1
|
Tadwal VS, Manimekalai MSS, Grüber G. Engineered tryptophan in the adenine-binding pocket of catalytic subunit A of A-ATP synthase demonstrates the importance of aromatic residues in adenine binding, forming a tool for steady-state and time-resolved fluorescence spectroscopy. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1485-91. [PMID: 22139149 PMCID: PMC3232122 DOI: 10.1107/s1744309111039595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/27/2011] [Indexed: 05/31/2023]
Abstract
A reporter tryptophan residue was individually introduced by site-directed mutagenesis into the adenine-binding pocket of the catalytic subunit A (F427W and F508W mutants) of the motor protein A(1)A(O) ATP synthase from Pyrococcus horikoshii OT3. The crystal structures of the F427W and F508W mutant proteins were determined to 2.5 and 2.6 Å resolution, respectively. The tryptophan substitution caused the fluorescence signal to increase by 28% (F427W) and 33% (F508W), with a shift from 333 nm in the wild-type protein to 339 nm in the mutant proteins. Tryptophan emission spectra showed binding of Mg-ATP to the F427W mutant with a K(d) of 8.5 µM. In contrast, no significant binding of nucleotide could be observed for the F508W mutant. A closer inspection of the crystal structure of the F427W mutant showed that the adenine-binding pocket had widened by 0.7 Å (to 8.70 Å) in comparison to the wild-type subunit A (8.07 Å) owing to tryptophan substitution, as a result of which it was able to bind ATP. In contrast, the adenine-binding pocket had narrowed in the F508W mutant. The two mutants presented demonstrate that the exact volume of the adenine ribose binding pocket is essential for nucleotide binding and even minor narrowing makes it unfit for nucleotide binding. In addition, structural and fluorescence data confirmed the viability of the fluorescently active mutant F427W, which had ideal tryptophan spectra for future structure-based time-resolved dynamic measurements of the catalytic subunit A of the ATP-synthesizing enzyme A-ATP synthase.
Collapse
|
2
|
The critical roles of residues P235 and F236 of subunit A of the motor protein A-ATP synthase in P-loop formation and nucleotide binding. J Mol Biol 2010; 401:892-905. [PMID: 20615420 DOI: 10.1016/j.jmb.2010.06.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/29/2010] [Accepted: 06/30/2010] [Indexed: 11/24/2022]
Abstract
The mutants P235A and F236A have been generated and their crystal structure was determined to resolutions of 2.38 and 2.35 A, respectively, in order to understand the residues involved in the formation of the novel arched P-loop of subunit A of the A-ATP synthase from Pyrococcus horikoshii OT3. Both the structures show unique, altered conformations for the P-loop. Comparison with the previously solved wild type and P-loop mutant S238A structures of subunit A showed that the P-loop conformation for these two novel mutants occupy intermediate positions, with the wild type fully arched and the well-relaxed S238A mutant structures taking the extreme positions. Even though the deviation is similar for both mutants, the curvature of the P-loop faces the opposite direction. Deviations in the GER-loop, lying above the P-loop, are similar for both mutants, but in F236A, it moves towards the P-loop by around 2 A. The curvature of the loop region V392-V410, located directly behind the P-loop, moves close by 3.6 A towards the P-loop in the F236A structure and away by 2.5 A in the P235A structure. Two major deviations were observed in the P235A mutant, which are not identified in any of the subunit A structures analyzed so far, one being a wide movement of the N-terminal loop region (R90-P110) making a rotation of 80 degrees and the other being rigid-body rotation of the C-terminal helices from Q520-A588 by around 4 degrees upwards. Taken together, the data presented demonstrate the concerted effects of the critical residues P235A, F236, and S238 in the unique P-loop conformation of the A-ATP synthases.
