1
|
López VG, Valencia-Sánchez MI, Abini-Agbomson S, Thomas JF, Lee R, De Ioannes P, Sosa BA, Armache JP, Armache KJ. Read-write mechanisms of H2A ubiquitination by Polycomb repressive complex 1. Nature 2024; 636:755-761. [PMID: 39537923 DOI: 10.1038/s41586-024-08183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Epigenetic inheritance of silent chromatin domains is fundamental to cellular memory during embryogenesis, but it must overcome the dilution of repressive histone modifications during DNA replication1. One such modification, histone H2A lysine 119 monoubiquitination (H2AK119Ub), needs to be re-established by the Polycomb repressive complex 1 (PRC1) E3 ligase to restore the silent Polycomb domain2,3. However, the exact mechanism behind this restoration remains unknown. Here, combining cryo-electron microscopy (cryo-EM) and functional approaches, we characterize the read-write mechanism of the non-canonical PRC1-containing RYBP (ncPRC1RYBP). This mechanism, which functions as a positive-feedback loop in epigenetic regulation4,5, emphasizes the pivotal role of ncPRC1RYBP in restoring H2AK119Ub. We observe an asymmetrical binding of ncPRC1RYBP to H2AK119Ub nucleosomes, guided in part by the N-terminal zinc-finger domain of RYBP binding to residual H2AK119Ub on nascent chromatin. This recognition positions the RING domains of RING1B and BMI1 on the unmodified nucleosome side, enabling recruitment of the E2 enzyme to ubiquitinate H2AK119 within the same nucleosome (intra-nucleosome read-write) or across nucleosomes (inter-nucleosome read-write). Collectively, our findings provide key structural and mechanistic insights into the dynamic interplay of epigenetic regulation, highlighting the significance of ncPRC1RYBP in H2AK119Ub restoration to sustain repressive chromatin domains.
Collapse
Affiliation(s)
- Victoria Godínez López
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Marco Igor Valencia-Sánchez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jonathan F Thomas
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rachel Lee
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Brian A Sosa
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- MOMA Therapeutics, Cambridge, MA, USA
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Hanafiah A, Geng Z, Liu T, Tai YT, Cai W, Wang Q, Christensen N, Liu Y, Yue F, Gao Z. PRC1 and CTCF-Mediated Transition from Poised to Active Chromatin Loops Drives Bivalent Gene Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623456. [PMID: 39605346 PMCID: PMC11601310 DOI: 10.1101/2024.11.13.623456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Polycomb Repressive Complex 1 (PRC1) and CCCTC-binding factor (CTCF) are critical regulators of 3D chromatin architecture that influence cellular transcriptional programs. Spatial chromatin structures comprise conserved compartments, topologically associating domains (TADs), and dynamic, cell-type-specific chromatin loops. Although the role of CTCF in chromatin organization is well-known, the involvement of PRC1 is less understood. In this study, we identified an unexpected, essential role for the canonical Pcgf2-containing PRC1 complex (cPRC1.2), a known transcriptional repressor, in activating bivalent genes during differentiation. Our Hi-C analysis revealed that cPRC1.2 forms chromatin loops at bivalent promoters, rendering them silent yet poised for activation. Using mouse embryonic stem cells (ESCs) with CRISPR/Cas9-mediated gene editing, we found that the loss of Pcgf2, though not affecting the global level of H2AK119ub1, disrupts these cPRC1.2 loops in ESCs and impairs the transcriptional induction of crucial target genes necessary for neuronal differentiation. Furthermore, we identified CTCF enrichment at cPRC1.2 loop anchors and at Polycomb group (PcG) bodies, nuclear foci with concentrated PRC1 and its tethered chromatin domains, suggesting that PRC1 and CTCF cooperatively shape chromatin loop structures. Through virtual 4C and other genomic analyses, we discovered that establishing neuronal progenitor cell (NPC) identity involves a switch from cPRC1.2-mediated chromatin loops to CTCF-mediated active loops, enabling the expression of critical lineage-specific factors. This study uncovers a novel mechanism by which pre-formed PRC1 and CTCF loops at lineage-specific genes maintain a poised state for subsequent gene activation, advancing our understanding of the role of chromatin architecture in controlling cell fate transitions.
Collapse
Affiliation(s)
- Aflah Hanafiah
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Zhuangzhuang Geng
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Yen Teng Tai
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Wenjie Cai
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Qiang Wang
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Neil Christensen
- Department of Pathology and Laboratory Medicine, Penn State College of Medicine, Hershey, PA 17033
| | - Yan Liu
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Zhonghua Gao
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| |
Collapse
|
3
|
Tamburri S, Rustichelli S, Amato S, Pasini D. Navigating the complexity of Polycomb repression: Enzymatic cores and regulatory modules. Mol Cell 2024; 84:3381-3405. [PMID: 39178860 DOI: 10.1016/j.molcel.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Polycomb proteins are a fundamental repressive system that plays crucial developmental roles by orchestrating cell-type-specific transcription programs that govern cell identity. Direct alterations of Polycomb activity are indeed implicated in human pathologies, including developmental disorders and cancer. General Polycomb repression is coordinated by three distinct activities that regulate the deposition of two histone post-translational modifications: tri-methylation of histone H3 lysine 27 (H3K27me3) and histone H2A at lysine 119 (H2AK119ub1). These activities exist in large and heterogeneous multiprotein ensembles consisting of common enzymatic cores regulated by heterogeneous non-catalytic modules composed of a large number of accessory proteins with diverse biochemical properties. Here, we have analyzed the current molecular knowledge, focusing on the functional interaction between the core enzymatic activities and their regulation mediated by distinct accessory modules. This provides a comprehensive analysis of the molecular details that control the establishment and maintenance of Polycomb repression, examining their underlying coordination and highlighting missing information and emerging new features of Polycomb-mediated transcriptional control.
Collapse
Affiliation(s)
- Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
4
|
Ciapponi M, Karlukova E, Schkölziger S, Benda C, Müller J. Structural basis of the histone ubiquitination read-write mechanism of RYBP-PRC1. Nat Struct Mol Biol 2024; 31:1023-1027. [PMID: 38528151 PMCID: PMC11257959 DOI: 10.1038/s41594-024-01258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
Histone H2A monoubiquitination (H2Aub1) by the PRC1 subunit RING1B entails a positive feedback loop, mediated by the RING1B-interacting protein RYBP. We uncover that human RYBP-PRC1 binds unmodified nucleosomes via RING1B but H2Aub1-modified nucleosomes via RYBP. RYBP interactions with both ubiquitin and the nucleosome acidic patch create the high binding affinity that favors RYBP- over RING1B-directed PRC1 binding to H2Aub1-modified nucleosomes; this enables RING1B to monoubiquitinate H2A in neighboring unmodified nucleosomes.
