1
|
Li R, Li J, Liu S, Guo X, Lu J, Wang T, Chen J, Zheng Y, Yuan Y, Du J, Zhu B, Wei X, Guo P, Liu L, Xu X, Dai X, Huang R, Liu X, Hu X, Wang S, Ji S. A scATAC-seq atlas of stasis zone in rat skin burn injury wound process. Front Cell Dev Biol 2025; 12:1519926. [PMID: 39845081 PMCID: PMC11752905 DOI: 10.3389/fcell.2024.1519926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Burn injuries often leave behind a "stasis zone", a region of tissue critically important for determining both the severity of the injury and the potential for recovery. To understand the intricate cellular and epigenetic changes occurring within this critical zone, we utilized single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to profile over 31,500 cells from both healthy rat skin and the stasis zone at nine different time points after a burn injury. This comprehensive approach revealed 26 distinct cell types and the dynamic shifts in the proportions of these cell types over time. We observed distinct gene activation patterns in different cell types at various stages post-burn, highlighting key players in immune activation, tissue regeneration, and blood vessel repair. Importantly, our analysis uncovered the regulatory networks governing these genes, offering valuable insights into the intricate mechanisms orchestrating burn wound healing. This comprehensive cellular and molecular atlas of the stasis zone provides a powerful resource for developing targeted therapies aimed at improving burn injury recovery and minimizing long-term consequences.
Collapse
Affiliation(s)
- Ruikang Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi’an, China
| | - Jiashan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Liu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Tao Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | | | - Yue Zheng
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi’an, China
| | | | - Jiaxin Du
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | - Bolin Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | | | | | - Longqi Liu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- BGI Research, Hangzhou, China
| | - Xun Xu
- BGI Research, Shenzhen, China
| | - Xi Dai
- BGI Research, Hangzhou, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xin Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Shenzhen, China
| | - Xiaoyan Hu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi’an, China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Liu Y, Jia F, Li K, Liang C, Lin X, Geng W, Li Y. Critical signaling molecules in the temporomandibular joint osteoarthritis under different magnitudes of mechanical stimulation. Front Pharmacol 2024; 15:1419494. [PMID: 39055494 PMCID: PMC11269110 DOI: 10.3389/fphar.2024.1419494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The mechanical stress environment in the temporomandibular joint (TMJ) is constantly changing due to daily mandibular movements. Therefore, TMJ tissues, such as condylar cartilage, the synovial membrane and discs, are influenced by different magnitudes of mechanical stimulation. Moderate mechanical stimulation is beneficial for maintaining homeostasis, whereas abnormal mechanical stimulation leads to degeneration and ultimately contributes to the development of temporomandibular joint osteoarthritis (TMJOA), which involves changes in critical signaling molecules. Under abnormal mechanical stimulation, compensatory molecules may prevent degenerative changes while decompensatory molecules aggravate. In this review, we summarize the critical signaling molecules that are stimulated by moderate or abnormal mechanical loading in TMJ tissues, mainly in condylar cartilage. Furthermore, we classify abnormal mechanical stimulation-induced molecules into compensatory or decompensatory molecules. Our aim is to understand the pathophysiological mechanism of TMJ dysfunction more deeply in the ever-changing mechanical environment, and then provide new ideas for discovering effective diagnostic and therapeutic targets in TMJOA.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Ma Z, Li DX, Lan X, Bubelenyi A, Vyhlidal M, Kunze M, Sommerfeldt M, Adesida AB. Short-term response of primary human meniscus cells to simulated microgravity. Cell Commun Signal 2024; 22:342. [PMID: 38907358 PMCID: PMC11191296 DOI: 10.1186/s12964-024-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/27/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Mechanical unloading of the knee articular cartilage results in cartilage matrix atrophy, signifying the osteoarthritic-inductive potential of mechanical unloading. In contrast, mechanical loading stimulates cartilage matrix production. However, little is known about the response of meniscal fibrocartilage, a major mechanical load-bearing tissue of the knee joint, and its functional matrix-forming fibrochondrocytes to mechanical unloading events. METHODS In this study, primary meniscus fibrochondrocytes isolated from the inner avascular region of human menisci from both male and female donors were seeded into porous collagen scaffolds to generate 3D meniscus models. These models were subjected to both normal gravity and mechanical unloading via simulated microgravity (SMG) for 7 days, with samples collected at various time points during the culture. RESULTS RNA sequencing unveiled significant transcriptome changes during the 7-day SMG culture, including the notable upregulation of key osteoarthritis markers such as COL10A1, MMP13, and SPP1, along with pathways related to inflammation and calcification. Crucially, sex-specific variations in transcriptional responses were observed. Meniscus models derived from female donors exhibited heightened cell proliferation activities, with the JUN protein involved in several potentially osteoarthritis-related signaling pathways. In contrast, meniscus models from male donors primarily regulated extracellular matrix components and matrix remodeling enzymes. CONCLUSION These findings advance our understanding of sex disparities in knee osteoarthritis by developing a novel in vitro model using cell-seeded meniscus constructs and simulated microgravity, revealing significant sex-specific molecular mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Zhiyao Ma
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - David Xinzheyang Li
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Civil and Environmental Engineering, Faculty of Engineering, AB, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Xiaoyi Lan
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Adam Bubelenyi
- Faculty of Science, AB, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Margaret Vyhlidal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Melanie Kunze
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Mark Sommerfeldt
