1
|
Bohannon DG, Wellman LL, Kaul M, Galkina EV, Guo ML, Datta PK, Kim WK. Type-1-to-type-2 transition of brain microvascular pericytes induced by cytokines and disease-associated proteins: Role in neuroinflammation and blood-brain barrier disruption. J Cereb Blood Flow Metab 2025; 45:405-420. [PMID: 39473432 PMCID: PMC11563511 DOI: 10.1177/0271678x241296270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 09/05/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
While the concept of pericyte heterogeneity in the brain microvasculature is becoming more widely accepted, little is known about how they arise, or their functional contributions to the blood-brain barrier (BBB). We therefore set out to examine the distribution of subtypes of pericytes at the BBB and sought to elucidate some of their functional characteristics by examining their unique mRNA expression patterns. We demonstrate that type-1 pericytes (PC1) that are associated with young healthy brains and BBB homeostasis, can transition into type-2 pericytes (PC2) that are associated with disease and BBB breakdown, both in vitro and in vivo, in the presence of both endogenous and disease associated ligands. We identified PC1 and PC2 in single-cell RNA-sequencing from vascular enriched mouse brain and identified transcriptional differences between PC1 and PC2. PC2 showed increased expression of genes associated with phagocytosis and peripheral immune cell infiltration. On the contrary, PC1 displayed increased expression of genes involved in hedgehog signaling, which is known to promote tight junction formation at the BBB. Our data support the PC1-to-PC2 transition as an origin of PC diversity and suggest a functional role for PC1 in maintaining BBB homeostasis and PC2 in responding to pathological conditions.
Collapse
Affiliation(s)
- Diana G Bohannon
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Laurie L Wellman
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Elena V Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Ming-Lei Guo
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Prasun K Datta
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| |
Collapse
|
2
|
Mousso T, Pham K, Drewes R, Babatunde S, Jong J, Krug A, Inserra G, Biber J, Brazzo JA, Gupte S, Bae Y. Survivin in cardiovascular diseases and its therapeutic potential. Vascul Pharmacol 2025; 159:107475. [PMID: 40015658 DOI: 10.1016/j.vph.2025.107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Aberrant changes in cell behaviors, such as proliferation, apoptosis, and migration, are some of the contributing factors to the development of various cardiovascular diseases (CVDs) and pathologies, including atherosclerosis, neointimal hyperplasia, and heart failure. In recent years, numerous studies have identified survivin, a key player in the anti-apoptotic pathway, to be extensively involved in modulating cellular functioning in cancer, with many reaching clinical trials. Though seemingly different, CVDs and cancer share abundant similarities regarding abnormal cell modifications and behaviors. This overlap has sparked growing interest in investigating survivin as a therapeutic target in the context of CVD. With new findings emerging rapidly, a comprehensive understanding of survivin's role in cardiovascular pathology is crucial to revealing its full therapeutic potential and translating these discoveries into effective treatments. This review discusses recent findings of survivin in CVDs and related pathologies, focusing on its dual role in promoting proliferation and inhibiting apoptosis, specifically in atherosclerosis, neointimal hyperplasia, stroke, hypertension, myocardial infarction, and heart failure. Across different cell types and pathological contexts, survivin plays a pivotal role throughout the disease progression-from the onset of disease development to the facilitation of compensatory mechanisms post-injury-primarily through its function in regulating cell proliferation and apoptosis. Furthermore, given the limited research on survivin as a therapeutic target for CVDs, potential clinical avenues, including YM155 (a survivin inhibitor) or adenoviral, adeno-associated, and lentiviral vectors, are also discussed. Overall, this review highlights survivin as a promising target for mitigating the detrimental effects of CVDs and to provide new perspectives to advance research on the intervention of CVDs and associated pathologies.
