1
|
Jiang X, Yu L, Li J, Gao X, Wang J, Qu G, Shen C, Gan L. Effect of obesity on cardiovascular morphofunctional phenotype: Study of Mendelian randomization. Medicine (Baltimore) 2025; 104:e41858. [PMID: 40153760 PMCID: PMC11957645 DOI: 10.1097/md.0000000000041858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025] Open
Abstract
BACKGROUND Obesity is an independent factor for cardiovascular diseases, impacting health across different age groups. cardiovascular magnetic resonance (CMR) imaging is considered the gold standard for noninvasive assessment of cardiovascular structure and function. We conducted a Mendelian randomization (MR) study to explore the associations between obesity-related traits and the clinical pre-phenotype of cardiac and aortic structure and function. METHODS Independent genetic variations significantly correlated with adult body mass index, adult waist-to-hip ratio, birth weight, child body mass index, and excess visceral fat were selected as instrumental variables. Eighty-two CMR imaging features were obtained from the UK Biobank Genome-Wide Association Study. These features served as clinical pre-phenotypes, providing early indications of the structure and function of the 4 cardiac chambers and 2 aortic slices. Preliminary analyses were conducted using MR and inverse variance-weighted methods. Causal directions were determined through Steiger filtering and testing, achieving confirmation. Sensitivity analyses were performed using weighted median, MR-Egger, and MR-PRESSO methods. RESULTS Adult BMI was positively correlated with left ventricular end-systolic volume, right ventricular end-diastolic volume, right ventricular end-systolic volume, and right ventricular volume per beat. The adult waist-to-hip ratio was inversely proportional to right atrial volume per beat, right atrial maximum volume, right atrial minimum volume, partial regional longitudinal strain, regional peak circumferential strain, and regional radial strain, and positively proportional to partial regional peak circumferential strain and partial end-diastolic local myocardial wall thickness characteristics. Birth weight was positively correlated with maximum right atrial volume, minimum right atrial volume, right atrial volume per beat, right ventricular end-diastolic volume, right ventricular output per beat, maximum area of the ascending aorta, minimum area of the ascending aorta, and negatively correlated with longitudinal strain in some regions. Body mass index in children is positively correlated with left ventricular end-diastolic volume, left ventricular end-systolic volume, left atrial volume per beat, right ventricular end-diastolic volume, and right ventricular volume per beat. CONCLUSION This study suggests that obesity may lead to myocardial hypertrophy and dilation of the cardiac chambers and aorta, thereby exerting adverse effects on the cardiovascular system and increasing the susceptibility to HF.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Longqing Yu
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Jingyi Li
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Xizhuang Gao
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Jinlin Wang
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Guangyi Qu
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Cheng Shen
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
- Shandong Provincial Key Medical and Health Discipline of Cardiology (Affiliated Hospital of Jining Medical University), Jining, Shandong Province, China
| | - Lijun Gan
- Department of Cardiology, Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
- Shandong Provincial Key Medical and Health Discipline of Cardiology (Affiliated Hospital of Jining Medical University), Jining, Shandong Province, China
| |
Collapse
|
2
|
Smiseth OA, Larsen CK, Hopp E. Left atrial volume as risk marker: is minimum volume superior to maximum volume? Eur Heart J Cardiovasc Imaging 2024; 25:1575-1576. [PMID: 38781443 PMCID: PMC11522862 DOI: 10.1093/ehjci/jeae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Affiliation(s)
- Otto A Smiseth
- Institute for Surgical Research, Division of Cardiovascular and Pulmonary Diseases, Oslo University Hospital Rikshospitalet and Faculty of Medicine, University of Oslo, N-0027 Oslo, Norway
| | - Camilla K Larsen
- Institute for Surgical Research, Division of Cardiovascular and Pulmonary Diseases, Oslo University Hospital Rikshospitalet and Faculty of Medicine, University of Oslo, N-0027 Oslo, Norway
| | - Einar Hopp
- Institute for Surgical Research, Division of Cardiovascular and Pulmonary Diseases, Oslo University Hospital Rikshospitalet and Faculty of Medicine, University of Oslo, N-0027 Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Ipek R, Holland J, Cramer M, Rider O. CMR to characterize myocardial structure and function in heart failure with preserved left ventricular ejection fraction. Eur Heart J Cardiovasc Imaging 2024; 25:1491-1504. [PMID: 39205602 PMCID: PMC11522877 DOI: 10.1093/ehjci/jeae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Despite remarkable progress in therapeutic drugs, morbidity, and mortality for heart failure (HF) remains high in developed countries. HF with preserved ejection fraction (HFpEF) now accounts for around half of all HF cases. It is a heterogeneous disease, with multiple aetiologies, and as such poses a significant diagnostic challenge. Cardiac magnetic resonance (CMR) has become a valuable non-invasive modality to assess cardiac morphology and function, but beyond that, the multi-parametric nature of CMR allows novel approaches to characterize haemodynamics and with magnetic resonance spectroscopy (MRS), the study of metabolism. Furthermore, exercise CMR, when combined with lung water imaging provides an in-depth understanding of the underlying pathophysiological and mechanistic processes in HFpEF. Thus, CMR provides a comprehensive phenotyping tool for HFpEF, which points towards a targeted and personalized therapy with improved diagnostics and prevention.