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Adetola B Adesida
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
4
|
Mechanotransduction pathways in articular chondrocytes and the emerging role of estrogen receptor-α. Bone Res 2023; 11:13. [PMID: 36869045 PMCID: PMC9984452 DOI: 10.1038/s41413-023-00248-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 03/05/2023] Open
Abstract
In the synovial joint, mechanical force creates an important signal that influences chondrocyte behavior. The conversion of mechanical signals into biochemical cues relies on different elements in mechanotransduction pathways and culminates in changes in chondrocyte phenotype and extracellular matrix composition/structure. Recently, several mechanosensors, the first responders to mechanical force, have been discovered. However, we still have limited knowledge about the downstream molecules that enact alterations in the gene expression profile during mechanotransduction signaling. Recently, estrogen receptor α (ERα) has been shown to modulate the chondrocyte response to mechanical loading through a ligand-independent mechanism, in line with previous research showing that ERα exerts important mechanotransduction effects on other cell types, such as osteoblasts. In consideration of these recent discoveries, the goal of this review is to position ERα into the mechanotransduction pathways known to date. Specifically, we first summarize our most recent understanding of the mechanotransduction pathways in chondrocytes on the basis of three categories of actors, namely mechanosensors, mechanotransducers, and mechanoimpactors. Then, the specific roles played by ERα in mediating the chondrocyte response to mechanical loading are discussed, and the potential interactions of ERα with other molecules in mechanotransduction pathways are explored. Finally, we propose several future research directions that may advance our understanding of the roles played by ERα in mediating biomechanical cues under physiological and pathological conditions.
Collapse
|
5
|
Tran TTN, Wang DH, Yang MC, Chen JC, Wu PH, Yang CC, Hsu WE, Hsu ML. Effects of food hardness on temporomandibular joint osteoarthritis: Qualitative and quantitative micro-CT analysis of rats in vivo. Ann Anat 2023; 246:152029. [PMID: 36435414 DOI: 10.1016/j.aanat.2022.152029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Temporomandibular joint osteoarthritis (TMJ-OA) is a degenerative joint disease in which quantitative analysis based on magnetic resonance image (MRI) or cone-beam computed tomography (CBCT) remains limited. Moreover, the long-term effects of soft food on the adaptive condylar remodeling process in TMJ-OA remain unclear. This study aimed to assess the effects of food hardness on adaptive condylar remodeling in a healthy TMJ, TMJ-OA, and controlled TMJ-OA. METHODS Complete Freund's adjuvant (CFA) was used for TMJ-OA induction and Link-N (LN) for TMJ repair. Eighteen mature rats were randomly divided into six groups: (1) control/normal diet (Ctrl-N); (2) control/soft diet (Ctrl-S); (3) TMJ-OA/normal diet (CFA-N); (4) TMJ-OA/soft diet (CFA-S); (5) Link-N-controlled TMJ-OA/normal diet (LN-N); and (6) Link-N-controlled TMJ-OA/soft diet (LN-S). Micro-CT was performed 14, 21, and 28 days after CFA injection to analyze the bone volume, bone volume fraction (BVF), bone mineral density (BMD), and trabecular bone number and thickness (Tb.N, Tb.Th). MRI and histological imaging were performed to support the analysis. RESULTS Under CFA treatment, the BVF and BMD decreased significantly (p < 0.01) and later recovered to normal. However, more significant improvements occurred in normal-diet groups than soft-diet groups. Additionally, bone volume changes were more predictable in the normal-diet groups than in the soft-diet groups. The normal-diet groups presented a significant decrease and increase in the Tb.N and Tb.Th, respectively (p < 0.05), while the Tb.N and Tb.Th in the soft-diet groups remained largely unchanged. Furthermore, a significantly higher frequency of irregularities on the condylar articular surface was found in the soft-diet groups. CONCLUSIONS Compared with a soft diet, a normal diet may be beneficial for preserving condyle articular surface and directing bone remodeling in TMJ-OA rats.
Collapse
Affiliation(s)
- Trang Thi-Ngoc Tran
- College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ding-Han Wang
- College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Mu-Chen Yang
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | - Jyh-Cheng Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medical Imaging, Xuzhou Medical University, Jiangsu, China.
| | - Po-Han Wu
- College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Cheng-Chieh Yang
- College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wun-Eng Hsu
- College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Dentistry, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| | - Ming-Lun Hsu
- College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
6
|
Osteocytes as main responders to low-intensity pulsed ultrasound treatment during fracture healing. Sci Rep 2021; 11:10298. [PMID: 33986415 PMCID: PMC8119462 DOI: 10.1038/s41598-021-89672-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Ultrasound stimulation is a type of mechanical stress, and low-intensity pulsed ultrasound (LIPUS) devices have been used clinically to promote fracture healing. However, it remains unclear which skeletal cells, in particular osteocytes or osteoblasts, primarily respond to LIPUS stimulation and how they contribute to fracture healing. To examine this, we utilized medaka, whose bone lacks osteocytes, and zebrafish, whose bone has osteocytes, as in vivo models. Fracture healing was accelerated by ultrasound stimulation in zebrafish, but not in medaka. To examine the molecular events induced by LIPUS stimulation in osteocytes, we performed RNA sequencing of a murine osteocytic cell line exposed to LIPUS. 179 genes reacted to LIPUS stimulation, and functional cluster analysis identified among them several molecular signatures related to immunity, secretion, and transcription. Notably, most of the isolated transcription-related genes were also modulated by LIPUS in vivo in zebrafish. However, expression levels of early growth response protein 1 and 2 (Egr1, 2), JunB, forkhead box Q1 (FoxQ1), and nuclear factor of activated T cells c1 (NFATc1) were not altered by LIPUS in medaka, suggesting that these genes are key transcriptional regulators of LIPUS-dependent fracture healing via osteocytes. We therefore show that bone-embedded osteocytes are necessary for LIPUS-induced promotion of fracture healing via transcriptional control of target genes, which presumably activates neighboring cells involved in fracture healing processes.