Collapse
Affiliation(s)
- Thomas Mousso
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Khanh Pham
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Rhonda Drewes
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sefunmi Babatunde
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jessica Jong
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Alanna Krug
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Gabrielle Inserra
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - John Biber
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Joseph A Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sachin Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
3
|
Zhang XY, Lu QQ, Li YJ, Shi SR, Ma CN, Miao M, Guo SD. Conditional knockdown of hepatic PCSK9 ameliorates high-fat diet-induced liver inflammation in mice. Front Pharmacol 2025; 16:1528250. [PMID: 39963241 PMCID: PMC11830812 DOI: 10.3389/fphar.2025.1528250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025] Open
Abstract
Instruction Accumulating evidence has shown that proprotein convertase subtilisin/kexin type 9 (PCSK9) is associated with inflammation in the vascular system. However, the roles of PCSK9 in hepatic inflammation remain unclear. Because PCSK9 is mainly expressed in the liver and modulates lipid uptake through low-density lipoprotein receptor family members, the present study aimed to elucidate the effect of conditional knockdown of hepatic PCSK9 on hyperlipidemia-induced inflammation and the underlying mechanisms of action. Methods PCSK9flox/flox mice were bred with ALB-Cre+ mice to obtain hepatic PCSK9 (-/-) , PCSK9 (+/-) , and PCSK9 (+/+) mice. These mice were fed with a high-fat diet for 9 weeks to induce inflammation. The effects of conditional knockdown of hepatic PCSK9 on inflammation and the underlying mechanisms were investigated by molecular biological techniques. Moreover, the findings were verified in vitro using HepG2 cells. Results and Discussion Conditional knockdown of hepatic PCSK9 remarkably decreased plasma levels of total cholesterol and alleviated hyperlipidemia-induced liver injury. Mechanistically, conditional knockdown of hepatic PCSK9 significantly reduced the levels of pro-inflammatory factors by downregulating the expression of Toll-like receptors, mitogen-activated protein kinase (MAPK), and phosphoinositide-3 kinase/protein kinase B, which subsequently attenuated the expression of downstream molecules, namely nuclear factor kappa-B and activator protein-1. The related mechanisms were confirmed using lipid-loaded HepG2 cells together with PCSK9 siRNA, alirocumab (anti-PCSK9 antibody), and/or a p38-MAPK inhibitor. These findings confirmed that conditional knockdown of hepatic PCSK9 attenuates liver inflammation following hyperlipidemia induction by modulating multiple signaling pathways; this suggests that targeting PCSK9 knockdown/inhibition with appropriate agents is useful not only for treating hyperlipidemia but also for ameliorating hyperlipidemia-induced liver inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| |
Collapse
|
4
|
Ansari A, Yadav PK, Zhou L, Prakash B, Ijaz L, Christiano A, Ahmad S, Rimbert A, Hussain MM. Casz1 and Znf101/Zfp961 differentially regulate apolipoproteins A1 and B, alter plasma lipoproteins, and reduce atherosclerosis. JCI Insight 2025; 10:e182260. [PMID: 39782688 PMCID: PMC11721306 DOI: 10.1172/jci.insight.182260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
High apolipoprotein B-containing (apoB-containing) low-density lipoproteins (LDLs) and low apoA1-containing high-density lipoproteins (HDLs) are associated with atherosclerotic cardiovascular diseases. In search of a molecular regulator that could simultaneously and reciprocally control both LDL and HDL levels, we screened a microRNA (miR) library using human hepatoma Huh-7 cells. We identified miR-541-3p that both significantly decreases apoB and increases apoA1 expression by inducing mRNA degradation of 2 different transcription factors, Znf101 and Casz1. We found that Znf101 enhances apoB expression, while Casz1 represses apoA1 expression. The hepatic knockdown of Casz1 in mice increased plasma apoA1, HDL, and cholesterol efflux capacity. The hepatic knockdown of Zfp961, an ortholog of Znf101, reduced lipogenesis and production of triglyceride-rich lipoproteins and atherosclerosis, without causing hepatic lipid accumulation. This study identifies hepatic Znf101/Zfp961 and Casz1 as potential therapeutic targets to alter plasma lipoproteins and reduce atherosclerosis without causing liver steatosis.
Collapse
Affiliation(s)
- Abulaish Ansari
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, New York, USA
| | - Pradeep Kumar Yadav
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, New York, USA
| | - Liye Zhou
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Binu Prakash
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, New York, USA
| | - Laraib Ijaz
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, New York, USA
| | - Amanda Christiano
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, New York, USA
| | - Sameer Ahmad
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, New York, USA
| | - Antoine Rimbert
- Nantes Université, CNRS, INSERM, l’institut du thorax, F-44000 Nantes, France
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, New York, USA
- VA New York Harbor Healthcare System, Brooklyn, New York, USA
| |
Collapse
|
5
|
Eyre B, Shaw K, Drew D, Rayson A, Shabir O, Lee L, Francis S, Berwick J, Howarth C. Characterizing vascular function in mouse models of Alzheimer's disease, atherosclerosis, and mixed Alzheimer's and atherosclerosis. NEUROPHOTONICS 2025; 12:S14610. [PMID: 40405889 PMCID: PMC12094910 DOI: 10.1117/1.nph.12.s1.s14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/27/2025] [Accepted: 04/08/2025] [Indexed: 05/26/2025]
Abstract
Significance Alzheimer's disease does not occur in isolation, and there are many comorbidities associated with the disease, especially diseases of the vasculature. Atherosclerosis is a known risk factor for the subsequent development of Alzheimer's disease; therefore, understanding how both diseases interact will provide a greater understanding of co-morbid disease progression and aid the development of potential new treatments. Aim We characterize hemodynamic responses and cognitive performance in APP/PS1 Alzheimer's mice, atherosclerosis mice, and a mixed disease group (APP/PS1 and atherosclerosis) between the ages of 9 and 12 months. Approach Whisker-evoked hemodynamic responses and recognition memory were assessed in awake mice, immunohistochemistry to assess amyloid pathology, and histology to characterize atherosclerotic plaque load. Results We observed hemodynamic deficits in atherosclerosis mice (versus Alzheimer's, mixed disease, or wild-type mice), with reduced short-duration stimulus-evoked hemodynamic responses occurring when there was no concurrent locomotion during the stimulation period. Mixed Alzheimer's and atherosclerosis models did not show differences in amyloid beta coverage in the cortex or hippocampus or atherosclerotic plaque burden in the aortic arch vs relevant Alzheimer's or atherosclerosis controls. Consistent with the subtle vascular deficits and no pathology differences, we also observed no difference in performance on the object recognition task across groups. Conclusions These results emphasize the importance of experimental design for characterizing vascular function across disease groups, as locomotion and stimulus duration impacted the ability to detect differences between groups. Although atherosclerosis did reduce hemodynamic responses, these were recovered in the presence of co-occurring Alzheimer's disease, which may provide targets for future studies to explore the potentially contrasting vasodilatory mechanisms these diseases impact.