Collapse
|
3
|
Crystal and solution structure of the C-terminal part of the Methanocaldococcus jannaschii A1AO ATP synthase subunit E revealed by X-ray diffraction and small-angle X-ray scattering. J Bioenerg Biomembr 2010; 42:311-20. [DOI: 10.1007/s10863-010-9298-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/23/2010] [Indexed: 10/19/2022]
|
4
|
Kumar A, Manimekalai MSS, Balakrishna AM, Jeyakanthan J, Grüber G. Nucleotide binding states of subunit A of the A-ATP synthase and the implication of P-loop switch in evolution. J Mol Biol 2009; 396:301-20. [PMID: 19944110 DOI: 10.1016/j.jmb.2009.11.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/12/2009] [Accepted: 11/17/2009] [Indexed: 11/17/2022]
Abstract
The crystal structures of the nucleotide-empty (A(E)), 5'-adenylyl-beta,gamma-imidodiphosphate (A(PNP))-bound, and ADP (A(DP))-bound forms of the catalytic A subunit of the energy producer A(1)A(O) ATP synthase from Pyrococcus horikoshii OT3 have been solved at 2.47 A and 2.4 A resolutions. The structures provide novel features of nucleotide binding and depict the residues involved in the catalysis of the A subunit. In the A(E) form, the phosphate analog SO(4)(2-) binds, via a water molecule, to the phosphate binding loop (P-loop) residue Ser238, which is also involved in the phosphate binding of ADP and 5'-adenylyl-beta,gamma-imidodiphosphate. Together with amino acids Gly234 and Phe236, the serine residue stabilizes the arched P-loop conformation of subunit A, as shown by the 2.4-A structure of the mutant protein S238A in which the P-loop flips into a relaxed state, comparable to the one in catalytic beta subunits of F(1)F(O) ATP synthases. Superposition of the existing P-loop structures of ATPases emphasizes the unique P-loop in subunit A, which is also discussed in the light of an evolutionary P-loop switch in related A(1)A(O) ATP synthases, F(1)F(O) ATP synthases, and vacuolar ATPases and implicates diverse catalytic mechanisms inside these biological motors.
Collapse
Affiliation(s)
- Anil Kumar
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | | | | | | | | |
Collapse
|
5
|
Qian P, Bullough PA, Hunter CN. Three-dimensional reconstruction of a membrane-bending complex: the RC-LH1-PufX core dimer of Rhodobacter sphaeroides. J Biol Chem 2008; 283:14002-11. [PMID: 18326046 DOI: 10.1074/jbc.m800625200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A three-dimensional model of the dimeric reaction center-light harvesting I-PufX (RC-LH1-PufX) complex from Rhodobacter sphaeroides, calculated from electron microscope single particle analysis of negatively stained complexes, shows that the two halves of the dimer molecule incline toward each other on the periplasmic side, creating a remarkable V-shaped structure. The distribution of negative stain is consistent with loose packing of the LH1 ring near the 14th LH1 alpha/beta pair, which could facilitate the migration of quinone and quinol molecules across the LH1 boundary. The three-dimensional model encloses a space near the reaction center Q(B) site and the 14th LH1 alpha/beta pair, which is approximately 20 angstroms in diameter, sufficient to sequester a quinone pool. Helical arrays of dimers were used to construct a three-dimensional membrane model, which matches the packing lattice deduced from electron microscope analysis of the tubular dimer-only membranes found in mutants of Rba. sphaeroides lacking the LH2 complex. The intrinsic curvature of the dimer explains the shape and approximately 70-nm diameter of these membrane tubules, and at least partially accounts for the spherical membrane invaginations found in wild-type Rba. sphaeroides. A model of dimer aggregation and membrane curvature in these spherical membrane invaginations is presented.