Collapse
|
7
|
Gao X, Sun Y, Li X. Identification of key gene modules and transcription factors for human osteoarthritis by weighted gene co-expression network analysis. Exp Ther Med 2019; 18:2479-2490. [PMID: 31572500 PMCID: PMC6755469 DOI: 10.3892/etm.2019.7848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 07/08/2019] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent causes of joint disease. However, the pathological mechanisms of OA have remained to be completely elucidated, and further investigation into the underlying mechanisms of OA development and the identification of novel therapeutic targets are urgently required. In the present study, the dataset GSE114007 was downloaded from the Gene Expression Omnibus database. Based on weighted gene co-expression network analysis (WGCNA) and the identification of differentially expressed genes (DEGs), the microarray data were further analyzed to identify hub genes, key transcription factors (TFs) and pivotal signaling pathways involved in the pathogenesis of OA. A total of 1,898 genes were identified to be differentially expressed between OA samples and normal samples. Based on WGCNA, the present study identified 5 hub modules closely associated with OA, and the potential key TFs for hub modules were further explored based on CisTargetX. The results demonstrated that B-Cell Lymphoma 6, Myelin Gene Expression Factor 2, Activating Transcription Factor 3, CCAAT Enhancer Binding Protein γ, Nuclear Factor Interleukin-3-Regulated, FOS Like Antigen-2, FOS-Like Antigen-1, Fos Proto-Oncogene, JunD Proto-Oncogene, Transcription Factor CP2 Like 1, RELA proto-oncogene NF-kB subunit, SRY-box transcription factor 3, V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog 2, Interferon Regulatory Factor 4 and REL proto-oncogene, NF-kB subunit were the potential key TFs. In addition, osteoclast differentiation, FoxO, MAPK and PI3K/Akt signaling pathways were revealed to be imperative for the pathogenesis of OA, as these 4 pivotal signaling pathways were observed to be tightly linked through 4 key TFs Fos Proto-Oncogene, JUN, JunD Proto-Oncogene and MYC, and 4 DEGs Vascular Endothelial Growth Factor A, Growth Arrest and DNA Damage Inducible α, Growth Arrest and DNA Damage Inducible β and Cyclin D1. The present study identified a set of potential key genes and signaling pathways, and provided an important opportunity to advance the current understanding of OA.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yu Sun
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Xu Li
- Department of Orthopedic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
8
|
Katsianou MA, Skondra FG, Gargalionis AN, Piperi C, Basdra EK. The role of transient receptor potential polycystin channels in bone diseases. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:246. [PMID: 30069448 DOI: 10.21037/atm.2018.04.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels which act as molecular sensors that enable cells to detect and respond to a plethora of mechanical and environmental cues. TRPs are involved in various physiological processes, such as mechanosensation, non-inception and thermosensation, while mutations in genes encoding them can lead to pathological conditions, called "channelopathies". The subfamily of transient receptor potential polycystins (TRPPs), Polycystin 1 (PC1, TRPP1) and Polycystin 2 (PC2, TRPP2), act as mechanoreceptors, sensing external mechanical forces, including strain, stretch and fluid shear stress, triggering a cascade of signaling pathways involved in osteoblastogenesis and ultimately bone formation. Both in vitro studies and research on animal models have already identified their implications in bone homeostasis. However, uncertainty veiling the role of polycystins (PCs) in bone disease urges studies to elucidate further their role in this field. Mutations in TRPPs have been related to autosomal polycystic kidney disease (ADKPD) and research groups try to identify their role beyond their well-established contribution in kidney disease. Such an elucidation would be beneficial for identifying signaling pathways where polycystins are involved in bone diseases related to exertion of mechanical forces such as osteoporosis, osteopenia and craniosynostosis. A better understanding of the implications of TRPPs in bone diseases would possibly lay the cornerstone for effective therapeutic schemes.
