, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts Health NIHR BRC & NHS Trust, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts Health NIHR BRC & NHS Trust, London EC1M 6BQ, UK
| |
Collapse
|
15
|
Andersen V, Bennike TB, Bang C, Rioux JD, Hébert-Milette I, Sato T, Hansen AK, Nielsen OH. Investigating the Crime Scene-Molecular Signatures in Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:11217. [PMID: 37446397 PMCID: PMC10342864 DOI: 10.3390/ijms241311217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are without cure and troublesome to manage because of the considerable diversity between patients and the lack of reliable biomarkers. Several studies have demonstrated that diet, gut microbiota, genetics and other patient factors are essential for disease occurrence and progression. Understanding the link between these factors is crucial for identifying molecular signatures that identify biomarkers to advance the management of IBD. Recent technological breakthroughs and data integration have fuelled the intensity of this research. This research demonstrates that the effect of diet depends on patient factors and gut microbial activity. It also identifies a range of potential biomarkers for IBD management, including mucosa-derived cytokines, gasdermins and neutrophil extracellular traps, all of which need further evaluation before clinical translation. This review provides an update on cutting-edge research in IBD that aims to improve disease management and patient quality of life.
Collapse
Affiliation(s)
- Vibeke Andersen
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, Institute of Regional Research, University of Southern Denmark, 5000 Odense, Denmark;
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Tue B. Bennike
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, Institute of Regional Research, University of Southern Denmark, 5000 Odense, Denmark;
- Medical Microbiology and Immunology, Department of Health Science and Technology, Aalborg University, 9000 Aalborg, Denmark
| | - Corinna Bang
- Institute for Clinical Molecular Biology, Christian-Albrecht’s University, 24105 Kiel, Germany;
| | - John D. Rioux
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; (J.D.R.); (I.H.-M.)
- Montreal Heart Institute Research Institute, Montreal, QC H1T 1C8, Canada
| | - Isabelle Hébert-Milette
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; (J.D.R.); (I.H.-M.)
- Montreal Heart Institute Research Institute, Montreal, QC H1T 1C8, Canada
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Axel K. Hansen
- Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark;
| | - Ole H. Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
16
|
Nowak JK, Kalla R, Satsangi J. Current and emerging biomarkers for ulcerative colitis. Expert Rev Mol Diagn 2023; 23:1107-1119. [PMID: 37933807 DOI: 10.1080/14737159.2023.2279611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic illness requiring lifelong management that could be enhanced by personalizing care using biomarkers. AREAS COVERED The main biomarker discovery modalities are reviewed, highlighting recent results across the spectrum of applications, including diagnostics (serum anti-αvβ6 antibodies achieving an area under the curve [AUC] = 0.99; serum oncostatin M AUC = 0.94), disease activity assessment (fecal calprotectin and serum trefoil factor 3: AUC > 0.90), prognostication of the need for treatment escalation (whole blood transcriptomic panels and CLEC5A/CDH2 ratio: AUC > 0.90), prediction of treatment response, and early identification of patients with subclinical disease. The use of established biomarkers is discussed, along with new evidence regarding autoantibodies, proteins, proteomic panels, transcriptomic signatures, deoxyribonucleic acid methylation patterns, and UC-specific glycomic and metabolic disturbances. EXPERT OPINION Novel biomarkers will pave the way for optimized UC care. However, validation, simplification, and direct clinical translation of complex models may prove challenging. Currently, few candidates exist to assess key characteristics, such as UC susceptibility, histological disease activity, drug response, and long-term disease behavior. Further research will likely not only reveal new tools to tackle these issues but also contribute to understanding UC pathogenesis mechanisms.
Collapse
Affiliation(s)
- Jan K Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Rahul Kalla
- Medical Research Council Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Noble AJ, Nowak JK, Adams AT, Uhlig HH, Satsangi J. Defining Interactions Between the Genome, Epigenome, and the Environment in Inflammatory Bowel Disease: Progress and Prospects. Gastroenterology 2023; 165:44-60.e2. [PMID: 37062395 DOI: 10.1053/j.gastro.2023.03.238] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 04/18/2023]
Abstract
Recent advances in our understanding of the pathogenesis of inflammatory bowel disease (IBD) have highlighted the complex interplay between the genome, the epigenome, and the environment. Despite the exciting advances in genomics that have enabled the identification of over 200 susceptibility loci, these only account for a small proportion of the disease variance and the estimated heritability in IBD. It is likely that gene-environment (GxE) interactions contribute to "missing heritability" and these may act through epigenetic mechanisms. Several environmental factors, such as the microbiome, nutrition, and tobacco smoking, induce alterations in the epigenome of children and adults, which may impact disease susceptibility. Other mechanisms for GxE interactions are also directly pertinent in early life. We discuss a model in which environmental factors imprint disease risk in a window of susceptibility during infancy that may contribute to later disease onset, whereas other elements of the exposome act later in life and contribute directly to the pathogenesis and course of the disease. Understanding the mechanisms underlying GxE interactions may provide the basis for new therapeutic targets or preventative strategies for IBD.