Collapse
Affiliation(s)
- Beth Eyre
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
- Massachusetts General Hospital, Harvard Medical School, Department of Neurology, Boston, Massachusetts, United States
| | - Kira Shaw
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
| | - Dave Drew
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
| | - Alexandra Rayson
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
- University of Sheffield, School of Medicine and Population Health, Sheffield, United Kingdom
| | - Osman Shabir
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
- University of Sheffield, School of Medicine and Population Health, Sheffield, United Kingdom
| | - Llywelyn Lee
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
| | - Sheila Francis
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
- University of Sheffield, School of Medicine and Population Health, Sheffield, United Kingdom
| | - Jason Berwick
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
| | - Clare Howarth
- University of Sheffield, Department of Psychology, Sheffield Neurovascular Group, Sheffield, United Kingdom
- University of Sheffield, Neuroscience Institute, Sheffield, United Kingdom
- University of Sheffield, Healthy Lifespan Institute, Sheffield, United Kingdom
| |
Collapse
|
6
|
Wells AT, Shen MM, Binrouf RH, D'Amico AE, Bossardi Ramos R, Lennartz MR. Identification of Myeloid Protein Kinase C - Epsilon as a Novel Atheroprotective Gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627650. [PMID: 39713428 PMCID: PMC11661236 DOI: 10.1101/2024.12.09.627650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background Atherosclerosis is a lipid mediated chronic inflammatory disease driven my macrophages (MØ). Protein Kinase C - epsilon (PKCɛ) is is a serine/threonine kinase involved in diverse cellular processes such as migration, growth, differentiation, and survival. PKCɛ is known to act in a context dependent manner within heart, however, its role in atherosclerosis is unknown. Methods Bone marrow derived MØ from global PKCɛ KO mice were examined for impact of lipid metabolism and inflammatory factor secretion. Public geneset analysis assessed raw counts of PKCɛ to determine translational relevance. To determine the function myeloid PKCɛ on atherosclerosis a novel murine model was generated using LysM Cre technology. After its characterization, human-like hypercholesterolemia was induced to assess plaque morphology in WT mice or mice lacking myeloid PKCɛ. Results Public geneset analysis of human atherosclerotic plaque tissue revealed that PKCɛ expression is inversely correlated with plaque size and vulnerability. Similarly, peritoneal MØ from hypercholesterolemic mice have significantly lower PKCɛ expression. As MØ play a major role in atherogenesis, we generated a mouse strain with PKCɛ selectively deleted in the myeloid lineage (mɛKO). qPCR revealed no basal differences between genotypes in the expression of lipid uptake receptors, efflux transporters, or inflammatory markers. However, upon lipid loading, mɛKO MØs retained significantly more cholesterol than WT. Human-like hypercholesterolemia was induced in WT and mɛKO mice and assessed for lesion area and plaque morphology in aortic arches and aortic roots. We found that, compared to WT, the lesion area in mɛKO mice was significantly larger, more necrotic, had larger foam cells, and thinner collagen caps. Conclusions Loss of myeloid PKCɛ promotes atherosclerosis as determined by larger lesions, more necrosis, thinner plaque caps). Together, these data identify myeloid PKCɛ as a novel atheroprotective gene, laying the foundation for mechanistic studies on the signaling networks responsible for the phenotype. Highlights A novel murine model in which PKCɛ is floxed (PKCɛ fl/fl ) on both alleles haas been generated, backcrossed, and deposited into Jackson Laboratories. PKCε fl/fl mice have been crossed with those on the LysM Cre background thereby deleting PKCε from myeloid cells (mεKO). Deletion of PKCε has no basal affects on other PKC isoforms, lipid handling markers, or inflammatory markers.Upon stimulation with lopid loading in vitro or hypercholesterolemia in vivo, mεKO BMDMs retain more cholesterol and mεKO mice develop a more vulnerable plaque phenotype (i.e. larger lesions, more necrosis, thimmer plaque caps).These findings provide a rationale for the need to identify mediators in the PKCε signaling pathway responsible for protection against vulnerable plaques in atherosclerosis; potentially aiding in the development of preventative and therapeutic treatments.