Collapse
Affiliation(s)
- Maria A Katsianou
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini G Skondra
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Bleedorn JA, Hornberger TA, Goodman CA, Hao Z, Sample SJ, Amene E, Markel MD, Behan M, Muir P. Temporal mechanically-induced signaling events in bone and dorsal root ganglion neurons after in vivo bone loading. PLoS One 2018; 13:e0192760. [PMID: 29486004 PMCID: PMC5828357 DOI: 10.1371/journal.pone.0192760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 11/19/2022] Open
Abstract
Mechanical signals play an integral role in the regulation of bone mass and functional adaptation to bone loading. The osteocyte has long been considered the principle mechanosensory cell type in bone, although recent evidence suggests the sensory nervous system may play a role in mechanosensing. The specific signaling pathways responsible for functional adaptation of the skeleton through modeling and remodeling are not clearly defined. In vitro studies suggest involvement of intracellular signaling through mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and mammalian target of rapamycin (mTOR). However, anabolic signaling responses to bone loading using a whole animal in vivo model have not been studied in detail. Therefore, we examined mechanically-induced signaling events at five time points from 0 to 24 hours after loading using the rat in vivo ulna end-loading model. Western blot analysis of bone for MAPK's, PI3K/Akt, and mTOR signaling, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to estimate gene expression of calcitonin gene-related protein alpha (CGRP-α), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), c-jun, and c-fos in dorsal root ganglion (DRG) of the brachial intumescence were performed. There was a significant increase in signaling through MAPK's including extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK) in loaded limbs at 15 minutes after mechanical loading. Ulna loading did not significantly influence expression of the genes of interest in DRG neurons. Bone signaling and DRG gene expression from the loaded and contralateral limbs was correlated (SR>0.40, P<0.05). However, bone signaling did not correlate with expression of the genes of interest in DRG neurons. These results suggest that signaling through the MAPK pathway may be involved in load-induced bone formation in vivo. Further characterization of the molecular events involved in regulation of bone adaptation is needed to understand the timing and impact of loading events, and the contribution of the neuronal signaling to functional adaptation of bone.
Collapse
Affiliation(s)
- Jason A. Bleedorn
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Troy A. Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Craig A. Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, Australia
| | - Zhengling Hao
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susannah J. Sample
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ermias Amene
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark D. Markel
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mary Behan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Muir
- Comparative Orthopaedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
10
|
Karamesinis K, Basdra EK. The biological basis of treating jaw discrepancies: An interplay of mechanical forces and skeletal configuration. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1675-1683. [PMID: 29454076 DOI: 10.1016/j.bbadis.2018.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
Jaw discrepancies and malrelations affect a large proportion of the general population and their treatment is of utmost significance for individuals' health and quality of life. The aim of their therapy is the modification of aberrant jaw development mainly by targeting the growth potential of the mandibular condyle through its cartilage, and the architectural shape of alveolar bone through a suture type of structure, the periodontal ligament. This targeted treatment is achieved via external mechanical force application by using a wide variety of intraoral and extraoral appliances. Condylar cartilage and sutures exhibit a remarkable plasticity due to the mechano-responsiveness of the chondrocytes and the multipotent mesenchymal cells of the sutures. The tissues respond biologically and adapt to mechanical force application by a variety of signaling pathways and a final interplay between the proliferative activity and the differentiation status of the cells involved. These targeted therapeutic functional alterations within temporo-mandibular joint ultimately result in the enhancement or restriction of mandibular growth, while within the periodontal ligament lead to bone remodeling and change of its architectural structure. Depending on the form of the malrelation presented, the above treatment approaches, in conjunction or separately, lead to the total correction of jaw discrepancies and the achievement of facial harmony and function. Overall, the treatment of craniofacial and jaw anomalies can be seen as an interplay of mechanical forces and adaptations occurring within temporo-mandibular joint and alveolar bone. The aim of the present review is to present up-to-date knowledge on the mechano-biology behind jaw growth modification and alveolar bone remodeling. Furthermore, future molecular targeted therapeutic strategies are discussed aiming at the improvement of mechanically-driven chondrogenesis and osteogenesis.
Collapse
Affiliation(s)
- Konstantinos Karamesinis
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
11
|
Jiang L, Xie Y, Wei L, Zhou Q, Li N, Jiang X, Gao Y. iTRAQ-based quantitative proteomic analysis on differentially expressed proteins of rat mandibular condylar cartilage induced by reducing dietary loading. Front Med 2017; 11:97-109. [DOI: 10.1007/s11684-016-0496-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022]
|
12
|
Jiang L, Xie Y, Wei L, Zhou Q, Shen X, Jiang X, Gao Y. Identification of the vascular endothelial growth factor signalling pathway by quantitative proteomic analysis of rat condylar cartilage. FEBS Open Bio 2016; 7:44-53. [PMID: 28097087 PMCID: PMC5221432 DOI: 10.1002/2211-5463.12155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/03/2016] [Accepted: 10/24/2016] [Indexed: 02/05/2023] Open
Abstract
Angiogenesis mediated by vascular endothelial growth factor (VEGF) is known to play an important role in regulating cartilage remodelling and endochondral ossification. However, the details of how VEGF signalling mechanisms affect condyle remodelling in response to alterations in functional loading remains unclear. To explore this, eighty 16‐day‐old male SD rats were divided into two equal groups which were fed either a soft/powdery diet or a hard diet for 4 weeks; the stiffness of the diet results in alteration of mastication force and hence temporomandibular joint (TMJ) development. We performed a proteomic analysis of rat condylar cartilage using isobaric tags for relative and absolute quantification (iTRAQ) labelling, followed by 2D nano‐high performance liquid chromatography and MALDI‐TOF/time‐of‐flight technology. After protein identification, we used biological information analysis to identify the differentially expressed proteins associated with the VEGF signalling pathway. Among the identified differentially expressed proteins, we found VEGF signalling mainly via the p44/42 MAPK and p38 mitogen‐activated protein kinase (MAPK) pathways in condylar cartilage, including VEGFD, VGFR2, KPCB, KPCT, KPCZ, ARAF, RASN, PLCG2, PLCG1, JUN and M3K12. Furthermore, four representative protein candidates, VEGF, p38 MAPK and p44/42 MAPK/phospho‐p44/42 MAPK, were confirmed by immunohistochemical staining and western blot. Our data suggest that VEGF might play an important role in TMJ development and remodelling in response to alterations in functional loading through the p44/42 MAPK and p38 MAPK signalling pathway. This study provides new clues to the understanding of the signalling mechanism responsible for VEGF production in response to different masticatory functions at the protein level.