Collapse
Affiliation(s)
- Maria Ciapponi
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Elena Karlukova
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Sven Schkölziger
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Christian Benda
- Department of Structural Cell Biology, Max-Planck Institute of Biochemistry, Martinsried, Germany.
| | - Jürg Müller
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
5
|
Singh R, Hussain J, Kaur A, Jamdare BG, Pathak D, Garg K, Kaur R, Shankar S, Sunkaria A. The hidden players: Shedding light on the significance of post-translational modifications and miRNAs in Alzheimer's disease development. Ageing Res Rev 2023; 90:102002. [PMID: 37423542 DOI: 10.1016/j.arr.2023.102002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent, expensive, lethal, and burdening neurodegenerative disease of this century. The initial stages of this disease are characterized by a reduced ability to encode and store new memories. Subsequent cognitive and behavioral deterioration occurs during the later stages. Abnormal cleavage of amyloid precursor protein (APP) resulting in amyloid-beta (Aβ) accumulation along with hyperphosphorylation of tau protein are the two characteristic hallmarks of AD. Recently, several post-translational modifications (PTMs) have been identified on both Aβ as well as tau proteins. However, a complete understanding of how different PTMs influence the structure and function of proteins in both healthy and diseased conditions is still lacking. It has been speculated that these PTMs might play vital roles in the progression of AD. In addition, several short non-coding microRNA (miRNA) sequences have been found to be deregulated in the peripheral blood of Alzheimer patients. The miRNAs are single-stranded RNAs that control gene expression by causing mRNA degradation, deadenylation, or translational repression and have been implicated in the regulation of several neuronal and glial activities. The lack of comprehensive understanding regarding disease mechanisms, biomarkers, and therapeutic targets greatly hampers the development of effective strategies for early diagnosis and the identification of viable therapeutic targets. Moreover, existing treatment options for managing the disease have proven to be ineffective and provide only temporary relief. Therefore, understanding the role of miRNAs and PTMs in AD can provide valuable insights into disease mechanisms, aid in the identification of biomarkers, facilitate the discovery of novel therapeutic targets, and inspire innovative treatments for this challenging condition.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Julfequar Hussain
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Amandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Balaji Gokul Jamdare
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Deepti Pathak
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kanchan Garg
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ramanpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Shivani Shankar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
6
|
Feng G, Sun Y. The Polycomb group gene rnf2 is essential for central and enteric neural system development in zebrafish. Front Neurosci 2022; 16:960149. [PMID: 36117635 PMCID: PMC9475114 DOI: 10.3389/fnins.2022.960149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The development of central nervous system (CNS) and enteric nervous system (ENS) is under precise and strict control in vertebrates. Whether and how the Polycomb repressive complex 1 (PRC1) is involved in it remain unclear. To investigate the role of PRC1 in the nervous system development, using CRISPR/Cas9 technology, we have generated mutant zebrafish lines for the rnf2 gene which encodes Ring1b, the enzymatic component of the PRC1 complex. We show that rnf2 loss of function leads to abnormal migration and differentiation of neural crest and neural precursor cells. rnf2 mutant embryos exhibit aganglionosis, in which the hindgut is devoid of neurons. In particular, the formation of 5-HT serotonin neurons and myelinating glial cells is defective. Furthermore, ectopic expression of ENS marker genes is observed in forebrain of rnf2 mutant embryos. These findings suggest that the rnf2 gene plays an important role in the migration and differentiation of neural precursor cells, and its absence leads to abnormal development of ENS and CNS in zebrafish.
Collapse
Affiliation(s)
- Gang Feng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Gang Feng,
| | - Yuhua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Yuhua Sun,
| |
Collapse
|
7
|
Shen Q, Lin Y, Li Y, Wang G. Dynamics of H3K27me3 Modification on Plant Adaptation to Environmental Cues. PLANTS 2021; 10:plants10061165. [PMID: 34201297 PMCID: PMC8228231 DOI: 10.3390/plants10061165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Given their sessile nature, plants have evolved sophisticated regulatory networks to confer developmental plasticity for adaptation to fluctuating environments. Epigenetic codes, like tri-methylation of histone H3 on Lys27 (H3K27me3), are evidenced to account for this evolutionary benefit. Polycomb repressive complex 2 (PRC2) and PRC1 implement and maintain the H3K27me3-mediated gene repression in most eukaryotic cells. Plants take advantage of this epigenetic machinery to reprogram gene expression in development and environmental adaption. Recent studies have uncovered a number of new players involved in the establishment, erasure, and regulation of H3K27me3 mark in plants, particularly highlighting new roles in plants’ responses to environmental cues. Here, we review current knowledge on PRC2-H3K27me3 dynamics occurring during plant growth and development, including its writers, erasers, and readers, as well as targeting mechanisms, and summarize the emerging roles of H3K27me3 mark in plant adaptation to environmental stresses.
Collapse
|
8
|
Mammalian CBX7 isoforms p36 and p22 exhibit differential responses to serum, varying functions for proliferation, and distinct subcellular localization. Sci Rep 2020; 10:8061. [PMID: 32415167 PMCID: PMC7228926 DOI: 10.1038/s41598-020-64908-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/20/2020] [Indexed: 01/04/2023] Open
Abstract
CBX7 is a polycomb group protein, and despite being implicated in many diseases, its role in cell proliferation has been controversial: some groups described its pro-proliferative properties, but others illustrated its inhibitory effects on cell growth. To date, the reason for the divergent observations remains unknown. While several isoforms for CBX7 were reported, no studies investigated whether the divergent roles of CBX7 could be due to distinct functions of CBX7 isoforms. In this study, we newly identified mouse CBX7 transcript variant 1 (mCbx7v1), which is homologous to the human CBX7 gene (hCBX7v1) and is expressed in various mouse organs. We revealed that mCbx7v1 and hCBX7v1 encode a 36 kDa protein (p36CBX7) whereas mCbx7 and hCBX7v3 encode a 22 kDa protein (p22CBX7). This study further demonstrated that p36CBX7 was localized to the nucleus and endogenously expressed in proliferating cells whereas p22CBX7 was localized to the cytoplasm, induced by serum starvation in both human and mouse cells, and inhibited cell proliferation. Together, these data indicate that CBX7 isoforms are localized in different locations in a cell and play differing roles in cell proliferation. This varying function of CBX7 isoforms may help us understand the distinct function of CBX7 in various studies.
Collapse
|
9
|
Liu Z, Tardat M, Gill ME, Royo H, Thierry R, Ozonov EA, Peters AH. SUMOylated PRC1 controls histone H3.3 deposition and genome integrity of embryonic heterochromatin. EMBO J 2020; 39:e103697. [PMID: 32395866 PMCID: PMC7327501 DOI: 10.15252/embj.2019103697] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Chromatin integrity is essential for cellular homeostasis. Polycomb group proteins modulate chromatin states and transcriptionally repress developmental genes to maintain cell identity. They also repress repetitive sequences such as major satellites and constitute an alternative state of pericentromeric constitutive heterochromatin at paternal chromosomes (pat‐PCH) in mouse pre‐implantation embryos. Remarkably, pat‐PCH contains the histone H3.3 variant, which is absent from canonical PCH at maternal chromosomes, which is marked by histone H3 lysine 9 trimethylation (H3K9me3), HP1, and ATRX proteins. Here, we show that SUMO2‐modified CBX2‐containing Polycomb Repressive Complex 1 (PRC1) recruits the H3.3‐specific chaperone DAXX to pat‐PCH, enabling H3.3 incorporation at these loci. Deficiency of Daxx or PRC1 components Ring1 and Rnf2 abrogates H3.3 incorporation, induces chromatin decompaction and breakage at PCH of exclusively paternal chromosomes, and causes their mis‐segregation. Complementation assays show that DAXX‐mediated H3.3 deposition is required for chromosome stability in early embryos. DAXX also regulates repression of PRC1 target genes during oogenesis and early embryogenesis. The study identifies a novel critical role for Polycomb in ensuring heterochromatin integrity and chromosome stability in mouse early development.