Collapse
Affiliation(s)
- Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | |
Collapse
|
6
|
Thaker YR, Roessle M, Grüber G. The boxing glove shape of subunit d of the yeast V-ATPase in solution and the importance of disulfide formation for folding of this protein. J Bioenerg Biomembr 2007; 39:275-89. [PMID: 17896169 DOI: 10.1007/s10863-007-9089-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 05/15/2007] [Indexed: 10/22/2022]
Abstract
The low resolution structure of subunit d (Vma6p) of the Saccharomyces cerevisiae V-ATPase was determined from solution X-ray scattering data. The protein is a boxing glove-shaped molecule consisting of two distinct domains, with a width of about 6.5 nm and 3.5 nm, respectively. To understand the importance of the N- and C-termini inside the protein, four truncated forms of subunit d (d (11-345), d (38-345), d (1-328) and d (1-298)) and mutant subunit d, with a substitution of Cys329 against Ser, were expressed, and only d (11-345), containing all six cysteine residues was soluble. The structural properties of d depends strongly on the presence of a disulfide bond. Changes in response to disulfide formation have been studied by fluorescence- and CD spectroscopy, and biochemical approaches. Cysteins, involved in disulfide bridges, were analyzed by MALDI-TOF mass spectrometry. Finally, the solution structure of subunit d will be discussed in terms of the topological arrangement of the V(1)V(O) ATPase.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Circular Dichroism
- DNA Primers/genetics
- DNA, Fungal/genetics
- Disulfides/chemistry
- Models, Molecular
- Molecular Sequence Data
- Molecular Weight
- Mutagenesis, Site-Directed
- Nuclear Magnetic Resonance, Biomolecular
- Protein Folding
- Protein Structure, Tertiary
- Protein Subunits
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Scattering, Small Angle
- Sequence Homology, Amino Acid
- Spectrometry, Fluorescence
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Vacuolar Proton-Translocating ATPases/chemistry
- Vacuolar Proton-Translocating ATPases/genetics
- X-Ray Diffraction
Collapse
Affiliation(s)
- Youg R Thaker
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
7
|
Gregorini M, Wang J, Xie XS, Milligan RA, Engel A. Three-dimensional reconstruction of bovine brain V-ATPase by cryo-electron microscopy and single particle analysis. J Struct Biol 2007; 158:445-54. [PMID: 17349803 DOI: 10.1016/j.jsb.2007.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/03/2007] [Accepted: 01/04/2007] [Indexed: 11/19/2022]
Abstract
Bovine V-ATPase from brain clathrin-coated vesicles was investigated by cryo-electron microscopy and single particle analysis. Our studies revealed great flexibility of the central linker region connecting V1 and V0. As a consequence, the two sub-complexes were processed separately and the resulting volumes were merged computationally. We present the first three-dimensional (3D) map of a V-ATPase obtained from cryo-electron micrographs. The overall resolution was estimated 34A by Fourier shell correlation (0.5 cutoff). Our 3D reconstruction shows a large peripheral stalk and a smaller, isolated peripheral density, suggesting a second, less well-resolved peripheral connection. The 3D map reveals new features of the large peripheral stator and of the collar-like density attached to the membrane domain. Our analyses of the membrane domain indicate the presence of six proteolipid subunits. In addition, we could localize the V0 subunit a flanking the large peripheral stalk.
Collapse
Affiliation(s)
- Marco Gregorini
- Maurice E. Müller Institute for Structural Biology, Biozentrum University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Ubbink-Kok T, Nijland J, Slotboom DJ, Lolkema JS. The ntp operon encoding the Na+ V-ATPase of the thermophile Caloramator fervidus. Arch Microbiol 2006; 186:513-7. [PMID: 16967304 DOI: 10.1007/s00203-006-0165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/14/2006] [Accepted: 08/21/2006] [Indexed: 11/29/2022]
Abstract
The V-type ATPase of the thermophile Caloramator fervidus is an ATP-driven Na+ pump. The nucleotide sequence of the ntpFIKECGABD operon containing the structural genes coding for the nine subunits of the enzyme complex was determined. The identity of the proteins in two pairs of subunits (D, E and F, G) that have very similar mobilities on SDS-PAGE of the purified complex (24.3 and 22.7 kDa, and 12.3 and 11.6 kDa) was established by tryptic digestion of the protein bands followed by mass spectrometric analysis of the peptides.
Collapse
Affiliation(s)
- Trees Ubbink-Kok
- Molecular Microbiology, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, Groningen, The Netherlands
| | | | | | | |
Collapse
|
9
|
Abstract
The prokaryotic V-type ATPase/synthases (prokaryotic V-ATPases) have simpler subunit compositions than eukaryotic V-ATPases, and thus are useful subjects for studying chemical, physical and structural properties of V-ATPase. In this review, we focus on the results of recent studies on the structure/function relationships in the V-ATPase from the eubacterium Thermus thermophilus. First, we describe single-molecule analyses of T. thermophilus V-ATPase. Using the single-molecule technique, it was established that the V-ATPase is a rotary motor. Second, we discuss arrangement of subunits in V-ATPase. Third, the crystal structure of the C-subunit (homolog of eukaryotic d-subunit) is described. This funnel-shape subunit appears to cap the proteolipid ring in the V(0) domain in order to accommodate the V(1) central stalk. This structure seems essential for the regulatory reversible association/dissociation of the V(1) and the V(0) domains. Last, we discuss classification of the V-ATPase family. We propose that the term prokaryotic V-ATPases should be used rather than the term archaeal-type ATPase (A-ATPase).