Collapse
Affiliation(s)
- Liting Jiang
- Department of Stomatology Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine China; Department of Prosthodontics Shanghai Key Laboratory of Stomatology Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine China
| | - Yinyin Xie
- State Key Laboratory of Medical Genomics Shanghai Institute of Hematology Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine China
| | - Li Wei
- Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine China
| | - Qi Zhou
- Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine China
| | - Xing Shen
- Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine China
| | - Xinquan Jiang
- Department of Prosthodontics Shanghai Key Laboratory of Stomatology Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine China
| | - Yiming Gao
- Department of Stomatology Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine China
| |
Collapse
|
13
|
Karamesinis K, Spyropoulou A, Dalagiorgou G, Katsianou MA, Nokhbehsaim M, Memmert S, Deschner J, Vastardis H, Piperi C. Continuous hydrostatic pressure induces differentiation phenomena in chondrocytes mediated by changes in polycystins, SOX9, and RUNX2. J Orofac Orthop 2016; 78:21-31. [PMID: 27909759 DOI: 10.1007/s00056-016-0061-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE The present study aimed to investigate the long-term effects of hydrostatic pressure on chondrocyte differentiation, as indicated by protein levels of transcription factors SOX9 and RUNX2, on transcriptional activity of SOX9, as determined by pSOX9 levels, and on the expression of polycystin-encoding genes Pkd1 and Pkd2. MATERIALS AND METHODS ATDC5 cells were cultured in insulin-supplemented differentiation medium (ITS) and/or exposed to 14.7 kPa of hydrostatic pressure for 12, 24, 48, and 96 h. Cell extracts were assessed for SOX9, pSOX9, and RUNX2 using western immunoblotting. The Pkd1 and Pkd2 mRNA levels were detected by real-time PCR. RESULTS Hydrostatic pressure resulted in an early drop in SOX9 and pSOX9 protein levels at 12 h followed by an increase from 24 h onwards. A reverse pattern was followed by RUNX2, which reached peak levels at 24 h of hydrostatic pressure-treated chondrocytes in ITS culture. Pkd1 and Pkd2 mRNA levels increased at 24 h of combined hydrostatic pressure and ITS treatment, with the latter remaining elevated up to 96 h. CONCLUSIONS Our data indicate that long periods of continuous hydrostatic pressure stimulate chondrocyte differentiation through a series of molecular events involving SOX9, RUNX2, and polycystins-1, 2, providing a theoretical background for functional orthopedic mechanotherapies.
Collapse
Affiliation(s)
- Konstantinos Karamesinis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.,Department of Orthodontics, Dental School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Anastasia Spyropoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Georgia Dalagiorgou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Maria A Katsianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
| | - Svenja Memmert
- Department of Orthodontics Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
| | - James Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, University of Bonn, Welschnonnenstrasse 17, 53111, Bonn, Germany
| | - Heleni Vastardis
- Department of Orthodontics, Dental School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
| |
Collapse
|
14
|
Dunn S, Soul J, Anand S, Schwartz JM, Boot-Handford R, Hardingham T. Gene expression changes in damaged osteoarthritic cartilage identify a signature of non-chondrogenic and mechanical responses. Osteoarthritis Cartilage 2016; 24:1431-40. [PMID: 26973327 PMCID: PMC4989048 DOI: 10.1016/j.joca.2016.03.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/18/2016] [Accepted: 03/04/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Joint degeneration in osteoarthritis (OA) is characterised by damage and loss of articular cartilage. The pattern of loss is consistent with damage occurring only where the mechanical loading is high. We have investigated using RNA-sequencing (RNA-seq) and systems analyses the changes that occur in damaged OA cartilage by comparing it with intact cartilage from the same joint. METHODS Cartilage was obtained from eight OA patients undergoing total knee replacement. RNA was extracted from cartilage on the damaged distal medial condyle (DMC) and the intact posterior lateral condyle (PLC). RNA-seq was performed to identify differentially expressed genes (DEGs) and systems analyses applied to identify dysregulated pathways. RESULTS In the damaged OA cartilage, there was decreased expression of chondrogenic genes SOX9, SOX6, COL11A2, COL9A1/2/3, ACAN and HAPLN1; increases in non-chondrogenic genes COL1A1, COMP and FN1; an altered pattern of secreted proteinase expression; but no expression of major inflammatory cytokines. Systems analyses by PhenomeExpress revealed significant sub-networks of DEGs including mitotic cell cycle, Wnt signalling, apoptosis and matrix organisation that were influenced by a core of altered transcription factors (TFs), FOSL1, AHR, E2F1 and FOXM1. CONCLUSIONS Gene expression changes in damaged cartilage suggested a signature non-chondrogenic response of altered matrix protein and secreted proteinase expression. There was evidence of a damage response in this late OA cartilage, which surprisingly showed features detected experimentally in the early response of cartilage to mechanical overload. PhenomeExpress analysis identified a hub of DEGs linked by a core of four differentially regulated TFs.