Collapse
Affiliation(s)
- Alexandra J Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom.
| | - Jan K Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Department of Pediatrics, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom; Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Mu C, Zhao Q, Zhao Q, Yang L, Pang X, Liu T, Li X, Wang B, Fung SY, Cao H. Multi-omics in Crohn's disease: New insights from inside. Comput Struct Biotechnol J 2023; 21:3054-3072. [PMID: 37273853 PMCID: PMC10238466 DOI: 10.1016/j.csbj.2023.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) with complex clinical manifestations such as chronic diarrhea, weight loss and hematochezia. Despite the increasing incidence worldwide, cure of CD remains extremely difficult. The rapid development of high-throughput sequencing technology with integrated-omics analyses in recent years has provided a new means for exploring the pathogenesis, mining the biomarkers and designing targeted personalized therapeutics of CD. Host genomics and epigenomics unveil heredity-related mechanisms of susceptible individuals, while microbiome and metabolomics map host-microbe interactions in CD patients. Proteomics shows great potential in searching for promising biomarkers. Nonetheless, single omics technology cannot holistically connect the mechanisms with heterogeneity of pathological behavior in CD. The rise of multi-omics analysis integrates genetic/epigenetic profiles with protein/microbial metabolite functionality, providing new hope for comprehensive and in-depth exploration of CD. Herein, we emphasized the different omics features and applications of CD and discussed the current research and limitations of multi-omics in CD. This review will update and deepen our understanding of CD from integration of broad omics spectra and will provide new evidence for targeted individualized therapeutics.
Collapse
Affiliation(s)
- Chenlu Mu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qianjing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lijiao Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaomeng Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Shan-Yu Fung
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
19
|
Joustra V, Li Yim AYF, Hageman I, Levin E, Adams A, Satsangi J, de Jonge WJ, Henneman P, D'Haens G. Long-term Temporal Stability of Peripheral Blood DNA Methylation Profiles in Patients With Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2023; 15:869-885. [PMID: 36581079 PMCID: PMC9972576 DOI: 10.1016/j.jcmgh.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS There is great current interest in the potential application of DNA methylation alterations in peripheral blood leukocytes (PBLs) as biomarkers of susceptibility, progression, and treatment response in inflammatory bowel disease (IBD). However, the intra-individual stability of PBL methylation in IBD has not been characterized. Here, we studied the long-term stability of all probes located on the Illumina HumanMethylation EPIC BeadChip array. METHODS We followed a cohort of 46 adult patients with IBD (36 Crohn's disease [CD], 10 ulcerative colitis [UC]; median age, 44 years; interquartile range [IQR] 27-56 years; 50% female) that received standard care follow-up at the Amsterdam University Medical Centers. Paired PBL samples were collected at 2 time points with a median of 7 years (range, 2-9 years) in between. Differential methylation and intra-class correlation (ICC) analyses were used to identify time-associated differences and temporally stable CpGs, respectively. RESULTS Around 60% of all EPIC array loci presented poor intra-individual stability (ICC <0.50); 78.114 (≈9%) showed good (ICC, 0.75-0.89), and 41.274 (≈5%) showed excellent (ICC ≥0.90) stability, between both measured time points. Focusing on previously identified consistently differentially methylated positions indicated that 22 CD-, 11 UC-, and 24 IBD-associated loci demonstrated high stability (ICC ≥0.75) over time; of these, we observed a marked stability of CpG loci associated to the HLA genes. CONCLUSIONS Our data provide insight into the long-term stability of the PBL DNA methylome within an IBD context, facilitating the selection of biologically relevant and robust IBD-associated epigenetic biomarkers with increased potential for independent validation. These data also have potential implications in understanding disease pathogenesis.
Collapse
Affiliation(s)
- Vincent Joustra
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrew Y F Li Yim
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ishtu Hageman
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Evgeni Levin
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Horaizon BV, Delft, the Netherlands
| | - Alex Adams
- Oxford University- Hospitals NHS Foundation Trust- John Radcliffe Hospital, Translational Gastroenterology Unit- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Jack Satsangi
- Oxford University- Hospitals NHS Foundation Trust- John Radcliffe Hospital, Translational Gastroenterology Unit- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Henneman
- Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Geert D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes (Basel) 2022; 13:genes13122388. [PMID: 36553655 PMCID: PMC9778199 DOI: 10.3390/genes13122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease with periods of exacerbation and remission of the disease. The etiology of IBD is not fully understood. Many studies point to the presence of genetic, immunological, environmental, and microbiological factors and the interactions between them in the occurrence of IBD. The review looks at genetic factors in the context of both IBD predisposition and pharmacogenetics.
Collapse
|