Collapse
|
7
|
Caruana V, Giles BH, Kukolj N, Juran R, Baglole CJ, Mann KK. Chronic exposure to E-cigarette aerosols potentiates atherosclerosis in a sex-dependent manner. Toxicol Appl Pharmacol 2024; 492:117095. [PMID: 39245079 DOI: 10.1016/j.taap.2024.117095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Despite being designed for smoking cessation, e-cigarettes and their variety of flavors have become increasingly attractive to teens and young adults. This trend has fueled concerns regarding the potential role of e-cigarettes in advancing chronic diseases, notably those affecting the cardiovascular system. E-cigarettes contain a mixture of metals and chemical compounds, some of which have been implicated in cardiovascular diseases like atherosclerosis. Our laboratory has optimized in vivo exposure regimens to mimic human vaping patterns. Using these established protocols in an inducible (AAV-PCSK9) hyperlipidemic mouse model, this study tests the hypothesis that a chronic exposure to e-cigarette aerosols will increase atherosclerotic plaques. The exposures were conducted using the SCIREQ InExpose™ nose-only inhalation system and STLTH or Vuse products for 16 weeks. We observed that only male mice exposed to STLTH or Vuse aerosols had significantly increased plasma total cholesterol, triglycerides, and LDL cholesterol levels compared to mice exposed to system air. Moreover, these male mice also had a significant increase in aortic and sinus plaque area. Male mice exposed to e-cigarette aerosol had a significant reduction in weight gain over the exposure period. Our data indicate that e-cigarette use in young hyperlipidemic male mice increases atherosclerosis in the absence of significant pulmonary and systemic inflammation. These results underscore the need for extensive research to unravel the long-term health effects of e-cigarettes.
Collapse
Affiliation(s)
- Vincenza Caruana
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | - Braeden H Giles
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | - Nikola Kukolj
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | - Roni Juran
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | - Carolyn J Baglole
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Koren K Mann
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Dutka M, Zimmer K, Ćwiertnia M, Ilczak T, Bobiński R. The role of PCSK9 in heart failure and other cardiovascular diseases-mechanisms of action beyond its effect on LDL cholesterol. Heart Fail Rev 2024; 29:917-937. [PMID: 38886277 PMCID: PMC11306431 DOI: 10.1007/s10741-024-10409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a protein that regulates low-density lipoprotein (LDL) cholesterol metabolism by binding to the hepatic LDL receptor (LDLR), ultimately leading to its lysosomal degradation and an increase in LDL cholesterol (LDLc) levels. Treatment strategies have been developed based on blocking PCSK9 with specific antibodies (alirocumab, evolocumab) and on blocking its production with small regulatory RNA (siRNA) (inclisiran). Clinical trials evaluating these drugs have confirmed their high efficacy in reducing serum LDLc levels and improving the prognosis in patients with atherosclerotic cardiovascular diseases. Most studies have focused on the action of PCSK9 on LDLRs and the subsequent increase in LDLc concentrations. Increasing evidence suggests that the adverse cardiovascular effects of PCSK9, particularly its atherosclerotic effects on the vascular wall, may also result from mechanisms independent of its effects on lipid metabolism. PCSK9 induces the expression of pro-inflammatory cytokines contributing to inflammation within the vascular wall and promotes apoptosis, pyroptosis, and ferroptosis of cardiomyocytes and is thus involved in the development and progression of heart failure. The elimination of PCSK9 may, therefore, not only be a treatment for hypercholesterolaemia but also for atherosclerosis and other cardiovascular diseases. The mechanisms of action of PCSK9 in the cardiovascular system are not yet fully understood. This article reviews the current understanding of the mechanisms of PCSK9 action in the cardiovascular system and its contribution to cardiovascular diseases. Knowledge of these mechanisms may contribute to the wider use of PCSK9 inhibitors in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mieczysław Dutka
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland.