Collapse
Affiliation(s)
- S.L. Dunn
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK
| | - J. Soul
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK
| | - S. Anand
- Stockport NHS Foundation Trust, Manchester, UK
| | - J.-M. Schwartz
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK
| | - R.P. Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK,Address correspondence and reprint requests to: R.P. Boot-Handford, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK. Tel: 44-01612755097.
| | - T.E. Hardingham
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK,Address correspondence and reprint requests to: T.E. Hardingham, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK. Tel: 44-01612755511.
| |
Collapse
|
15
|
Lu Y, Qiao L, Lei G, Mira RR, Gu J, Zheng Q. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS One 2012; 7:e36964. [PMID: 22615857 PMCID: PMC3355169 DOI: 10.1371/journal.pone.0036964] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/16/2012] [Indexed: 11/19/2022] Open
Abstract
Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond to mechanical forces.
Collapse
|
17
|
Papachristou DJ, Papachroni KK, Basdra EK, Papavassiliou AG. Signaling networks and transcription factors regulating mechanotransduction in bone. Bioessays 2009; 31:794-804. [PMID: 19444851 DOI: 10.1002/bies.200800223] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mechanical stimulation has a critical role in the development and maintenance of the skeleton. This function requires the perception of extracellular stimuli as well as their conversion into intracellular biochemical responses. This process is called mechanotransduction and is mediated by a plethora of molecular events that regulate bone metabolism. Indeed, mechanoreceptors, such as integrins, G protein-coupled receptors, receptor protein tyrosine kinases, and stretch-activated Ca(2+) channels, together with their downstream effectors coordinate the transmission of load-induced signals to the nucleus and the expression of bone-related genes. During the past decade, scientists have gained increasing insight into the molecular networks implicated in bone mechanotransduction. In the present paper, we consider the major signaling cascades and transcription factors that control bone and cartilage mechanobiology and discuss the influence of the mechanical microenvironment on the determination of skeletal morphology.
Collapse
|
18
|
Papachristou DJ, Papachroni KK, Papavassiliou GA, Pirttiniemi P, Gorgoulis VG, Piperi C, Basdra EK. Functional alterations in mechanical loading of condylar cartilage induces changes in the bony subcondylar region. Arch Oral Biol 2009; 54:1035-45. [PMID: 19775676 DOI: 10.1016/j.archoralbio.2009.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 08/19/2009] [Accepted: 08/26/2009] [Indexed: 12/28/2022]
Abstract
Bone remodeling is orchestrated by cells of the osteoblast lineage and involves an intricate network of cell-cell and cell-matrix interactions. This dynamic process engages systemic hormones, locally produced cytokines and growth factors, as well as the mechanical environment of the cells. In growing subjects, the mandibular condyle consists of both articular and growth components and the presence of progenitor cells is verified by their anabolic responses to growth hormones. The pathways of chondrocyte and osteoblast differentiation during endochondral bone formation are interconnected and controlled by key transcription factors. The present study was undertaken to explore the possibility and the extent by which the mechano-transduction events in chondrocytes are 'sensed' in the subchondral bony area under altered functional loading. To this end, the involvement of the JNK/ERK-AP-1/Runx2 signaling axe was investigated by immunohistochemistry in temporomandibular joints of young rats subjected to different functional mastication loads. Our results showed that mechanical load triggers differentiation phenomena through the induction of master tissue regulators, namely the expression and/or activation of the JNK-c-Jun signaling pathway components and c-Fos in subchondral osteoblasts, as well as the activation of ERK/MAPK and the cellular expression of the transcription factor Runx2 in subchondral osteoblasts.
Collapse
|
19
|
Zheng Q, Keller B, Zhou G, Napierala D, Chen Y, Zabel B, Parker AE, Lee B. Localization of the cis-enhancer element for mouse type X collagen expression in hypertrophic chondrocytes in vivo. J Bone Miner Res 2009; 24:1022-32. [PMID: 19113928 PMCID: PMC2683646 DOI: 10.1359/jbmr.081249] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/23/2008] [Accepted: 12/22/2008] [Indexed: 01/19/2023]
Abstract
The type X collagen gene (Col10a1) is a specific molecular marker of hypertrophic chondrocytes during endochondral bone formation. Mutations in human COL10A1 and altered chondrocyte hypertrophy have been associated with multiple skeletal disorders. However, until recently, the cis-enhancer element that specifies Col10a1 expression in hypertrophic chondrocytes in vivo has remained unidentified. Previously, we and others have shown that the Col10a1 distal promoter (-4.4 to -3.8 kb) may harbor a critical enhancer that mediates its tissue specificity in transgenic mice studies. Here, we report further localization of the cis-enhancer element within this Col10a1 distal promoter by using a similar transgenic mouse approach. We identify a 150-bp Col10a1 promoter element (-4296 to -4147 bp) that is sufficient to direct its tissue-specific expression in vivo. In silico analysis identified several putative transcription factor binding sites including two potential activator protein-1 (AP-1) sites within its 5'- and 3'-ends (-4276 to -4243 and -4166 to -4152 bp), respectively. Interestingly, transgenic mice using a reporter construct deleted for these two AP-1 elements still showed tissue-specific reporter activity. EMSAs using oligonucleotide probes derived from this region and MCT cell nuclear extracts identified DNA/protein complexes that were enriched from cells stimulated to hypertrophy. Moreover, these elements mediated increased reporter activity on transfection into MCT cells. These data define a 90-bp cis-enhancer required for tissue-specific Col10a1 expression in vivo and putative DNA/protein complexes that contribute to the regulation of chondrocyte hypertrophy. This work will enable us to identify candidate transcription factors essential both for skeletal development and for the pathogenesis of skeletal disorders.
