1
|
Cabon V, Pincebourde S, Colinet H, Dubreuil V, Georges R, Launoy M, Pétillon J, Quénol H, Bergerot B. Preferred temperature in the warmth of cities: Body size, sex and development stage matter more than urban climate in a ground-dwelling spider. J Therm Biol 2023; 117:103706. [PMID: 37714112 DOI: 10.1016/j.jtherbio.2023.103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Most ectotherms rely on behavioural thermoregulation to maintain body temperatures close to their physiological optimum. Hence, ectotherms can drastically limit their exposure to thermal extremes by selecting a narrower range of temperatures, which includes their preferred temperature (Tpref). Despite evidence that behavioural thermoregulation can be adjusted by phenotypic plasticity or constrained by natural selection, intraspecific Tpref variations across environmental gradients remain overlooked as compared to other thermal traits like thermal tolerance. Here, we analyzed Tpref variation of spider populations found along a gradient of urban heat island (UHI) which displays large thermal variations over small distances. We measured two components of the thermal preference, namely the mean Tpref and the Tpref range (i.e., standard deviation) in 557 field-collected individuals of a common ground-dwelling spider (Pardosa saltans, Lycosidae) using a laboratory thermal gradient. We determined if Tpref values differed among ten populations from contrasting thermal zones. We showed that endogenous factors such as body size or sex primarily determine both mean Tpref and Tpref range. The Tpref range was also linked to the UHI intensity to a lesser extent, yet only in juveniles. The absence of relationship between Tpref metrics and UHI in adult spiders suggests a Bogert effect according to which the ability of individuals to detect and exploit optimal microclimates weakens the selection pressure of temperatures (here driven by UHI) on their thermal physiology. Alternatively, this lack of relationship could also indicate that temperature patterns occurring at the scale of the spiders' micro-habitat differ from measured ones. This study shows the importance of considering both inter-individual and inter-population variations of the Tpref range when conducting Tpref experiments, and supports Tpref range as being a relevant measure to inform on the strength of behavioural thermoregulation in a given population.
Collapse
Affiliation(s)
- Valentin Cabon
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)], UMR 6553, Rennes, France; LTSER ZA Armorique, F-35000, Rennes, France.
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, Université de Tours, Tours, France
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)], UMR 6553, Rennes, France
| | | | - Romain Georges
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)], UMR 6553, Rennes, France; LTSER ZA Armorique, F-35000, Rennes, France
| | - Maud Launoy
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)], UMR 6553, Rennes, France
| | - Julien Pétillon
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)], UMR 6553, Rennes, France; Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| | - Hervé Quénol
- University of Rennes 2, CNRS, LETG, UMR 6554, Rennes, France
| | - Benjamin Bergerot
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)], UMR 6553, Rennes, France; LTSER ZA Armorique, F-35000, Rennes, France
| |
Collapse
|
2
|
Chen LJ, Li ZZ, Zhou XW, Xing XY, Lv B. Integrated transcriptome and metabolome analysis reveals molecular responses of spider to single and combined high temperature and drought stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120763. [PMID: 36503821 DOI: 10.1016/j.envpol.2022.120763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/30/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
High temperature and drought are abiotic stresses restricting many arthropods' survival and growth. Wolf spiders are poikilothermic arthropods that are vital in managing insects and pests. Nonetheless, investigating changes in spiders under temperature and drought stress are limited, especially at the molecular and gene expression levels. The study found that the combined effects of high temperature and drought stress significantly reduced survival rates and raised superoxide dismutase and malondialdehyde levels in the wolf spider Pardosa pseudoannulata. An integrated transcriptome and metabolome analysis showed that differentially expressed genes and metabolites were highly enriched in pathways involved in the proteolysis and oxidation-reduction process. The gene expression profiles displayed that heat shock protein (HSP) families (i.e., small heat shock protein, HSP70, HSP90, and HSP beta protein) were up-regulated under temperature and/or drought stresses. Additionally, a conjoint analysis revealed that under the combined stress, several important enzymes, including maltase-glucoamylase, glycerol-6-phosphate transporter, alanine-glyoxylate transaminase, and prostaglandin-H2 D-isomerase, were altered, affecting the metabolism of starch, sucrose, amino acids, and arachidonic acid. The protein interaction network further confirmed that under the combined stress, metabolic processes, peptide metabolic processes, and ATP generation from ADP were up-regulated, indicating that spiders could accelerate the metabolism of carbohydrates and proteins to combat stress and maintain homeostasis. Overall, this work showed that exposure to a combination of pressures might cause distinct defensive reactions in spiders and offered novel perspectives to research the molecular underpinnings of spider adaptation to a changing climate.
Collapse
Affiliation(s)
- Li-Jun Chen
- College of Urban and Rural Construction, Shaoyang University, 422099, Shaoyang, China.
| | - Zhe-Zhi Li
- College of Urban and Rural Construction, Shaoyang University, 422099, Shaoyang, China
| | - Xuan-Wei Zhou
- School of Life Sciences, Southwest University, 400715, Beibei, Chongqing, China
| | - Xiao-Yi Xing
- College of Urban and Rural Construction, Shaoyang University, 422099, Shaoyang, China
| | - Bo Lv
- Division of Plant Science and Technology, University of Missouri, 65211, Columbia, USA
| |
Collapse
|
3
|
Soravia C, Ashton BJ, Ridley AR. Periorbital temperature responses to natural air temperature variation in wild birds. J Therm Biol 2022; 109:103323. [DOI: 10.1016/j.jtherbio.2022.103323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
|