| | - Karolina Zimmer
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| | - Michał Ćwiertnia
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Tomasz Ilczak
- Department of Emergency Medicine, Faculty of Health Sciences, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland
| | - Rafał Bobiński
- Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biala, Willowa St. 2, 43-309, Bielsko-Biała, Poland
| |
Collapse
|
9
|
Zhu B, Gupta K, Cui K, Wang B, Malovichko MV, Han X, Li K, Wu H, Arulsamy KS, Singh B, Gao J, Wong S, Cowan DB, Wang D, Biddinger S, Srivastava S, Shi J, Chen K, Chen H. Targeting Liver Epsins Ameliorates Dyslipidemia in Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609742. [PMID: 39253478 PMCID: PMC11383288 DOI: 10.1101/2024.08.26.609742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Rationale Low density cholesterol receptor (LDLR) in the liver is critical for the clearance of low-density lipoprotein cholesterol (LDL-C) in the blood. In atherogenic conditions, proprotein convertase subtilisin/kexin 9 (PCSK9) secreted by the liver, in a nonenzymatic fashion, binds to LDLR on the surface of hepatocytes, preventing its recycling and enhancing its degradation in lysosomes, resulting in reduced LDL-C clearance. Our recent studies demonstrate that epsins, a family of ubiquitin-binding endocytic adaptors, are critical regulators of atherogenicity. Given the fundamental contribution of circulating LDL-C to atherosclerosis, we hypothesize that liver epsins promote atherosclerosis by controlling LDLR endocytosis and degradation. Objective We will determine the role of liver epsins in promoting PCSK9-mediated LDLR degradation and hindering LDL-C clearance to propel atherosclerosis. Methods and Results We generated double knockout mice in which both paralogs of epsins, namely, epsin-1 and epsin-2, are specifically deleted in the liver (Liver-DKO) on an ApoE -/- background. We discovered that western diet (WD)-induced atherogenesis was greatly inhibited, along with diminished blood cholesterol and triglyceride levels. Mechanistically, using scRNA-seq analysis on cells isolated from the livers of ApoE-/- and ApoE-/- /Liver-DKO mice on WD, we found lipogenic Alb hi hepatocytes to glycogenic HNF4α hi hepatocytes transition in ApoE-/- /Liver-DKO. Subsequently, gene ontology analysis of hepatocyte-derived data revealed elevated pathways involved in LDL particle clearance and very-low-density lipoprotein (VLDL) particle clearance under WD treatment in ApoE-/- /Liver-DKO, which was coupled with diminished plasma LDL-C levels. Further analysis using the MEBOCOST algorithm revealed enhanced communication score between LDLR and cholesterol, suggesting elevated LDL-C clearance in the ApoE-/- Liver-DKO mice. In addition, we showed that loss of epsins in the liver upregulates of LDLR protein level. We further showed that epsins bind LDLR via the ubiquitin-interacting motif (UIM), and PCSK9-triggered LDLR degradation was abolished by depletion of epsins, preventing atheroma progression. Finally, our therapeutic strategy, which involved targeting liver epsins with nanoparticle-encapsulated siRNAs, was highly efficacious at inhibiting dyslipidemia and impeding atherosclerosis. Conclusions Liver epsins promote atherogenesis by mediating PCSK9-triggered degradation of LDLR, thus raising the circulating LDL-C levels. Targeting epsins in the liver may serve as a novel therapeutic strategy to treat atherosclerosis by suppression of PCSK9-mediated LDLR degradation.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Krishan Gupta
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kui Cui
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Beibei Wang
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Marina V Malovichko
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States
| | - Xiangfei Han
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kathryn Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Kulandai Samy Arulsamy
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Jianing Gao
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Scott Wong
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Dazhi Wang
- College of Medicine Molecular Pharmacology, University of South Florida, Tampa, FL, United States
| | - Sudha Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sanjay Srivastava
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States
| | - Jinjun Shi
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Ferraro B. The SR-B1ΔCT/LDLR KO mouse: A new tool to shed light on coronary artery disease. Atherosclerosis 2024; 395:117564. [PMID: 38796408 DOI: 10.1016/j.atherosclerosis.2024.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/28/2024]
Affiliation(s)
- Bartolo Ferraro
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig- Maximilian-University Munich, Planegg-Martinsried, Germany; Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
11
|
Zhang X, Heo GS, Li A, Lahad D, Detering L, Tao J, Gao X, Zhang X, Luehmann H, Sultan D, Lou L, Venkatesan R, Li R, Zheng J, Amrute J, Lin CY, Kopecky BJ, Gropler RJ, Bredemeyer A, Lavine K, Liu Y. Development of a CD163-Targeted PET Radiotracer That Images Resident Macrophages in Atherosclerosis. J Nucl Med 2024; 65:775-780. [PMID: 38548349 PMCID: PMC11064833 DOI: 10.2967/jnumed.123.266910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Indexed: 05/03/2024] Open