Collapse
Affiliation(s)
- Qiping Zheng
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wadhawan N, Kumar S, Kharbanda OP, Duggal R, Sharma R. Temporomandibular joint adaptations following two-phase therapy: an MRI study. Orthod Craniofac Res 2009; 11:235-50. [PMID: 18950321 DOI: 10.1111/j.1601-6343.2008.00436.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To document the alterations within the condyle-glenoid fossa (C-GF) complex and the positional changes of the glenoid fossa in the cranium after removable functional appliance therapy and after the completion of fixed appliance therapy. SETTING AND SAMPLE The Department of Orthodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India. The study sample consisted of 12 growing children (eight girls and four boys) between 10 and 14 years of age with skeletal Class II division 1 malocclusion selected on well defined criteria. MATERIALS AND METHODS All patients were treated with either the Twin Block or the Bionator appliance followed by fixed appliances. Mean total treatment duration was 28 months. The changes in and around the C-GF complex were evaluated using MRI at pre-treatment stage, after functional appliance therapy and at the completion of fixed mechanotherapy. RESULTS Forward condylar position within the glenoid fossa and articular disc retrusion with respect to the condylar head were statistically significant after functional appliance therapy. However, the condyles had a relatively concentric position within the glenoid fossa, while the articular disc resumed its pre-treatment position at the end of the treatment. Linear measurements from the centre of the external auditory meatus to the post-glenoid spine revealed a 1.3-mm forward relocation of the post-glenoid spine along the Frankfurt Horizontal plane. CONCLUSIONS Forward relocation of the C-GF complex seems to be one of the mechanisms of action of functional appliances, while the internal anatomic arrangement within the temporomandibular joint (TMJ) complex normalizes to its pre-treatment position.
Collapse
Affiliation(s)
- N Wadhawan
- Center for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
21
|
Zhang M, Pritchard MR, Middleton FA, Horton JA, Damron TA. Microarray analysis of perichondral and reserve growth plate zones identifies differential gene expressions and signal pathways. Bone 2008; 43:511-20. [PMID: 18579462 PMCID: PMC2569855 DOI: 10.1016/j.bone.2008.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 04/24/2008] [Accepted: 04/25/2008] [Indexed: 12/23/2022]
Abstract
In the growth plate, the reserve and perichondral zones have been hypothesized to have similar functions, but their exact functions are poorly understood. Our hypothesis was that significant differential gene expression exists between perichondral and reserve chondrocytes that may differentiate the respective functions of these two zones. Normal Sprague-Dawley rat growth plate chondrocytes from the perichondral zone (PC) and reserve zone (RZ) were isolated by laser microdissection and then subjected to microarray analysis. In order to most comprehensively capture the unique features of the two zones, we analyzed both the most highly expressed genes and those that were most significantly different from the proliferative zone (PZ) as a single comparator. Confirmation of the differential expression of selected genes was done by quantitative real-time RT-PCR. A total of 8 transcripts showing high expression unique to the PC included translationally-controlled tumor protein (Tpt1), connective tissue growth factor (Ctgf), mortality factor 4 (Morf4l1), growth arrest specific 6 (Gas6), type V procollagen (Col5a2), frizzled-related protein (Frzb), GDP-dissociation inhibitor 2 (Gdi2) and Jun D proto-oncogene (Jund). In contrast, 8 transcripts showing unique high expression in the RZ included hyaluronan and proteoglycan link protein 1 (Hapln1), hemoglobin beta-2 subunit, type I procollagen (Col1a2), retinoblastoma binding protein 4 (LOC685491), Sparc-related modular calcium binding 2 (Smoc2), and calpastatin (Cast). Other genes were highly expressed in cells from both PC and RZ zones, including collagen II, collagen IX, catenin (cadherin associated protein) beta 1, eukaryotic translation elongation factor, high mobility group, ribosomal protein, microtubule-associated protein, reticulocalbin, thrombospondin, retinoblastoma binding protein, carboxypeptidase E, carnitine palmitoyltransferase 1, cysteine rich glycoprotein, plexin B2 (Plxnb2), and gap junction membrane channel protein. Functional classification of the most highly expressed transcripts were analyzed, and the pathway analysis indicated that ossification, bone remodeling, and cartilage development were uniquely enriched in the PC whereas both the PC and RZ showed pathway enrichment for skeletal development, extracellular matrix structural constituent, proteinaceous extracellular matrix, collagen, extracellular matrix, and extracellular matrix part pathways. We conclude that differential gene expression exists between the RZ and PC chondrocytes and these differentially expressed genes have unique roles to play corresponding to the function of their respective zones.