Collapse
Affiliation(s)
- Ken Yokoyama
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Nagatsuta, Midori-ku, Yokohama, Japan.
| | | |
Collapse
|
10
|
Whyteside G, Gibson L, Scott M, Finbow ME. Assembly of the yeast vacuolar H+-ATPase and ATP hydrolysis occurs in the absence of subunit c''. FEBS Lett 2005; 579:2981-5. [PMID: 15907326 DOI: 10.1016/j.febslet.2005.04.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 04/17/2005] [Accepted: 04/17/2005] [Indexed: 11/26/2022]
Abstract
The V-ATPases are ubiquitous enzymes of eukaryotes. They are involved in many cellular processes via their ability to pump protons across biological membranes. They are two domain enzymes comprising an ATP hydrolysing sector and a proton translocating sector. Both sectors are functionally coupled. The proton tanslocating sector, V0, is comprised of five polypeptides in an as yet undetermined stoichiometry. In V0 three homologous proteins, subunit c, c' and c'' have previously been reported to be essential for assembly of the enzyme. However, we report that subunit c'' is not essential for assembly but is for functional coupling of the enzyme.
Collapse
Affiliation(s)
- Graham Whyteside
- School of Biological and Biomedical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, United Kingdom.
| | | | | | | |
Collapse
|
11
|
Venzke D, Domgall I, Köcher T, Féthière J, Fischer S, Böttcher B. Elucidation of the Stator Organization in the V-ATPase of Neurospora crassa. J Mol Biol 2005; 349:659-69. [PMID: 15890365 DOI: 10.1016/j.jmb.2005.04.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/13/2005] [Accepted: 04/15/2005] [Indexed: 11/27/2022]
Abstract
V-ATPases are membrane protein complexes that pump protons in the lumen of various subcellular compartments at the expense of ATP. Proton pumping is done by a rotary mechanism that requires a static connection between the membrane pumping domain (V(0)) and the extrinsic catalytic head (V(1)). This static connection is composed of several known subunits of the V-ATPase, but their location and topological relationships are still a matter of controversy. Here, we propose a model for the V-ATPase of Neurospora crassa on the basis of single-particle analysis by electron microscopy. Comparison of the resulting map to that of the A-ATPase from Thermus thermophilus allows the positioning of two subunits in the static connecting region that are unique to eukaryotic V-ATPases (C and H). These two subunits seem to be located on opposite sides of a semicircular arrangement of the peripheral connecting elements, suggesting a role in stabilizing the stator in V-ATPases.
Collapse
Affiliation(s)
- David Venzke
- EMBL-Heidelberg Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
A structural model of the vacuolar ATPase from transmission electron microscopy. Micron 2005; 36:109-26. [PMID: 15629643 DOI: 10.1016/j.micron.2004.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 10/11/2004] [Indexed: 11/19/2022]
Abstract
Vacuolar ATPases (V-ATPases) are large, membrane bound, multisubunit protein complexes which function as ATP hydrolysis driven proton pumps. V-ATPases and related enzymes are found in the endomembrane system of eukaryotic organsims, the plasma membrane of specialized cells in higher eukaryotes, and the plasma membrane of prokaryotes. The proton pumping action of the vacuolar ATPase is involved in a variety of vital intra- and inter-cellular processes such as receptor mediated endocytosis, protein trafficking, active transport of metabolites, homeostasis and neurotransmitter release. This review summarizes recent progress in the structure determination of the vacuolar ATPase focusing on studies by transmission electron microscopy. A model of the subunit architecture of the vacuolar ATPase is presented which is based on the electron microscopic images and the available information from genetic, biochemical and biophysical experiments.
Collapse
|
13
|
Lokanath NK, Ukita Y, Sugahara M, Kunishima N. Purification, crystallization and preliminary crystallographic analysis of the vacuole-type ATPase subunit E from Pyrococcus horikoshii OT3. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:56-8. [PMID: 16508090 PMCID: PMC1952376 DOI: 10.1107/s1744309104026430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 10/19/2004] [Indexed: 11/10/2022]
Abstract
The vacuole-type ATPases in eukaryotic cells translocate protons across various biological membranes including the vacuolar membrane by consuming ATP molecules. The E subunit of the multisubunit complex V-ATPase from Pyrococcus horikoshii OT3, which has a molecular weight of 22.88 kDa, has been cloned, overexpressed in Escherichia coli, purified and crystallized by the microbatch method using PEG 4000 as a precipitant at 296 K. A data set to 1.85 A resolution with 98.8% completeness and an Rmerge of 6.5% was collected from a single flash-cooled crystal using synchrotron radiation. The crystal belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 52.196, b = 55.317, c = 77.481 A, and is most likely to contain one molecule per asymmetric unit.