Collapse
Affiliation(s)
- Zichuan Liu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mathieu Tardat
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Helene Royo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Raphael Thierry
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Antoine Hfm Peters
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
|
11
|
Kim J, Kingston RE. The CBX family of proteins in transcriptional repression and memory. J Biosci 2020; 45:16. [PMID: 31965994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For mammals to develop properly, master regulatory genes must be repressed appropriately in a heritable manner. This review concerns the Polycomb Repressive Complex 1 (PRC1) family and the relationship between the establishment of repression and memory of the repressed state. The primary focus is on the CBX family of proteins in PRC1 complexes and their role in both chromatin compaction and phase separation. These two activities are linked and might contribute to both repression and memory.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
12
|
Paschos K, Bazot Q, Lees J, Farrell PJ, Allday MJ. Requirement for PRC1 subunit BMI1 in host gene activation by Epstein-Barr virus protein EBNA3C. Nucleic Acids Res 2019; 47:2807-2821. [PMID: 30649516 PMCID: PMC6451101 DOI: 10.1093/nar/gky1323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/01/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus proteins EBNA3A, EBNA3B and EBNA3C control hundreds of host genes after infection. Changes in epigenetic marks around EBNA3-regulated genes suggest that they exert transcriptional control in collaboration with epigenetic factors. The roles of polycomb repressive complex (PRC)2 subunit SUZ12 and of PRC1 subunit BMI1 were assessed for their importance in EBNA3-mediated repression and activation. ChIP-seq experiments for SUZ12 and BMI1 were performed to determine their global localization on chromatin and analysis offered further insight into polycomb protein distribution in differentiated cells. Their localization was compared to that of each EBNA3 to resolve longstanding questions about the EBNA3-polycomb relationship. SUZ12 did not co-localize with any EBNA3, whereas EBNA3C co-localized significantly and co-immunoprecipitated with BMI1. In cells expressing a conditional EBNA3C, BMI1 was sequestered to EBNA3C-binding sites after EBNA3C activation. When SUZ12 or BMI1 was knocked down in the same cells, SUZ12 did not contribute to EBNA3C-mediated regulation. Surprisingly, after BMI1 knockdown, EBNA3C repressed equally efficiently but host gene activation by EBNA3C was impaired. This overturns previous assumptions about BMI1/PRC1 functions during EBNA3C-mediated regulation, for the first time identifies directly a host factor involved in EBNA3-mediated activation and provides a new insight into how PRC1 can be involved in gene activation.
Collapse
Affiliation(s)
- Kostas Paschos
- Molecular Virology, Department of Medicine, Imperial College London, London W2 1PG, UK
| | - Quentin Bazot
- Molecular Virology, Department of Medicine, Imperial College London, London W2 1PG, UK
| | - Jonathan Lees
- Oxford Brookes University, Faculty of Health and Life Sciences, Oxford OX3 0BP, Oxfordshire, UK
| | - Paul J Farrell
- Molecular Virology, Department of Medicine, Imperial College London, London W2 1PG, UK
| | - Martin J Allday
- Molecular Virology, Department of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
13
|
Hale R, Sandakly S, Shipley J, Walters Z. Epigenetic Targets in Synovial Sarcoma: A Mini-Review. Front Oncol 2019; 9:1078. [PMID: 31681608 PMCID: PMC6813544 DOI: 10.3389/fonc.2019.01078] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 01/25/2023] Open
Abstract
Synovial Sarcomas (SS) are a type of Soft Tissue Sarcoma (STS) and represent 8-10% of all STS cases. Although SS can arise at any age, it typically affects younger individuals aged 15-35 and is therefore part of both pediatric and adult clinical practices. SS occurs primarily in the limbs, often near joints, but can present anywhere. It is characterized by the recurrent pathognomonic chromosomal translocation t(X;18)(p11.2;q11.2) that most frequently fuses SSX1 or SSX2 genes with SS18. This leads to the expression of the SS18-SSX fusion protein, which causes disturbances in several interacting multiprotein complexes such as the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, also known as the BAF complex and the Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). Furthermore, this promotes widespread epigenetic rewiring, leading to aberrant gene expression that drives the pathogenesis of SS. Good prognoses are characterized predominantly by small tumor size and young patient age. Whereas, high tumor grade and an increased genomic complexity of the tumor constitute poor prognostic factors. The current therapeutic strategy relies on chemotherapy and radiotherapy, the latter of which can lead to chronic side effects for pediatric patients. We will focus on the known roles of SWI/SNF, PRC1, and PRC2 as the main effectors of the SS18-SSX-mediated genome modifications and we present existing biological rationale for potential therapeutic targets and treatment strategies.
Collapse
Affiliation(s)
- Ryland Hale
- Translational Epigenomics Team, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sami Sandakly
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Zoë Walters
- Translational Epigenomics Team, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
14
|
Jangal M, Lebeau B, Witcher M. Beyond EZH2: is the polycomb protein CBX2 an emerging target for anti-cancer therapy? Expert Opin Ther Targets 2019; 23:565-578. [PMID: 31177918 DOI: 10.1080/14728222.2019.1627329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Epigenetic modifications are important regulators of transcription and appropriate gene expression answering an environmental stimulus. In cancer, these epigenetic modifications are altered, which impact the transcriptome, promoting initiation and cancer progression. Thus, targeting epigenetic machinery has proven to be an efficient cancer therapy. Areas covered: We review CBX2 as a therapeutic target. CBX2 is a polycomb protein, responsible for polycomb-repressive complex 1 (PRC1) targeting to chromatin via recognition of the repressive mark H3K27me3. Mechanistically, CBX2 overexpression may be implicated in poor survival by maintaining cancer stem cells in an undifferentiated state and via repression of tumor suppressors. We discuss strategies used to target CBX proteins and provide insights into biomarker considerations that may be important when targeting CBX family members for anti-cancer therapy. Expert opinion: CBX2 inhibition is a promising approach for the targeting of polycomb complexes in the cancer stem cell niche. However, extensive optimization of the current field of small molecules targeting CBX family proteins will be critical to reach in vivo, or clinical, utility.
Collapse
Affiliation(s)
- Maïka Jangal
- a The Lady Davis Institute of the Jewish General Hospital, Department of Oncology , McGill University , Montreal , Canada
| | - Benjamin Lebeau
- a The Lady Davis Institute of the Jewish General Hospital, Department of Oncology , McGill University , Montreal , Canada
| | - Michael Witcher
- a The Lady Davis Institute of the Jewish General Hospital, Department of Oncology , McGill University , Montreal , Canada
| |
Collapse
|
15
|
Tatavosian R, Kent S, Brown K, Yao T, Duc HN, Huynh TN, Zhen CY, Ma B, Wang H, Ren X. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J Biol Chem 2018; 294:1451-1463. [PMID: 30514760 DOI: 10.1074/jbc.ra118.006620] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/28/2018] [Indexed: 01/01/2023] Open
Abstract
Polycomb group (PcG) proteins repress master regulators of development and differentiation through organization of chromatin structure. Mutation and dysregulation of PcG genes cause developmental defects and cancer. PcG proteins form condensates in the cell nucleus, and these condensates are the physical sites of PcG-targeted gene silencing via formation of facultative heterochromatin. However, the physiochemical principles underlying the formation of PcG condensates remain unknown, and their determination could shed light on how these condensates compact chromatin. Using fluorescence live-cell imaging, we observed that the Polycomb repressive complex 1 (PRC1) protein chromobox 2 (CBX2), a member of the CBX protein family, undergoes phase separation to form condensates and that the CBX2 condensates exhibit liquid-like properties. Using site-directed mutagenesis, we demonstrated that the conserved residues of CBX2 within the intrinsically disordered region (IDR), which is the region for compaction of chromatin in vitro, promote the condensate formation both in vitro and in vivo We showed that the CBX2 condensates concentrate DNA and nucleosomes. Using genetic engineering, we report that trimethylation of Lys-27 at histone H3 (H3K27me3), a marker of heterochromatin formation produced by PRC2, had minimal effects on the CBX2 condensate formation. We further demonstrated that the CBX2 condensate formation does not require CBX2-PRC1 subunits; however, the condensate formation of CBX2-PRC1 subunits depends on CBX2, suggesting a mechanism underlying the assembly of CBX2-PRC1 condensates. In summary, our results reveal that PcG condensates assemble through liquid-liquid phase separation (LLPS) and suggest that phase-separated condensates can organize PcG-bound chromatin.