Abstract
Tissue-resident macrophages are complementary to proinflammatory macrophages to promote the progression of atherosclerosis. The noninvasive detection of their presence and dynamic variation will be important to the understanding of their role in the pathogenesis of atherosclerosis. The goal of this study was to develop a targeted PET radiotracer for imaging CD163-positive (CD163+) macrophages in multiple mouse atherosclerosis models and assess the potential of CD163 as a biomarker for atherosclerosis in humans. Methods: CD163-binding peptide was identified using phage display and conjugated with a NODAGA chelator for 64Cu radiolabeling ([64Cu]Cu-ICT-01). CD163-overexpressing U87 cells were used to measure the binding affinity of [64Cu]Cu-ICT-01. Biodistribution studies were performed on wild-type C57BL/6 mice at multiple time points after tail vein injection. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages upregulated on the surface of atherosclerotic plaques were assessed in multiple mouse atherosclerosis models. Immunostaining, flow cytometry, and single-cell RNA sequencing were performed to characterize the expression of CD163 on tissue-resident macrophages. Human carotid atherosclerotic plaques were used to measure the expression of CD163+ resident macrophages and test the binding specificity of [64Cu]Cu-ICT-01. Results: [64Cu]Cu-ICT-01 showed high binding affinity to U87 cells. The biodistribution study showed rapid blood and renal clearance with low retention in all major organs at 1, 2, and 4 h after injection. In an ApoE-/- mouse model, [64Cu]Cu-ICT-01 demonstrated sensitive and specific detection of CD163+ macrophages and capability for tracking the progression of atherosclerotic lesions; these findings were further confirmed in Ldlr-/- and PCSK9 mouse models. Immunostaining showed elevated expression of CD163+ macrophages across the plaques. Flow cytometry and single-cell RNA sequencing confirmed the specific expression of CD163 on tissue-resident macrophages. Human tissue characterization demonstrated high expression of CD163+ macrophages on atherosclerotic lesions, and ex vivo autoradiography revealed specific binding of [64Cu]Cu-ICT-01 to human CD163. Conclusion: This work reported the development of a PET radiotracer binding CD163+ macrophages. The elevated expression of CD163+ resident macrophages on human plaques indicated the potential of CD163 as a biomarker for vulnerable plaques. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages warrant further investigation in translational settings.
Collapse
Affiliation(s)
- Xiuli Zhang
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Alexandria Li
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Divangana Lahad
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Joan Tao
- Department of Medicine, University of Missouri, Columbia, Missouri
| | - Xuefeng Gao
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Xiaohui Zhang
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Lanlan Lou
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Rajiu Venkatesan
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Ran Li
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Junedh Amrute
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri
| | - Benjamin J Kopecky
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri
| | - Andrea Bredemeyer
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Kory Lavine
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; and
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, University of Missouri, Columbia, Missouri;
| |
Collapse
|
12
|
Sun J, Wang M, Jia F, Song J, Ren J, Hu B. FTO Stabilizes MIS12 to Inhibit Vascular Smooth Muscle Cell Senescence in Atherosclerotic Plaque. J Inflamm Res 2024; 17:1857-1871. [PMID: 38523689 PMCID: PMC10961024 DOI: 10.2147/jir.s447379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Atherosclerosis is the main cause of atherosclerotic cardiovascular disease (CVD). Here, we aimed to uncover the role and mechanisms of fat mass and obesity-associated genes (FTO) in the regulation of vascular smooth muscle cell (VSMC) senescence in atherosclerotic plaques. Methods ApoE-/- mice fed a high-fat diet (HFD) were used to establish an atherosclerotic animal model. Immunohistochemistry, and the staining of hematoxylin-eosin, Oil Red O, Sirius red, and Masson were performed to confirm the role of FTO in atherosclerosis in vivo. Subsequently, FTO expression in primary VSMCs is either upregulated or downregulated. Oxidized low-density lipoprotein (ox-LDL) was used to treat VSMCs, followed by EdU staining, flow cytometry, senescence-associated β-galactosidase (SA-β-gal) staining, immunofluorescence, telomere detection, RT-qPCR, and Western blotting to determine the molecular mechanisms by which FTO inhibits VSMC senescence. Results Decreased FTO expression was observed in progressive atherosclerotic plaques of ApoE-/- mice fed with HFD. FTO upregulation inhibits atherosclerotic lesions in mice. FTO inhibits VSMC aging in atherosclerotic plaques by helping VSMC withstand ox-LDL-induced cell cycle arrest and senescence. This process is achieved by stabilizing the MIS12 protein in VSMC through a proteasome-mediated pathway. Conclusion FTO inhibits VSMC senescence and subsequently slows the progression of atherosclerotic plaques by stabilizing the MIS12 protein.