Collapse
Affiliation(s)
- Neratur K. Lokanath
- Highthroughput Factory, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoko Ukita
- Highthroughput Factory, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mitsuaki Sugahara
- Highthroughput Factory, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Naoki Kunishima
- Highthroughput Factory, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
14
|
Chaban YL, Coskun U, Keegstra W, Oostergetel GT, Boekema EJ, Grüber G. Structural Characterization of an ATPase Active F1-/V1 -ATPase (α3β3EG) Hybrid Complex. J Biol Chem 2004; 279:47866-70. [PMID: 15355991 DOI: 10.1074/jbc.m408460200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Co-reconstitution of subunits E and G of the yeast V-ATPase and the alpha and beta subunits of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) resulted in an alpha(3)beta(3)EG hybrid complex showing 53% of the ATPase activity of TF(1). The alpha(3)beta(3)EG oligomer was characterized by electron microscopy. By processing 40,000 single particle projections, averaged two-dimensional projections at 1.2-2.4-nm resolution were obtained showing the hybrid complex in various positions. Difference mapping of top and side views of this complex with projections of the atomic model of the alpha(3)beta(3) subcomplex from TF(1) (Shirakihara, Y., Leslie, A. G., Abrahams, J. P., Walker, J. E., Ueda, T., Sekimoto, Y., Kambara, M., Saika, K., Kagawa, Y., and Yoshida, M. (1997) Structure 5, 825-836) demonstrates that a seventh mass is located inside the shaft of the alpha(3)beta(3) barrel and extends out from the hexamer. Furthermore, difference mapping of the alpha(3)beta(3)EG oligomer with projections of the A(3)B(3)E and A(3)B(3)EC subcomplexes of the V(1) from Caloramator fervidus (Chaban, Y., Ubbink-Kok, T., Keegstra, W., Lolkema, J. S., and Boekema, E. J. (2002) EMBO Rep. 3, 982-987) shows that the mass inside the shaft is made up of subunit E, whereby subunit G was assigned to belong at least in part to the density of the protruding stalk. The formation of an active alpha(3)beta(3)EG hybrid complex indicates that the coupling subunit gamma inside the alpha(3)beta(3) oligomer of F(1) can be effectively replaced by subunit E of the V-ATPase. Our results have also demonstrated that the E and gamma subunits are structurally similar, despite the fact that their genes do not show significant homology.
Collapse
Affiliation(s)
- Yuriy L Chaban
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Li Z, Zhang X. Electron-microscopic structure of the V-ATPase from mung bean. PLANTA 2004; 219:948-954. [PMID: 15185079 DOI: 10.1007/s00425-004-1298-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Accepted: 04/22/2004] [Indexed: 05/24/2023]
Abstract
The vacuolar H(+)-ATPase from mung bean (Vigna radiata L. cv. Wilczek) was purified to homogeneity. The purified complex contained all the reported subunits from mung bean, but also included a 40-kDa subunit, corresponding to the membrane-associated subunit d, which has not previously been observed. The structure of the V-ATPase from mung bean was studied by electron microscopy of negatively stained samples. An analysis of over 6,000 single-particle images obtained by electron microscopy of the purified complex revealed that the complex, similar to other V-ATPases, is organized into two major domains V1 and Vo with overall dimensions of 25 nm x 13.7 nm and a stalk region connecting the V1 and Vo domains. Several individual areas of protein density were observed in the stalk region, indicating its complexity. The projections clearly showed that the complex contained one central stalk and at least two peripheral stalks. Subcomplexes containing subunits A, B and E, dissociated from the tonoplast membrane by KI, were purified. The structure of the subcomplex was also studied by electron microscopy followed by single-molecule analysis of 13,000 projections. Our preliminary results reveal an area of high protein density at the bottom of the subcomplex immediately below the cavity formed by the A and B subunits, indicating the position of subunit E.