Collapse
Affiliation(s)
- Rojda Ipek
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jennifer Holland
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| | - Mareike Cramer
- Divison of Cardiology, Pulmonary Disease and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Oliver Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Level 0, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
4
|
Lin L, Kwan CT, Yap PM, Fung SY, Tang HS, Tse WWV, Kwan CNF, Chow YHP, Yiu NC, Lee YP, Fong AHT, Ren QW, Wu MZ, Lee KCK, Leung CY, Li A, Montero D, Vardhanabhuti V, Hai J, Siu CW, Tse H, Pennell DJ, Mohiaddin R, Senior R, Yiu KH, Ng MY. Diagnostic Performance of Cardiovascular Magnetic Resonance Phase Contrast Analysis to Identify Heart Failure With Preserved Ejection Fraction. J Thorac Imaging 2024; 39:265-267. [PMID: 38465896 DOI: 10.1097/rti.0000000000000777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Affiliation(s)
- Lu Lin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- Department of Diagnostic Radiology, School of Clinical Medicine
| | - Chi Ting Kwan
- Department of Diagnostic Radiology, School of Clinical Medicine
| | - Pui Min Yap
- Department of Diagnostic Radiology, School of Clinical Medicine
| | - Sau Yung Fung
- Department of Diagnostic Radiology, School of Clinical Medicine
| | - Hok Shing Tang
- Department of Diagnostic Radiology, School of Clinical Medicine
| | | | | | | | - Nga Ching Yiu
- Department of Diagnostic Radiology, School of Clinical Medicine
| | - Yung Pok Lee
- Department of Diagnostic Radiology, School of Clinical Medicine
| | | | - Qing-Wen Ren
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
| | - Mei-Zhen Wu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
| | - Ka Chun Kevin Lee
- Department of Medicine and Geriatrics, Ruttonjee and Tang Shiu Kin Hospitals, Wan Chai
| | - Chun Yu Leung
- Department of Medicine, Tseung Kwan O Hospital, Tseung Kwan O
| | - Andrew Li
- Department of Medicine and Therapeutics, United Christian Hospital, Kwun Tong
| | - David Montero
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Patrick Manson Building (North Wing), Pokfulam, Hong Kong SAR, China
| | - Varut Vardhanabhuti
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
| | - JoJo Hai
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
| | - Chung-Wah Siu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
| | - HungFat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
| | - Dudley John Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street
- National Heart and Lung Institute, Imperial College, Guy Scadding Building, Cale Street, London
| | - Raad Mohiaddin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street
- National Heart and Lung Institute, Imperial College, Guy Scadding Building, Cale Street, London
| | - Roxy Senior
- National Heart and Lung Institute, Imperial College, Guy Scadding Building, Cale Street, London
- Department of Cardiology, Northwick Park Hospital, Harrow
- Department of Cardiology, Royal Brompton Hospital, Sydney Street, London, UK
| | - Kai-Hang Yiu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital
| | - Ming-Yen Ng
- Department of Diagnostic Radiology, School of Clinical Medicine
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Futian, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Fong FW, Hwang S, Xu Y, Hui WHA, Leung KHG, Lin L, Ho SY, Tang HS, Kwan CT, Ng PP, Hai JSH, Kwok FYJ, Sze HF, Fong AHT, Wan EYF, Lai YTA, Leung ST, Chan HL, Chan WSC, Cheung SCW, Lee CYJ, Yiu KH, Pennell DJ, Mohiaddin RH, Yan AT, Ng MY. Prognostic Utility of Left Atrial Strain From MRI Feature Tracking in Ischemic and Nonischemic Dilated Cardiomyopathy: A Multicenter Study. AJR Am J Roentgenol 2024; 222:e2330357. [PMID: 38323782 DOI: 10.2214/ajr.23.30357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND. MRI-based prognostic evaluation in patients with dilated cardiomyopathy (DCM) has historically used markers of late gadolinium enhancement (LGE) and feature tracking (FT)-derived left ventricular global longitudinal strain (LVGLS). Early data indicate that FT-derived left atrial strain (LAS) parameters, including reservoir, conduit, and booster, may also have prognostic roles in such patients. OBJECTIVE. The purpose of our study was to evaluate the prognostic utility of LAS parameters, derived from MRI FT, in patients with ischemic or nonischemic DCM, including in comparison with the traditional parameters of LGE and LVGLS. METHODS. This retrospective study included 811 patients with ischemic or nonischemic DCM (median age, 60 years; 640 men, 171 women) who underwent cardiac MRI at any of five centers. FT-derived LAS parameters and LVGLS were measured using two- and four-chamber cine images. LGE percentage was quantified. Patients were assessed for a composite outcome of all-cause mortality or heart