Collapse
Affiliation(s)
- Jingzhao Sun
- Department of Emergency, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, People’s Republic of China
| | - Mengqi Wang
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Fengming Jia
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Jiantao Song
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Jinlin Ren
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Bo Hu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
13
|
Sarad K, Stefańska M, Kraszewska I, Szade K, Sluimer JC, Błyszczuk P, Dulak J, Jaźwa-Kusior A. Single-cell transcriptomics reveals subtype-specific molecular profiles in Nrf2-deficient macrophages from murine atherosclerotic aortas. Front Immunol 2023; 14:1249379. [PMID: 37965327 PMCID: PMC10641521 DOI: 10.3389/fimmu.2023.1249379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcriptional regulator of antioxidant and anti-inflammatory response in all cell types. It also activates the transcription of genes important for macrophage function. Nrf2 activity declines with age and has been closely linked to atherosclerosis, but its specific role in this vascular pathology is not clear. Atherosclerotic plaques contain several macrophage subsets with distinct, yet not completely understood, functions in the lesion development. The aim of this study was to analyze the transcriptome of diverse Nrf2-deficient macrophage subpopulations from murine atherosclerotic aortas. Mice with transcriptionally inactive Nrf2 in Cdh5-expressing cells (Nrf2 Cdh5tKO) were used in the experiments. These mice lack transcriptional Nrf2 activity in endothelial cells, but also in a proportion of leukocytes. We confirmed that the bone marrow-derived and tissue-resident macrophages isolated from Nrf2 Cdh5tKO mice exhibit a significant decline in Nrf2 activity. Atherosclerosis was induced in Nrf2 Cdh5tKO and appropriate control mice via adeno-associated viral vector (AAV)-mediated overexpression of murine proprotein convertase subtilisin/kexin type 9 (Pcsk9) in the liver and high-fat diet feeding. After 21 weeks, live aortic cells were sorted on FACS and single-cell RNA sequencing (scRNA-seq) was performed. Unsupervised clustering singled out 13 distinct aortic cell types. Among macrophages, 9 subclusters were identified. Differential gene expression analysis revealed cell subtype-specific expression patterns. A subset of inflammatory macrophages from atherosclerotic Nrf2 Cdh5tKO mice demonstrated downregulation of DNA replication genes (e.g. Mcm7, Lig1, Pola1) concomitant with upregulation of DNA damage sensor Atr gene. Atherosclerotic Nrf2 Cdh5tKO Lyve1+ resident macrophages showed strong upregulation of IFN-stimulated genes, as well as changes in the expression of death pathways-associated genes (Slc40a1, Bcl2a1). Furthermore, we observed subtype-specific expression of core ferroptosis genes (e.g. Cp, Hells, Slc40a1) in inflammatory versus tissue resident macrophages. This observation suggested a link between ferroptosis and inflammatory microenvironment appearing at a very early stage of atherogenesis. Our findings indicate that Nrf2 deficiency in aortic macrophages leads to subtype-specific transcriptomic changes associated with inflammation, iron homeostasis, cell injury or death pathways. This may help understanding the role of aging-associated decline of Nrf2 activity and the function of specific macrophage subtypes in atherosclerotic lesion development.
Collapse
Affiliation(s)
- Katarzyna Sarad
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Kraków, Poland
| | - Monika Stefańska
- Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Judith C. Sluimer
- Cardiovascular Research Institute Maastricht (CARIM), Department of Pathology, Maastricht University Medical Center (UMC), Maastricht, Netherlands
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Przemysław Błyszczuk
- Department of Clinical Immunology, Jagiellonian University Medical College, Kraków, Poland
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Jaźwa-Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
14
|
Zhang XL, Hollander CM, Khan MY, D'silva M, Ma H, Yang X, Bai R, Keeter CK, Galkina EV, Nadler JL, Stanton PK. Myeloid cell deficiency of the inflammatory transcription factor Stat4 protects long-term synaptic plasticity from the effects of a high-fat, high-cholesterol diet. Commun Biol 2023; 6:967. [PMID: 37783748 PMCID: PMC10545833 DOI: 10.1038/s42003-023-05304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
Neuroinflammation is associated with neurodegenerative diseases, including Alzheimer's and Parkinson's. The cytokine interleukin-12 activates signal transducer and activator of transcription 4 (Stat4), and consumption of a high-fat, high-cholesterol diet (HFD-C) and Stat4 activity are associated with inflammation, atherosclerosis, and a diabetic metabolic phenotype. In studies of in vitro hippocampal slices from control Stat4fl/flLdlr-/- mice fed a HFD-C diabetogenic diet, we show that Schaffer collateral-CA1 synapses exhibited larger reductions in activity-dependent, long-term potentiation (LTP) of synaptic transmission, compared to mice fed a standard diet. Glucose tolerance and insulin sensitivity shifts produced by HFD-C diet were reduced in Stat4ΔLysMLdlr-/- mice compared to Stat4fl/flLdlr-/- controls. Stat4ΔLysMLdlr-/- mice, which lack Stat4 under control of the LysMCre promoter, were resistant to HFD-C induced impairments in LTP. In contrast, Schaffer collateral-CA1 synapses in Stat4ΔLysMLdlr-/- mice fed the HFD-C diet showed larger LTP than control Stat4fl/flLdlr-/- mice. Expression of a number of neuroinflammatory and synaptic plasticity genes was reduced by HFD-C diet in control mice, and less affected by HFD-C diet in Stat4ΔLysMLdlr-/- mice. These data suggest that suppression of Stat4 activation may protect against effects of Western diet on cognition, type 2 diabetes, and reduce risk of Alzheimer's disease and other neurodegenerative disorders associated with neuroinflammation.