Collapse
Affiliation(s)
- Roubina Tatavosian
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Samantha Kent
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Kyle Brown
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Huy Nguyen Duc
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Thao Ngoc Huynh
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Chao Yu Zhen
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Brian Ma
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Haobin Wang
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado, Denver, Colorado 80217-3364.
| |
Collapse
|
16
|
From Flies to Mice: The Emerging Role of Non-Canonical PRC1 Members in Mammalian Development. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Lau MS, Schwartz MG, Kundu S, Savol AJ, Wang PI, Marr SK, Grau DJ, Schorderet P, Sadreyev RI, Tabin CJ, Kingston RE. Mutation of a nucleosome compaction region disrupts Polycomb-mediated axial patterning. Science 2017; 355:1081-1084. [PMID: 28280206 PMCID: PMC5503153 DOI: 10.1126/science.aah5403] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/26/2017] [Accepted: 02/10/2017] [Indexed: 12/26/2022]
Abstract
Nucleosomes play important structural and regulatory roles by tightly wrapping the DNA that constitutes the metazoan genome. The Polycomb group (PcG) proteins modulate nucleosomes to maintain repression of key developmental genes, including Hox genes whose temporal and spatial expression is tightly regulated to guide patterning of the anterior-posterior body axis. CBX2, a component of the mammalian Polycomb repressive complex 1 (PRC1), contains a compaction region that has the biochemically defined activity of bridging adjacent nucleosomes. Here, we demonstrate that a functional compaction region is necessary for proper body patterning, because mutating this region leads to homeotic transformations similar to those observed with PcG loss-of-function mutations. We propose that CBX2-driven nucleosome compaction is a key mechanism by which PcG proteins maintain gene silencing during mouse development.
Collapse
Affiliation(s)
- Mei Sheng Lau
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Sharmistha Kundu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrej J Savol
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Peggy I Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sharon K Marr
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel J Grau
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Patrick Schorderet
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Polycomb complexes PRC1 and their function in hematopoiesis. Exp Hematol 2017; 48:12-31. [PMID: 28087428 DOI: 10.1016/j.exphem.2016.12.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
Hematopoiesis, the process by which blood cells are continuously produced, is one of the best studied differentiation pathways. Hematological diseases are associated with reiterated mutations in genes encoding important gene expression regulators, including chromatin regulators. Among them, the Polycomb group (PcG) of proteins is an essential system of gene silencing involved in the maintenance of cell identities during differentiation. PcG proteins assemble into two major types of Polycomb repressive complexes (PRCs) endowed with distinct histone-tail-modifying activities. PRC1 complexes are histone H2A E3 ubiquitin ligases and PRC2 trimethylates histone H3. Established conceptions about their activities, mostly derived from work in embryonic stem cells, are being modified by new findings in differentiated cells. Here, we focus on PRC1 complexes, reviewing recent evidence on their intricate architecture, the diverse mechanisms of their recruitment to targets, and the different ways in which they engage in transcriptional control. We also discuss hematopoietic PRC1 gain- and loss-of-function mouse strains, including those that model leukemic and lymphoma diseases, in the belief that these genetic analyses provide the ultimate test for molecular mechanisms driving normal hematopoiesis and hematological malignancies.
Collapse
|
19
|
Luo W, Tan SK. Correlation between CBX8 protein and tumors. Shijie Huaren Xiaohua Zazhi 2016; 24:3899-3904. [DOI: 10.11569/wcjd.v24.i27.3899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chromobox protein homolog 8 (CBX8), the core component of the polycomb group (PcG) protein family PRC1 complex, plays an important role in cell proliferation, senescence, maintenance of stem cell self-renewal and/or relapse, and the occurrence of tumors. Recently, CBX8 was found to be overexpressed in a variety of malignant tumors and closely related to the progression and prognosis of tumors. This paper reviews the current progress in research of CBX8 in tumors.
Collapse
|
20
|
Stein C, Nötzold RR, Riedl S, Bouchard C, Bauer UM. The Arginine Methyltransferase PRMT6 Cooperates with Polycomb Proteins in Regulating HOXA Gene Expression. PLoS One 2016; 11:e0148892. [PMID: 26848759 PMCID: PMC4746130 DOI: 10.1371/journal.pone.0148892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) catalyses asymmetric dimethylation of histone H3 at arginine 2 (H3R2me2a), which has been shown to impede the deposition of histone H3 lysine 4 trimethylation (H3K4me3) by blocking the binding and activity of the MLL1 complex. Importantly, the genomic occurrence of H3R2me2a has been found to coincide with histone H3 lysine 27 trimethylation (H3K27me3), a repressive histone mark generated by the Polycomb repressive complex 2 (PRC2). Therefore, we investigate here a putative crosstalk between PRMT6- and PRC-mediated repression in a cellular model of neuronal differentiation. We show that PRMT6 and subunits of PRC2 as well as PRC1 are bound to the same regulatory regions of rostral HOXA genes and that they control the differentiation-associated activation of these genes. Furthermore, we find that PRMT6 interacts with subunits of PRC1 and PRC2 and that depletion of PRMT6 results in diminished PRC1/PRC2 and H3K27me3 occupancy and in increased H3K4me3 levels at these target genes. Taken together, our data uncover a novel, additional mechanism of how PRMT6 contributes to gene repression by cooperating with Polycomb proteins.
Collapse
Affiliation(s)
- Claudia Stein
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - René Reiner Nötzold
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Stefanie Riedl
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
21
|
Polycomb inhibits histone acetylation by CBP by binding directly to its catalytic domain. Proc Natl Acad Sci U S A 2016; 113:E744-53. [PMID: 26802126 DOI: 10.1073/pnas.1515465113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drosophila Polycomb (PC), a subunit of Polycomb repressive complex 1 (PRC1), is well known for its role in maintaining repression of the homeotic genes and many others and for its binding to trimethylated histone H3 on Lys 27 (H3K27me3) via its chromodomain. Here, we identify a novel activity of PC: inhibition of the histone acetylation activity of CREB-binding protein (CBP). We show that PC and its mammalian CBX orthologs interact directly with the histone acetyltransferase (HAT) domain of CBP, binding to the previously identified autoregulatory loop, whose autoacetylation greatly enhances HAT activity. We identify a conserved PC motif adjacent to the chromodomain required for CBP binding and show that PC binding inhibits acetylation of histone H3. CBP autoacetylation impairs PC binding in vitro, and PC is preferentially associated with unacetylated CBP in vivo. PC knockdown elevates the acetylated H3K27 (H3K27ac) level globally and at promoter regions of some genes that are bound by both PC and CBP. Conversely, PC overexpression decreases the H3K27ac level in vivo and also suppresses CBP-dependent Polycomb phenotypes caused by overexpression of Trithorax, an antagonist of Polycomb silencing. We find that PC is physically associated with the initiating form of RNA polymerase II (Pol II) and that many promoters co-occupied by PC and CBP are associated with paused Pol II, suggesting that PC may play a role in Pol II pausing. These results suggest that PC/PRC1 inhibition of CBP HAT activity plays a role in regulating transcription of both repressed and active PC-regulated genes.