failure hospitalization. Multivariable Cox regression analyses including demographic characteristics, cardiovascular risk factors, medications used, and a wide range of cardiac MRI parameters were performed. Kaplan-Meier analyses with log-rank tests were also performed. RESULTS. A total of 419 patients experienced the composite outcome. Patients who did, versus those who did not, experience the composite outcome had larger LVGLS (-6.7% vs -8.3%, respectively; p < .001) as well as a smaller LAS reservoir (13.3% vs 19.3%, p < .001), LAS conduit (4.7% vs 8.0%, p < .001), and LAS booster (8.1% vs 10.3%, p < .001) but no significant difference in LGE (10.1% vs 11.3%, p = .51). In multivariable Cox regression analyses, significant independent predictors of the composite outcome included LAS reservoir (HR = 0.96, p < .001) and LAS conduit (HR = 0.91, p < .001). LAS booster and LGE were not significant independent predictors in the models. LVGLS was a significant independent predictor only in a model that initially included LAS booster but not the other LAS parameters. In Kaplan-Meier analysis, all three LAS parameters were significantly associated with the composite outcome (p < .001). CONCLUSION. In this multicenter study, LAS reservoir and LAS conduit were significant independent prognostic markers in patients with ischemic or nonischemic DCM, showing greater prognostic utility than the currently applied markers of LVGLS and LGE. CLINICAL IMPACT. FT-derived LAS analysis provides incremental prognostic information in patients with DCM.
Collapse
Affiliation(s)
- Fai Wang Fong
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Subin Hwang
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Yueyi Xu
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | | | - Kwan Ho Gordon Leung
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Lu Lin
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
- Department of Medical Imaging, Peking Union Medical College, Beijing, China
| | - Shui Yan Ho
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Hok Shing Tang
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Chi Ting Kwan
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Pan Pan Ng
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong SAR
| | - Jojo Siu Han Hai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Fung Yu James Kwok
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Ho Fung Sze
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Ambrose Ho Tung Fong
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
| | - Eric Yuk Fai Wan
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR
| | - Yee Tak Alta Lai
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR
- Department of Radiology, Ruttonjee and Tang Shiu Kin Hospitals, Hong Kong SAR
| | - Siu Ting Leung
- Imaging and Intervention Radiology Centre, CUHK Medical Centre, Hong Kong SAR
| | - Hiu Lam Chan
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR
| | | | | | - Chun Yin Jonan Lee
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong SAR
| | - Kai-Hang Yiu
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR
| | - Dudley J Pennell
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Raad H Mohiaddin
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Andrew T Yan
- Departments of Medicine and Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Ming-Yen Ng
- Department of Diagnostic Radiology, The University of Hong Kong, Rm 406, Block K, Queen Mary Hospital, 102 Pokfulam Rd, Hong Kong SAR
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
6
|
Ng MY, Tam CH, Lee YP, Fong HTA, Wong CK, Ng WKC, Yeung MHY, Ling WHI, Tsao S, Wan EYF, Ferreira V, Yan AT, Siu CW, Yiu KH, Hung IFN. Post-COVID-19 vaccination myocarditis: a prospective cohort study pre and post vaccination using cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2023; 25:74. [PMID: 38057820 PMCID: PMC10702006 DOI: 10.1186/s12968-023-00985-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Concerns about COVID-19 vaccination induced myocarditis or subclinical myocarditis persists in some populations. Cardiac magnetic resonance imaging (CMR) has been used to detect signs of COVID-19 vaccination induced myocarditis. This study aims to: (i) characterise myocardial tissue, function, size before and after COVID-19 vaccination, (ii) determine if there is imaging evidence of subclinical myocardial inflammation or injury after vaccination using CMR. METHODS Subjects aged ≥ 12yrs old without prior COVID-19 or COVID-19 vaccination underwent two CMR examinations: first, ≤ 14 days before the first COVID-19 vaccination and a second time ≤ 14 days after the second COVID-19 vaccination. Biventricular indices, ejection fraction (EF), global longitudinal strain (GLS), late gadolinium enhancement (LGE), left ventricular (LV) myocardial native T1, T2, extracellular volume (ECV) quantification, lactate dehydrogenase (LDH), white cell count (WCC), C-reactive protein (CRP), NT-proBNP, troponin-T, electrocardiogram (ECG), and 6-min walk test were assessed in a blinded fashion. RESULTS 67 subjects were included. First and second CMR examinations were performed a median of 4 days before the first vaccination (interquartile range 1-8 days) and 5 days (interquartile range 3-6 days) after the second vaccination respectively. No significant change in global native T1, T2, ECV, LV EF, right ventricular EF, LV GLS, LGE, ECG, LDH, troponin-T and 6-min walk test was demonstrated after COVID-19 vaccination. There was a significant WCC decrease (6.51 ± 1.49 vs 5.98 ± 1.65, p = 0.003) and CRP increase (0.40 ± 0.22 vs 0.50 ± 0.29, p = 0.004). CONCLUSION This study found no imaging, biochemical or ECG evidence of myocardial injury or inflammation post COVID-19 vaccination, thus providing some reassurance that COVID-19 vaccinations do not typically cause subclinical myocarditis.
Collapse
Affiliation(s)
- Ming-Yen Ng
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, Queen Mary Hospital, Hong Kong SAR, China.
- Department of Medical Imaging, HKU-Shenzhen Hospital, Shenzhen, China.
| | - Cheuk Hang Tam
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, Queen Mary Hospital, Hong Kong SAR, China
| | - Yung Pok Lee
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, Queen Mary Hospital, Hong Kong SAR, China
| | - Ho Tung Ambrose Fong
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, Queen Mary Hospital, Hong Kong SAR, China
| | - Chun-Ka Wong
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Wing Kei Carol Ng
- Department of Radiology, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Maegan Hon Yan Yeung
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, Queen Mary Hospital, Hong Kong SAR, China
| | - Wood-Hay Ian Ling
- Grantham Hospital, 125 Wong Chuk Hang Rd, Aberdeen, Hong Kong SAR, China
| | - Sabrina Tsao
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Eric Yuk Fai Wan
- Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Vanessa Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford BHF Centre of Research Excellence, Oxford Centre for Clinical Magnetic Resonance Research, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Andrew T Yan
- St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Chung Wah Siu
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Kai-Hang Yiu
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| |
Collapse
|
7
|
Kwan CT, Ching OHS, Yap PM, Fung SY, Tang HS, Tse WWV, Kwan CNF, Chow YHP, Yiu NC, Lee YP, Lau JWK, Fong AHT, Ren QW, Wu MZ, Wan EYF, Lee KCK, Leung CY, Li A, Montero D, Vardhanabhuti V, Hai JSH, Siu CW, Tse HF, Zingan V, Zhao X, Wang H, Pennell DJ, Mohiaddin R, Senior R, Yiu KH, Ng MY. Intraventricular 4D flow cardiovascular magnetic resonance for assessing patients with heart failure with preserved ejection fraction: a pilot study. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023; 39:2015-2027. [PMID: 37380904 DOI: 10.1007/s10554-023-02909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Diagnosing heart failure with preserved ejection fraction (HFpEF) remains challenging. Intraventricular four-dimensional flow (4D flow) phase-contrast cardiovascular magnetic resonance (CMR) can assess different components of left ventricular (LV) flow including direct flow, delayed ejection, retained inflow and residual volume. This could be utilised to identify HFpEF. This study investigated if intraventricular 4D flow CMR could differentiate HFpEF patients from non-HFpEF and asymptomatic controls. Suspected HFpEF patients and asymptomatic controls were recruited prospectively. HFpEF patients were confirmed using European Society of Cardiology (ESC) 2021 expert recommendations. Non-HFpEF patients were diagnosed if suspected HFpEF patients did not fulfil ESC 2021 criteria. LV direct flow, delayed ejection, retained inflow and residual volume were obtained from 4D flow CMR images. Receiver operating characteristic (ROC) curves were plotted. 63 subjects (25 HFpEF patients, 22 non-HFpEF patients and 16 asymptomatic controls) were included in this study. 46% were male, mean age 69.8 ± 9.1 years. CMR 4D flow derived LV direct flow and residual volume could differentiate HFpEF vs combined group of non-HFpEF and asymptomatic controls (p < 0.001 for both) as well as HFpEF vs non-HFpEF patients (p = 0.021 and p = 0.005, respectively). Among the 4 parameters, direct flow had the largest area under curve (AUC) of 0.781 when comparing HFpEF vs combined group of non-HFpEF and asymptomatic controls, while residual volume had the largest AUC of 0.740 when comparing HFpEF and non-HFpEF patients. CMR 4D flow derived LV direct flow and residual volume show promise in differentiating HFpEF patients from non-HFpEF patients.