Collapse
Affiliation(s)
- Zhuo Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China
| | | |
Collapse
|
16
|
Lolkema JS, Chaban Y, Boekema EJ. Subunit composition, structure, and distribution of bacterial V-type ATPases. J Bioenerg Biomembr 2004; 35:323-35. [PMID: 14635778 DOI: 10.1023/a:1025776831494] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The overall structure of V-ATPase complexes resembles that of F-type ATPases, but the stalk region is different and more complex. Database searches followed by sequence analysis of the five water-soluble stalk region subunits C-G revealed that (i) to date V-ATPases are found in 16 bacterial species, (ii) bacterial V-ATPases are closer to archaeal A-ATPases than to eukaryotic V-ATPases, and (iii) different groups of bacterial V-ATPases exist. Inconsistencies in the nomenclature of types and subunits are addressed. Attempts to assign subunit positions in V-ATPases based on biochemical experiments, chemical cross-linking, and electron microscopy are discussed. A structural model for prokaryotic and eukaryotic V-ATPases is proposed. The prokaryotic V-ATPase is considered to have a central stalk between headpiece and membrane flanked by two peripheral stalks. The eukaryotic V-ATPases have one additional peripheral stalk.
Collapse
Affiliation(s)
- Juke S Lolkema
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
17
|
Iwata M, Imamura H, Stambouli E, Ikeda C, Tamakoshi M, Nagata K, Makyio H, Hankamer B, Barber J, Yoshida M, Yokoyama K, Iwata S. Crystal structure of a central stalk subunit C and reversible association/dissociation of vacuole-type ATPase. Proc Natl Acad Sci U S A 2004; 101:59-64. [PMID: 14684831 PMCID: PMC314138 DOI: 10.1073/pnas.0305165101] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Indexed: 11/18/2022] Open
Abstract
The vacuole-type ATPases (V-ATPases) exist in various intracellular compartments of eukaryotic cells to regulate physiological processes by controlling the acidic environment. The crystal structure of the subunit C of Thermus thermophilus V-ATPase, homologous to eukaryotic subunit d of V-ATPases, has been determined at 1.95-A resolution and located into the holoenzyme complex structure obtained by single particle analysis as suggested by the results of subunit cross-linking experiments. The result shows that V-ATPase is substantially longer than the related F-type ATPase, due to the insertion of subunit C between the V(1) (soluble) and the V(o) (membrane bound) domains. Subunit C, attached to the V(o) domain, seems to have a socket like function in attaching the central-stalk subunits of the V(1) domain. This architecture seems essential for the reversible association/dissociation of the V(1) and the V(o) domains, unique for V-ATPase activity regulation.
Collapse
Affiliation(s)
- Momi Iwata
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, 5800-3 Nagatsuta, Midori-ku, Yokohama 226-0026, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yokoyama K, Nagata K, Imamura H, Ohkuma S, Yoshida M, Tamakoshi M. Subunit arrangement in V-ATPase from Thermus thermophilus. J Biol Chem 2003; 278:42686-91. [PMID: 12913005 DOI: 10.1074/jbc.m305853200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The V0V1-ATPase of Thermus thermophilus catalyzes ATP synthesis coupled with proton translocation. It consists of an ATPase-active V1 part (ABDF) and a proton channel V0 part (CLEGI), but the arrangement of each subunit is still largely unknown. Here we found that acid treatment of V0V1-ATPase induced its dissociation into two subcomplexes, one with subunit composition ABDFCL and the other with EGI. Exposure of the isolated V0 to acid or 8 m urea also produced two subcomplexes, EGI and CL. Thus, the C subunit (homologue of d subunit, yeast Vma6p) associates with the L subunit ring tightly, and I (homologue of 100-kDa subunit, yeast Vph1p), E, and G subunits constitute a stable complex. Based on these observations and our recent demonstration that D, F, and L subunits rotate relative to A3B3 (Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 2312-2315; Yokoyama, K., Nakano, M., Imamura, H., Yoshida, M., and Tamakoshi, M. (2003) J. Biol. Chem. 278, 24255-24258), we propose that C, D, F, and L subunits constitute the central rotor shaft and A, B, E, G, and I subunits comprise the surrounding stator apparatus in the V0V1-ATPase.