Collapse
|
22
|
Aranda S, Mas G, Di Croce L. Regulation of gene transcription by Polycomb proteins. SCIENCE ADVANCES 2015; 1:e1500737. [PMID: 26665172 PMCID: PMC4672759 DOI: 10.1126/sciadv.1500737] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/17/2015] [Indexed: 05/14/2023]
Abstract
The Polycomb group (PcG) of proteins defines a subset of factors that physically associate and function to maintain the positional identity of cells from the embryo to adult stages. PcG has long been considered a paradigmatic model for epigenetic maintenance of gene transcription programs. Despite intensive research efforts to unveil the molecular mechanisms of action of PcG proteins, several fundamental questions remain unresolved: How many different PcG complexes exist in mammalian cells? How are PcG complexes targeted to specific loci? How does PcG regulate transcription? In this review, we discuss the diversity of PcG complexes in mammalian cells, examine newly identified modes of recruitment to chromatin, and highlight the latest insights into the molecular mechanisms underlying the function of PcGs in transcription regulation and three-dimensional chromatin conformation.
Collapse
Affiliation(s)
- Sergi Aranda
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Gloria Mas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- Institucio Catalana de Recerca i Estudis Avançats, Pg Lluis Companys 23, Barcelona 08010, Spain
- Corresponding author. E-mail:
| |
Collapse
|
23
|
Pengelly AR, Kalb R, Finkl K, Müller J. Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation. Genes Dev 2015; 29:1487-92. [PMID: 26178786 PMCID: PMC4526733 DOI: 10.1101/gad.265439.115] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/24/2015] [Indexed: 11/25/2022]
Abstract
Histone H2A monoubiquitylation (H2Aub) is considered to be a key effector in transcriptional repression by Polycomb-repressive complex 1 (PRC1). We analyzed Drosophila with a point mutation in the PRC1 subunit Sce that abolishes its H2A ubiquitylase activity or with point mutations in the H2A and H2Av residues ubiquitylated by PRC1. H2Aub is essential for viability and required for efficient histone H3 Lys27 trimethylation by PRC2 early in embryogenesis. However, H2Aub-deficient animals fully maintain repression of PRC1 target genes and do not show phenotypes characteristic of Polycomb group mutants. PRC1 thus represses canonical target genes independently of H2Aub.
Collapse
Affiliation(s)
- Ana Raquel Pengelly
- Laboratory of Chromatin Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Reinhard Kalb
- Laboratory of Chromatin Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Katja Finkl
- Laboratory of Chromatin Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jürg Müller
- Laboratory of Chromatin Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
24
|
Merini W, Calonje M. PRC1 is taking the lead in PcG repression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:110-20. [PMID: 25754661 DOI: 10.1111/tpj.12818] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/17/2015] [Accepted: 03/02/2015] [Indexed: 05/28/2023]
Abstract
Polycomb group (PcG) proteins constitute a major epigenetic mechanism for gene repression throughout the plant life. For a long time, the PcG mechanism has been proposed to follow a hierarchical recruitment of PcG repressive complexes (PRCs) to target genes in which the binding of PRC2 and the incorporation of H3 lysine 27 trimethyl marks led to recruitment of PRC1, which in turn mediated H2A monoubiquitination. However, recent studies have turned this model upside-down by showing that PRC1 activity can be required for PRC2 recruitment and H3K27me3 marking. Here, we review the current knowledge on plant PRC1 composition and mechanisms of repression, as well as its role during plant development.
Collapse
Affiliation(s)
- Wiam Merini
- Institute of Plant Biochemistry and Photosynthesis, IBVF-CSIC-University of Seville, Avenida América Vespucio, 49, Isla de La Cartuja, 41092, Seville, Spain
| | - Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis, IBVF-CSIC-University of Seville, Avenida América Vespucio, 49, Isla de La Cartuja, 41092, Seville, Spain
| |
Collapse
|
25
|
Bravo M, Nicolini F, Starowicz K, Barroso S, Calés C, Aguilera A, Vidal M. Polycomb RING1A/RING1B-dependent histone H2A monoubiquitylation at pericentromeric regions promotes S phase progression. J Cell Sci 2015; 128:3660-71. [DOI: 10.1242/jcs.173021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/12/2015] [Indexed: 12/22/2022] Open
Abstract
Functions of Polycomb products extend beyond their well known activity as transcriptional regulators to include genome duplication processes. Polycomb activities in DNA replication and DNA damage repair are unclear, particularly without induced replicative stress. We have used a cellular model of conditionally inactive Polycomb E3 ligases (RING1A and RING1B) that monoubiquitylate lysine 119 of histone H2A (H2AK119Ub) to examine DNA replication in unperturbed cells. We identify slow elongation and fork stalling during DNA replication, associated to the accumulation of mid and late S cells. Signs of replicative stress and colocalization of double strand breaks with chromocenters, the sites of coalesced pericentromeric heterocromatic (PCH) domains, were enriched in cells at mid S, the stage at which PCH is replicated. Altered replication was rescued by targeted monoubiquitylation of PCH through methyl-CpG binding domain protein 1. The acute senescence associated to the depletion of RING1 proteins, mediated by CDKN1A/p21 upregulation, could be uncoupled from a response to DNA damage. These findings link cell proliferation and Polycomb RING1A/B to S phase progression through a specific function in PCH replication.
Collapse
Affiliation(s)
- Mónica Bravo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Fabio Nicolini
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Katarzyna Starowicz
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Sonia Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Sevilla, Spain
| | - Carmela Calés
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Sevilla, Spain
| | - Miguel Vidal
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| |
Collapse
|
26
|
Zhen CY, Duc HN, Kokotovic M, Phiel CJ, Ren X. Cbx2 stably associates with mitotic chromosomes via a PRC2- or PRC1-independent mechanism and is needed for recruiting PRC1 complex to mitotic chromosomes. Mol Biol Cell 2014; 25:3726-39. [PMID: 25232004 PMCID: PMC4230780 DOI: 10.1091/mbc.e14-06-1109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cbx2 is immobilized at mitotic chromosomes, and the immobilization is independent of PRC1 or PRC2. Cbx2 plays important roles in recruiting PRC1 complex to mitotic chromosomes. This study provides novel insights into the PcG epigenetic memory passing down through cell divisions. Polycomb group (PcG) proteins are epigenetic transcriptional factors that repress key developmental regulators and maintain cellular identity through mitosis via a poorly understood mechanism. Using quantitative live-cell imaging in mouse ES cells and tumor cells, we demonstrate that, although Polycomb repressive complex (PRC) 1 proteins (Cbx-family proteins, Ring1b, Mel18, and Phc1) exhibit variable capacities of association with mitotic chromosomes, Cbx2 overwhelmingly binds to mitotic chromosomes. The recruitment of Cbx2 to mitotic chromosomes is independent of PRC1 or PRC2, and Cbx2 is needed to recruit PRC1 complex to mitotic chromosomes. Quantitative fluorescence recovery after photobleaching analysis indicates that PRC1 proteins rapidly exchange at interphasic chromatin. On entry into mitosis, Cbx2, Ring1b, Mel18, and Phc1 proteins become immobilized at mitotic chromosomes, whereas other Cbx-family proteins dynamically bind to mitotic chromosomes. Depletion of PRC1 or PRC2 protein has no effect on the immobilization of Cbx2 on mitotic chromosomes. We find that the N-terminus of Cbx2 is needed for its recruitment to mitotic chromosomes, whereas the C-terminus is required for its immobilization. Thus these results provide fundamental insights into the molecular mechanisms of epigenetic inheritance.