Collapse
Affiliation(s)
- Chi Ting Kwan
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - On Hang Samuel Ching
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pui Min Yap
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Sau Yung Fung
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hok Shing Tang
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wan Wai Vivian Tse
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheuk Nam Felix Kwan
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yin Hay Phoebe Chow
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Nga Ching Yiu
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yung Pok Lee
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jessica Wing Ka Lau
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ambrose Ho Tung Fong
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Qing-Wen Ren
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Mei-Zhen Wu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Eric Yuk Fai Wan
- Department of Family Medicine and Primary Care, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ka Chun Kevin Lee
- Department of Medicine and Geriatrics, Ruttonjee and Tang Shiu Kin Hospitals, Wan Chai, Hong Kong
| | - Chun Yu Leung
- Department of Medicine, Tseung Kwan O Hospital, Hong Hau, Hong Kong
| | - Andrew Li
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, New Territories, Hong Kong
| | - David Montero
- School of Public Health, Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Varut Vardhanabhuti
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jojo Siu Han Hai
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chung-Wah Siu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hung-Fat Tse
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | - Xiaoxi Zhao
- Circle Cardiovascular Imaging Inc, Calgary, Canada
| | | | - Dudley John Pennell
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Raad Mohiaddin
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Roxy Senior
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Kai-Hang Yiu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ming-Yen Ng
- Department of Diagnostic Radiology, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
8
|
Pan J, Ng SM, Neubauer S, Rider OJ. Phenotyping heart failure by cardiac magnetic resonance imaging of cardiac macro- and microscopic structure: state of the art review. Eur Heart J Cardiovasc Imaging 2023; 24:1302-1317. [PMID: 37267310 PMCID: PMC10531211 DOI: 10.1093/ehjci/jead124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Heart failure demographics have evolved in past decades with the development of improved diagnostics, therapies, and prevention. Cardiac magnetic resonance (CMR) has developed in a similar timeframe to become the gold-standard non-invasive imaging modality for characterizing diseases causing heart failure. CMR techniques to assess cardiac morphology and function have progressed since their first use in the 1980s. Increasingly efficient acquisition protocols generate high spatial and temporal resolution images in less time. This has enabled new methods of characterizing cardiac systolic and diastolic function such as strain analysis, exercise real-time cine imaging and four-dimensional flow. A key strength of CMR is its ability to non-invasively interrogate the myocardial tissue composition. Gadolinium contrast agents revolutionized non-invasive cardiac imaging with the late gadolinium enhancement technique. Further advances enabled quantitative parametric mapping to increase sensitivity at detecting diffuse pathology. Novel methods such as diffusion tensor imaging and artificial intelligence-enhanced image generation are on the horizon. Magnetic resonance spectroscopy (MRS) provides a window into the molecular environment of the myocardium. Phosphorus (31P) spectroscopy can inform the status of cardiac energetics in health and disease. Proton (1H) spectroscopy complements this by measuring creatine and intramyocardial lipids. Hyperpolarized carbon (13C) spectroscopy is a novel method that could further our understanding of dynamic cardiac metabolism. CMR of other organs such as the lungs may add further depth into phenotypes of heart failure. The vast capabilities of CMR should be deployed and interpreted in context of current heart failure challenges.
Collapse
Affiliation(s)
- Jiliu Pan
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Sher May Ng
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Oliver J Rider
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|