Collapse
Affiliation(s)
- Mingliang Zhang
- Musculoskeletal Sciences Research Laboratory, Department of Orthopedic Surgery, State University of New York Upstate Medical University, Syracuse, New York, 13210
| | - Meredith R. Pritchard
- Musculoskeletal Sciences Research Laboratory, Department of Orthopedic Surgery, State University of New York Upstate Medical University, Syracuse, New York, 13210
| | - Frank A. Middleton
- Microarray Core Facility, Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, 13210
| | - Jason A. Horton
- Musculoskeletal Sciences Research Laboratory, Department of Orthopedic Surgery, State University of New York Upstate Medical University, Syracuse, New York, 13210
| | - Timothy A. Damron
- Musculoskeletal Sciences Research Laboratory, Department of Orthopedic Surgery, State University of New York Upstate Medical University, Syracuse, New York, 13210
| |
Collapse
|
22
|
Arat FE, Arat ZM, Tompson B, Tanju S, Erden I. Muscular and condylar response to rapid maxillary expansion. Part 2: magnetic resonance imaging study of the temporomandibular joint. Am J Orthod Dentofacial Orthop 2008; 133:823-9. [PMID: 18538245 DOI: 10.1016/j.ajodo.2006.07.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 07/01/2006] [Accepted: 07/01/2006] [Indexed: 11/16/2022]
Abstract
INTRODUCTION In this prospective clinical study, we used bilateral temporomandibular joint (TMJ) magnetic resonance images (MRIs) to investigate the condylar response to rapid maxillary expansion (RME). METHODS Bilaterial MRIs of the TMJs of 18 subjects (11 girls, 7 boys; mean age, 12.54 years; range, 9.75-14.8 years) were assessed. All subjects had unilateral or bilateral posterior crossbites involving 3 or more posterior teeth. There was no control group because of the short observation period. The MRI protocol included closed-mouth parasagittal proton density weighted spin echo and fat-suppressed short T1 inversion recovery sequences. The MRIs were taken before treatment (Tx 1), and at 6 weeks (Tx 2) and at 18 weeks (Tx 3) after treatment. Alterations in the signal intensities of the TMJ region were examined visually by a radiologist who was blinded to the subjects' characteristics. RESULTS Increased signal intensities appeared as bright areas on the MRIs, indicating red bone marrow edema that is a sign of condylar remodeling. There were no bright areas in the condylar regions at Tx 2 in the 36 TMJs. Bright areas at the condylar region were observed both in proton density and fat-suppressed spin echo sequences at Tx 3 in 32 TMJs. Twenty-two TMJs had bright areas localized at the condylar head, and 10 TMJs had bright areas that extended through both the condyle and the mandibular ramus. No bright areas were seen at Tx 2 or Tx 3 for 4 TMJs. CONCLUSIONS A condylar response to RME was observed in 32 TMJs at 18 weeks after expansion. Both the extensive orthopedic and the functional occlusal forces associated with RME have roles in condylar and ramal responses.
Collapse
Affiliation(s)
- F Emel Arat
- Department of Orthodontics, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
23
|
Crosstalk between integrin and G protein pathways involved in mechanotransduction in mandibular condylar chondrocytes under pressure. Arch Biochem Biophys 2008; 474:102-8. [PMID: 18375197 DOI: 10.1016/j.abb.2008.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 01/16/2023]
Abstract
To investigate the role of integrin and G protein pathways in the mechanotransduction process within MCCs and explore the possible crosstalk between the two traditional signal pathways, in vitro-cultured rabbit MCCs were treated with pressure. The mRNA level of alpha5beta1 integrin was determined by in situ hybridization and the distributions of vinculin, Galphaq/11 protein, F-actin and intracellular calcium were studied with a laser scanning confocal microscope. Increased integrin alpha5beta1 expression, enhanced stress fiber assembly, elevated G protein and vinculin level and up-regulated IP(3) channel sensitivity were found in the mechanotransduction process of MCCs under pressure. Furthermore, the vinculin and the Galphaq/11 were observed co-localized with each other, and the F-actin reassembly and stress fibers formation could be inhibited by intracellular calcium channel blocking, which gave direct evidence that the traditional integrin-mediated or G protein-mediated signaling pathways coordinately regulate the function of MCCs under mechanical stimulation.
Collapse
|
24
|
Papadopoulou AK, Papachristou DJ, Chatzopoulos SA, Pirttiniemi P, Papavassiliou AG, Basdra EK. Load application induces changes in the expression levels of Sox-9, FGFR-3 and VEGF in condylar chondrocytes. FEBS Lett 2007; 581:2041-6. [PMID: 17467696 DOI: 10.1016/j.febslet.2007.04.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 04/11/2007] [Accepted: 04/14/2007] [Indexed: 11/20/2022]
Abstract
Experimental and clinical observations have proven the modulatory effects of mechanical loading on the development and maintenance of cartilage architecture. Here we examined the involvement of Sox-9, FGFR-3 and VEGF (pivotal factors controlling cartilage development and growth) in the mechano-transduction pathway of mandibular condylar cartilage by changing the dynamics of the transmitted load via changes in food hardness. To this end, condyle cartilage tissue of rats fed with hard or soft food was analyzed immunohistochemically at various time points. Our findings demonstrate that different mechanical loading conditions in condylar chondrocytes trigger differentiation-/maturation-related processes by affecting the expression levels of these factors, ultimately influencing condylar cartilage growth.
Collapse
Affiliation(s)
- Alexandra K Papadopoulou
- Department of Orthodontics, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | | | | | | | | |
Collapse
|