Collapse
Affiliation(s)
- Chao Yu Zhen
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| | - Huy Nguyen Duc
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| | - Marko Kokotovic
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| | - Christopher J Phiel
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217-3364
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| |
Collapse
|
27
|
Chandler H, Patel H, Palermo R, Brookes S, Matthews N, Peters G. Role of polycomb group proteins in the DNA damage response--a reassessment. PLoS One 2014; 9:e102968. [PMID: 25057768 PMCID: PMC4109945 DOI: 10.1371/journal.pone.0102968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/25/2014] [Indexed: 12/02/2022] Open
Abstract
A growing body of evidence suggests that Polycomb group (PcG) proteins, key regulators of lineage specific gene expression, also participate in the repair of DNA double-strand breaks (DSBs) but evidence for direct recruitment of PcG proteins at specific breaks remains limited. Here we explore the association of Polycomb repressive complex 1 (PRC1) components with DSBs generated by inducible expression of the AsiSI restriction enzyme in normal human fibroblasts. Based on immunofluorescent staining, the co-localization of PRC1 proteins with components of the DNA damage response (DDR) in these primary cells is unconvincing. Moreover, using chromatin immunoprecipitation and deep sequencing (ChIP-seq), which detects PRC1 proteins at common sites throughout the genome, we did not find evidence for recruitment of PRC1 components to AsiSI-induced DSBs. In contrast, the S2056 phosphorylated form of DNA-PKcs and other DDR proteins were detected at a subset of AsiSI sites that are predominantly at the 5′ ends of transcriptionally active genes. Our data question the idea that PcG protein recruitment provides a link between DSB repairs and transcriptional repression.
Collapse
Affiliation(s)
- Hollie Chandler
- Molecular Oncology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics Service, Cancer Research UK London Research Institute, London, United Kingdom
| | - Richard Palermo
- Molecular Oncology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Sharon Brookes
- Molecular Oncology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Nik Matthews
- Advanced Sequencing Facility, Cancer Research UK London Research Institute, London, United Kingdom
| | - Gordon Peters
- Molecular Oncology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Abstract
From mammals to plants, the Polycomb Group (PcG) machinery plays a crucial role in maintaining the repression of genes that are not required in a specific differentiation status. However, the mechanism by which PcG machinery mediates gene repression is still largely unknown in plants. Compared to animals, few PcG proteins have been identified in plants, not only because just some of these proteins are clearly conserved to their animal counterparts, but also because some PcG functions are carried out by plant-specific proteins, most of them as yet uncharacterized. For a long time, the apparent lack of Polycomb Repressive Complex (PRC)1 components in plants was interpreted according to the idea that plants, as sessile organisms, do not need a long-term repression, as they must be able to respond rapidly to environmental signals; however, some PRC1 components have been recently identified, indicating that this may not be the case. Furthermore, new data regarding the recruitment of PcG complexes and maintenance of PcG repression in plants have revealed important differences to what has been reported so far. This review highlights recent progress in plant PcG function, focusing on the role of the putative PRC1 components.
Collapse
Affiliation(s)
- Myriam Calonje
- Institute of Plant Biochemistry and Photosynthesis (IBVF), Avenida América Vespucio, 49, Isla de La Cartuja, 41092 Seville, Spain
| |
Collapse
|
29
|
Wu HA, Balsbaugh JL, Chandler H, Georgilis A, Zullow H, Shabanowitz J, Hunt DF, Gil J, Peters G, Bernstein E. Mitogen-activated protein kinase signaling mediates phosphorylation of polycomb ortholog Cbx7. J Biol Chem 2013; 288:36398-408. [PMID: 24194518 DOI: 10.1074/jbc.m113.486266] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cbx7 is one of five mammalian orthologs of the Drosophila Polycomb. Cbx7 recognizes methylated lysine residues on the histone H3 tail and contributes to gene silencing in the context of the Polycomb repressive complex 1 (PRC1). However, our knowledge of Cbx7 post-translational modifications remains limited. Through combined biochemical and mass spectrometry approaches, we report a novel phosphorylation site on mouse Cbx7 at residue Thr-118 (Cbx7T118ph), near the highly conserved Polycomb box. The generation of a site-specific antibody to Cbx7T118ph demonstrates that Cbx7 is phosphorylated via MAPK signaling. Furthermore, we find Cbx7T118 phosphorylation in murine mammary carcinoma cells, which can be blocked by MEK inhibitors. Upon EGF stimulation, Cbx7 interacts robustly with other members of PRC1. To test the role of Cbx7T118 phosphorylation in gene silencing, we employed a RAS-induced senescence model system. We demonstrate that Cbx7T118 phosphorylation moderately enhances repression of its target gene p16. In summary, we have identified and characterized a novel MAPK-mediated phosphorylation site on Cbx7 and propose that mitogen signaling to the chromatin template regulates PRC1 function.
Collapse
Affiliation(s)
- Hsan-au Wu
- From the Department of Oncological Sciences and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Šmigová J, Juda P, Bártová E, Raška I. Dynamics of Polycomb chromatin domains under conditions of increased molecular crowding. Biol Cell 2013; 105:519-34. [DOI: 10.1111/boc.201300022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/07/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Jana Šmigová
- Charles University in Prague; First Faculty of Medicine; Institute of Cellular Biology and Pathology; Czech Republic
| | - Pavel Juda
- Charles University in Prague; First Faculty of Medicine; Institute of Cellular Biology and Pathology; Czech Republic
| | - Eva Bártová
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i; Brno Czech Republic
| | - Ivan Raška
- Charles University in Prague; First Faculty of Medicine; Institute of Cellular Biology and Pathology; Czech Republic
| |
Collapse
|
31
|
Molitor A, Shen WH. The polycomb complex PRC1: composition and function in plants. J Genet Genomics 2013; 40:231-8. [PMID: 23706298 DOI: 10.1016/j.jgg.2012.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 12/17/2012] [Accepted: 12/24/2012] [Indexed: 11/24/2022]
Abstract
Polycomb group (PcG) proteins are crucial epigenetic regulators conferring transcriptional memory to cell lineages. They assemble into multi-protein complexes, e.g., Polycomb Repressive Complex 1 and 2 (PRC1, PRC2), which are thought to act in a sequential manner to stably maintain gene repression. PRC2 induces histone H3 lysine 27 (H3K27) trimethylation (H3K27me3), which is subsequently read by PRC1 that further catalyzes H2A monoubiquitination (H2Aub1), creating a transcriptional silent chromatin conformation. PRC2 components are conserved in plants and have been extensively characterized in Arabidopsis. In contrast, PRC1 composition and function are more diverged between animals and plants. Only more recently, PRC1 existence in plants has been documented. Here we review the aspects of plant specific and conserved PRC1 and highlight critical roles of PRC1 components in seed embryonic trait determinacy, shoot stem cell fate determinacy, and flower development in Arabidopsis.