Collapse
Affiliation(s)
- Xiao-Lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Callie M Hollander
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Mohammad Yasir Khan
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Melinee D'silva
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Haoqin Ma
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Xinyuan Yang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Robin Bai
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Coles K Keeter
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Elena V Galkina
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Jerry L Nadler
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
- ACOS-Research VA Northern California Health Care System, Sacramento, CA, 95655, USA
| | - Patric K Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
15
|
Zhu K, Mukherjee K, Wei C, Hayek SS, Collins A, Gu C, Corapi K, Altintas MM, Wang Y, Waikar SS, Bianco AC, Koch A, Tacke F, Reiser J, Sever S. The D2D3 form of uPAR acts as an immunotoxin and may cause diabetes and kidney disease. Sci Transl Med 2023; 15:eabq6492. [PMID: 37729431 DOI: 10.1126/scitranslmed.abq6492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Soluble urokinase plasminogen activator receptor (suPAR) is a risk factor for kidney diseases. In addition to suPAR, proteolysis of membrane-bound uPAR results in circulating D1 and D2D3 proteins. We showed that when exposed to a high-fat diet, transgenic mice expressing D2D3 protein developed progressive kidney disease marked by microalbuminuria, elevated serum creatinine, and glomerular hypertrophy. D2D3 transgenic mice also exhibited insulin-dependent diabetes mellitus evidenced by decreased levels of insulin and C-peptide, impaired glucose-stimulated insulin secretion, decreased pancreatic β cell mass, and high fasting blood glucose. Injection of anti-uPAR antibody restored β cell mass and function in D2D3 transgenic mice. At the cellular level, the D2D3 protein impaired β cell proliferation and inhibited the bioenergetics of β cells, leading to dysregulated cytoskeletal dynamics and subsequent impairment in the maturation and trafficking of insulin granules. D2D3 protein was predominantly detected in the sera of patients with nephropathy and insulin-dependent diabetes mellitus. These sera inhibited glucose-stimulated insulin release from human islets in a D2D3-dependent manner. Our study showed that D2D3 injures the kidney and pancreas and suggests that targeting this protein could provide a therapy for kidney diseases and insulin-dependent diabetes mellitus.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kamalika Mukherjee
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Salim S Hayek
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Agnieszka Collins
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Changkyu Gu
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Kristin Corapi
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Yong Wang
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
| | - Sushrut S Waikar
- Section of Nephrology, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA 02129, USA
| | - Antonio C Bianco
- Division of Endocrinology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Koch
- Department of Gastroenterology, Metabolic Diseases and Internal Intensive Care Medicine, University Hospital Aachen, 52072 Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sanja Sever
- Harvard Medical School and Division of Nephrology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
16
|
Kong N, Xu Q, Cui W, Feng X, Gao H. PCSK9 inhibitor inclisiran for treating atherosclerosis via regulation of endothelial cell pyroptosis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1205. [PMID: 36544639 PMCID: PMC9761140 DOI: 10.21037/atm-22-4652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022]
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) belongs to an intracellular invertase or decarboxylase and is an independent risk factor for atherosclerosis (AS). This study aimed to investigate the therapeutic potential of the PCSK9 inhibitor, inclisiran, and its underlying mechanism in AS. Methods ApoE-/- mice were fed with a high-fat diet (HFD) and intraperitoneally injected with 1, 5, or 10 mg/kg inclisiran. Low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C) levels were determined using commercially available kits. Oil Red O staining was applied to detect the aortic plaque area and oil formation. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to induce cell injuries. Cell death was determined using a Hoechst 33342/propidium iodide (PI) dual-staining assay. Cytotoxicity was measured by lactate dehydrogenase (LDH) activity analysis. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analyses were performed to examine the pyroptosis-related factors. Results Inclisiran inhibited the levels of LDL-C, TC, and TG, but increased the HDL-C level in the AS animal model. It also significantly inhibited plaque and oil droplet formation in a dose-dependent manner. Moreover, inclisiran markedly inhibited pyroptosis, as evidenced by the decreased levels of cleaved-caspase-1, NOD-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC), gasdermin-D (GSDMD)-N, interleukin (IL)-1β, and IL-18. Furthermore, inclisiran substantially inhibited cell death and cytotoxicity induced by ox-LDL in HUVECs. Conclusions Inclisiran exerted an anti-atherosclerotic effect by inhibiting pyroptosis. This study provides a theoretical basis for the therapeutic potential of inclisiran in AS.
Collapse
Affiliation(s)
- Ni Kong
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Qin Xu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Wei Cui
- Basic Medical School, Qingdao University, Qingdao, China
| | - Xiaoying Feng
- School of Pharmacy, Guangzhou Medical University, Guangzhou, China
| | - Huijie Gao
- Department of Immunopharmacology, Jining Medical University, Rizhao, China
| |
Collapse
|