Collapse
Affiliation(s)
- Ken Yokoyama
- ATP System Project, ERATO, Japan Science and Technology Corp., 5800-3 Nagatsuta, Midori-ku, Yokohama 226-0026, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Lolkema JS, Boekema EJ. The A-type ATP synthase subunit K of Methanopyrus kandleri is deduced from its sequence to form a monomeric rotor comprising 13 hairpin domains. FEBS Lett 2003; 543:47-50. [PMID: 12753903 DOI: 10.1016/s0014-5793(03)00398-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ntpK gene of the archaeon Methanopyrus kandleri encodes the equivalent of the c subunit of ATP synthase. The gene product contains 1021 residues and consists of 13 homologous domains, each one corresponding to a single helical hairpin. The amino acid sequence of the domains is highly conserved, ranging between 50 and 80% sequence identity. Each of the 13 domains contains a conserved Gln and Glu residue in the N- and C-terminal helix, respectively, both of which are believed to be involved in cation binding. The protein is likely to form the monomeric rotor of the ATP synthase that consists of 13 hairpin domains.
Collapse
Affiliation(s)
- Juke S Lolkema
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands.
| | | |
Collapse
|
20
|
Rizzo VF, Coskun U, Radermacher M, Ruiz T, Armbruster A, Gruber G. Resolution of the V1 ATPase from Manduca sexta into subcomplexes and visualization of an ATPase-active A3B3EG complex by electron microscopy. J Biol Chem 2003; 278:270-5. [PMID: 12414800 DOI: 10.1074/jbc.m208623200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The effect of the ATPase activity of Manduca sexta V(1) ATPase by the amphipathic detergent lauryldimethylamine oxide (LDAO) and the relationship of these activities to the subunit composition of V(1) were studied. The V(1) was highly activated in the presence of 0.04-0.06% LDAO combined with release of the subunits H, C, and F from the enzyme. Increase of LDAO concentration to 0.1-0.2% caused the characterized subcomplexes A(3)B(3)HEGF and A(3)B(3)EG with a remaining ATPase activity of 52 and 65%, respectively. The hydrolytic-active A(3)B(3)EG subcomplex has been visualized by electron microscopy showing six major masses of density in a pseudo-hexagonal arrangement surrounding a seventh mass. The compositions of the various subcomplexes and fragments of V(1) provide an organization of the subunits in the enzyme in the framework of the known three-dimensional reconstruction of the V(1) ATPase from M. sexta (Radermacher, M., Ruiz, T., Wieczorek, H., and Grüber, G. (2001) J. Struct. Biol. 135, 26-37).
Collapse
Affiliation(s)
- Vincenzo F Rizzo
- Universität des Saarlandes, Fachrichtung 2.5-Biophysik, D-66421 Homburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Grüber G, Godovac-Zimmermann J, Link TA, Coskun U, Rizzo VF, Betz C, Bailer SM. Expression, purification, and characterization of subunit E, an essential subunit of the vacuolar ATPase. Biochem Biophys Res Commun 2002; 298:383-91. [PMID: 12413952 DOI: 10.1016/s0006-291x(02)02468-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A recombinant form of subunit E (Vma4p) from yeast vacuolar ATPases (V-ATPases) has been overexpressed in Escherichia coli, purified to homogeneity, and explored by mass spectrometry. Analysis of the secondary structure of Vma4p by circular dichroism spectroscopy indicated 32% alpha-helix and 23% beta-sheet content. Vma4p formed a hybrid-complex with the nucleotide-binding subunits alpha and beta of the closely related F(1) ATPase of the thermophilic bacterium PS3 (TF(1)). The alpha(3)beta(3)E-hybrid-complex had 56% of the ATPase activity of the native TF(1). By comparison, an alpha(3)beta(3)-formation without Vma4p showed about 24% of total TF(1) ATPase activity. This is the first demonstration of a hydrolytically active hybrid-complex consisting of F(1) and V(1) subunits. The arrangement of subunit E in V(1) has been probed using the recombinant Vma4p, the alpha(3)beta(3)E-hybrid-complex together with V(1) and an A(3)B(3)HEG-subcomplex of the V(1) ATPase from Manduca sexta, respectively, indicating that subunit E is shielded in V(1).
Collapse
Affiliation(s)
- Gerhard Grüber
- Fachrichtung 2.5-Biophysik, Universität des Saarlandes, D-66421 Homburg, Germany.
| | | | | | | | | | | | | |
Collapse
|