Collapse
Affiliation(s)
- Anne Molitor
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | |
Collapse
|
32
|
van Arensbergen J, García-Hurtado J, Maestro MA, Correa-Tapia M, Rutter GA, Vidal M, Ferrer J. Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells. Genes Dev 2012; 27:52-63. [PMID: 23271347 DOI: 10.1101/gad.206094.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Polycomb-mediated gene repression is essential for embryonic development, yet its precise role in lineage-specific programming is poorly understood. Here we inactivated Ring1b, encoding a polycomb-repressive complex 1 subunit, in pancreatic multipotent progenitors (Ring1b(progKO)). This caused transcriptional derepression of a subset of direct Ring1b target genes in differentiated pancreatic islet cells. Unexpectedly, Ring1b inactivation in differentiated islet β cells (Ring1b(βKO)) did not cause derepression, even after multiple rounds of cell division, suggesting a role for Ring1b in the establishment but not the maintenance of repression. Consistent with this notion, derepression in Ring1b(progKO) islets occurred preferentially in genes that were targeted de novo by Ring1b during pancreas development. The results support a model in which Ring1b bookmarks its target genes during embryonic development, and these genes are maintained in a repressed state through Ring1b-independent mechanisms in terminally differentiated cells. This work provides novel insights into how epigenetic mechanisms contribute to shaping the transcriptional identity of differentiated lineages.
Collapse
Affiliation(s)
- Joris van Arensbergen
- Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Endoh M, Endo TA, Endoh T, Isono KI, Sharif J, Ohara O, Toyoda T, Ito T, Eskeland R, Bickmore WA, Vidal M, Bernstein BE, Koseki H. Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet 2012; 8:e1002774. [PMID: 22844243 PMCID: PMC3405999 DOI: 10.1371/journal.pgen.1002774] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 05/04/2012] [Indexed: 01/08/2023] Open
Abstract
Two distinct Polycomb complexes, PRC1 and PRC2, collaborate to maintain epigenetic repression of key developmental loci in embryonic stem cells (ESCs). PRC1 and PRC2 have histone modifying activities, catalyzing mono-ubiquitination of histone H2A (H2AK119u1) and trimethylation of H3 lysine 27 (H3K27me3), respectively. Compared to H3K27me3, localization and the role of H2AK119u1 are not fully understood in ESCs. Here we present genome-wide H2AK119u1 maps in ESCs and identify a group of genes at which H2AK119u1 is deposited in a Ring1-dependent manner. These genes are a distinctive subset of genes with H3K27me3 enrichment and are the central targets of Polycomb silencing that are required to maintain ESC identity. We further show that the H2A ubiquitination activity of PRC1 is dispensable for its target binding and its activity to compact chromatin at Hox loci, but is indispensable for efficient repression of target genes and thereby ESC maintenance. These data demonstrate that multiple effector mechanisms including H2A ubiquitination and chromatin compaction combine to mediate PRC1-dependent repression of genes that are crucial for the maintenance of ESC identity. Utilization of these diverse effector mechanisms might provide a means to maintain a repressive state that is robust yet highly responsive to developmental cues during ES cell self-renewal and differentiation. Polycomb-group (PcG) proteins play essential roles in the epigenetic regulation of gene expression during development. PcG proteins form two distinct multimeric complexes, PRC1 and PRC2. In the widely accepted hierarchical model, PRC2 is recruited to specific genomic locations and catalyzes trimethylation of H3 lysine 27 (H3K27me3), thereby creating binding sites for PRC1, which then catalyzes mono-ubiquitination of histone H2A (H2AK119u1). Recently, PRC1 has been shown to be able to compact chromatin structure at target loci independently of its histone ubiquitination activity. Therefore, the role of H2AK119u1 still remains unclear. To gain insight into this issue, we used ChIP-on-chip analysis to map H2AK119u1 genome-wide in mouse ES cells (ESCs). The data demonstrate that H2AK119u1 occupies a distinctive subset of genes with H3K27me3 enrichment. These genes are the central targets of Polycomb silencing to maintain ESC identity. We further show that the H2A ubiquitination activity of PRC1 is dispensable for its target binding and its activity to compact chromatin at Hox loci, but is indispensable for efficient repression of target genes and therefore ESC maintenance. We propose that multiple effector mechanisms including H2A ubiquitination and chromatin compaction combine to mediate PRC1-dependent repression of developmental genes to maintain the identity of ESCs.
Collapse
Affiliation(s)
- Mitsuhiro Endoh
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Yokohama, Japan
- * E-mail: (ME); (HK)
| | - Takaho A. Endo
- RIKEN Bioinformatics and System Engineering Division, Yokohama, Japan
| | - Tamie Endoh
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Kyo-ichi Isono
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Osamu Ohara
- Laboratories for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Tetsuro Toyoda
- RIKEN Bioinformatics and System Engineering Division, Yokohama, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Ragnhild Eskeland
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Miguel Vidal
- Cell Proliferation and Development, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Research Unit for Immunoepigenetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Bradley E. Bernstein
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Yokohama, Japan
- * E-mail: (ME); (HK)
| |
Collapse
|
34
|
Völkel P, Le Faou P, Vandamme J, Pira D, Angrand PO. A human Polycomb isoform lacking the Pc box does not participate to PRC1 complexes but forms protein assemblies and represses transcription. Epigenetics 2012; 7:482-91. [PMID: 22419124 DOI: 10.4161/epi.19741] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polycomb repression controls the expression of hundreds of genes involved in development and is mediated by essentially two classes of chromatin-associated protein complexes. The Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27, an epigenetic mark that serves as a docking site for the PRC1 protein complex. Drosophila core PRC1 is composed of four subunits: Polycomb (Pc), Posterior sex combs (Psc), Polyhomeotic (Ph) and Sex combs extra (Sce). Each of these proteins has multiple orthologs in vertebrates, thus generating an enormous scope for potential combinatorial diversity. In particular, mammalian genomes encode five Pc family members: CBX2, CBX4, CBX6, CBX7 and CBX8. To complicate matters further, distinct isoforms might arise from single genes. Here, we address the functional role of the two human CBX2 isoforms. Owing to different polyadenylation sites and alternative splicing events, the human CBX2 locus produces two transcripts: a 5-exon transcript that encodes the 532-amino acid CBX2-1 isoform that contains the conserved chromodomain and Pc box and a 4-exon transcript encoding a shorter isoform, CBX2-2, lacking the Pc box but still possessing a chromodomain. Using biochemical approaches and a novel in vivo imaging assay, we show that the short CBX2-2 isoform lacking the Pc box, does not participate in PRC1 protein complexes, but self-associates in vivo and forms complexes of high molecular weight. Furthermore, the CBX2 short isoform is still able to repress transcription, suggesting that Polycomb repression might occur in the absence of PRC1 formation.
Collapse
Affiliation(s)
- Pamela Völkel
- Chromatinomics, Interdisciplinary Research Institute, CNRS USR 3078, Université de Lille 1 Sciences et Technologies, Villeneuve d'Ascq Cedex, France
| | | | | | | | | |
Collapse
|
35
|
Smigová J, Juda P, Cmarko D, Raška I. Fine structure of the "PcG body" in human U-2 OS cells established by correlative light-electron microscopy. Nucleus 2012; 2:219-28. [PMID: 21818415 DOI: 10.4161/nucl.2.3.15737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/02/2011] [Accepted: 04/05/2011] [Indexed: 02/02/2023] Open
Abstract
Polycomb group (PcG) proteins of the Polycomb repressive complex 1 (PRC1) are found to be diffusely distributed in nuclei of cells from various species. However they can also be localized in intensely fluorescent foci, whether imaged using GFP fusions to proteins of PRC1 complex, or by conventional immunofluorescence microscopy. Such foci are termed PcG bodies, and are believed to be situated in the nuclear intechromatin compartment. However, an ultrastructural description of the PcG body has not been reported to date. To establish the ultrastructure of PcG bodies in human U-2 OS cells stably expressing recombinant polycomb BMI1-GFP protein, we used correlative light-electron microscopy (CLEM) implemented with high-pressure freezing, cryosubstitution and on-section labeling of BMI1 protein with immunogold. This approach allowed us to clearly identify fluorescent PcG bodies, not as distinct nuclear bodies, but as nuclear domains enriched in separated heterochromatin fascicles. Importantly, high-pressure freezing and cryosubstitution allowed for a high and clear-cut immunogold BMI1 labeling of heterochromatin structures throughout the nucleus. The density of immunogold labeled BMI1 in the heterochromatin fascicles corresponding to fluorescent "PcG bodies" did not differ from the density of labeling of heterochromatin fascicles outside of the "PcG bodies". Accordingly, an appearance of the fluorescent "PcG bodies" seems to reflect a local accumulation of the labeled heterochromatin structures in the investigated cells. The results of this study should allow expansion of the knowledge about the biological relevance of the "PcG bodies" in human cells.
Collapse
|
36
|
Grau DJ, Chapman BA, Garlick JD, Borowsky M, Francis NJ, Kingston RE. Compaction of chromatin by diverse Polycomb group proteins requires localized regions of high charge. Genes Dev 2011; 25:2210-21. [PMID: 22012622 DOI: 10.1101/gad.17288211] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Polycomb group (PcG) proteins are required for the epigenetic maintenance of developmental genes in a silent state. Proteins in the Polycomb-repressive complex 1 (PRC1) class of the PcG are conserved from flies to humans and inhibit transcription. One hypothesis for PRC1 mechanism is that it compacts chromatin, based in part on electron microscopy experiments demonstrating that Drosophila PRC1 compacts nucleosomal arrays. We show that this function is conserved between Drosophila and mouse PRC1 complexes and requires a region with an overrepresentation of basic amino acids. While the active region is found in the Posterior Sex Combs (PSC) subunit in Drosophila, it is unexpectedly found in a different PRC1 subunit, a Polycomb homolog called M33, in mice. We provide experimental support for the general importance of a charged region by predicting the compacting capability of PcG proteins from species other than Drosophila and mice and by testing several of these proteins using solution assays and microscopy. We infer that the ability of PcG proteins to compact chromatin in vitro can be predicted by the presence of domains of high positive charge and that PRC1 components from a variety of species conserve this highly charged region. This supports the hypothesis that compaction is a key aspect of PcG function.
Collapse
Affiliation(s)
- Daniel J Grau
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
37
|
Gutiérrez L, Oktaba K, Scheuermann JC, Gambetta MC, Ly-Hartig N, Müller J. The role of the histone H2A ubiquitinase Sce in Polycomb repression. Development 2011; 139:117-27. [PMID: 22096074 PMCID: PMC3253035 DOI: 10.1242/dev.074450] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polycomb group (PcG) proteins exist in multiprotein complexes that modify chromatin to repress transcription. Drosophila PcG proteins Sex combs extra (Sce; dRing) and Posterior sex combs (Psc) are core subunits of PRC1-type complexes. The Sce:Psc module acts as an E3 ligase for monoubiquitylation of histone H2A, an activity thought to be crucial for repression by PRC1-type complexes. Here, we created an Sce knockout allele and show that depletion of Sce results in loss of H2A monoubiquitylation in developing Drosophila. Genome-wide profiling identified a set of target genes co-bound by Sce and all other PRC1 subunits. Analyses in mutants lacking individual PRC1 subunits reveals that these target genes comprise two distinct classes. Class I genes are misexpressed in mutants lacking any of the PRC1 subunits. Class II genes are only misexpressed in animals lacking the Psc-Su(z)2 and Polyhomeotic (Ph) subunits but remain stably repressed in the absence of the Sce and Polycomb (Pc) subunits. Repression of class II target genes therefore does not require Sce and H2A monoubiquitylation but might rely on the ability of Psc-Su(z)2 and Ph to inhibit nucleosome remodeling or to compact chromatin. Similarly, Sce does not provide tumor suppressor activity in larval tissues under conditions in which Psc-Su(z)2, Ph and Pc show such activity. Sce and H2A monoubiquitylation are therefore only crucial for repression of a subset of genes and processes regulated by PRC1-type complexes. Sce synergizes with the Polycomb repressive deubiquitinase (PR-DUB) complex to repress transcription at class I genes, suggesting that H2A monoubiquitylation must be appropriately balanced for their transcriptional repression.
Collapse
Affiliation(s)
- Luis Gutiérrez
- EMBL, Gene Expression Programme, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Pax6 regulates boundary-cell specification in the rat hindbrain. Mech Dev 2011; 128:289-302. [DOI: 10.1016/j.mod.2011.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/12/2011] [Accepted: 04/04/2011] [Indexed: 11/20/2022]
|
39
|
Le Faou P, Völkel P, Angrand PO. The zebrafish genes encoding the Polycomb repressive complex (PRC) 1. Gene 2011; 475:10-21. [DOI: 10.1016/j.gene.2010.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 12/23/2010] [Indexed: 12/31/2022]
|
40
|
Jones A, Joo HY, Robbins W, Wang H. Purification of histone ubiquitin ligases from HeLa cells. Methods 2011; 54:315-25. [PMID: 21402158 DOI: 10.1016/j.ymeth.2011.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/02/2011] [Accepted: 03/06/2011] [Indexed: 12/13/2022] Open
Abstract
Posttranslational histone modifications play an important role in regulating chromatin based nuclear processes including transcription. Of these modifications, histone ubiquitination is among the least understood. Histone ubiquitination predominately targets histones H2A and H2B. While ubiquitination of H2B is evolutionarily conserved from budding yeast to mammals, ubiquitination of H2A has not been detected in budding yeast, worms, or plants. Until recently, studies of histone ubiquitination lagged far behind the study of other histone modifications, largely because antibodies specific for ubiquitinated histones are difficult to generate. Despite this obstacle, the identification of the enzymatic machineries involved in histone ubiquitination, together with the successful use of a combination of genetic and immunoblot approaches to detect ubiquitinated histones, have helped to reveal important regulatory roles for this modification in transcriptional initiation and elongation, cell cycle progression, and DNA damage response. With the aid of the recently developed ubiquitinated histone-specific antibodies, an intriguing link between histone ubiquitination and cancer development has been established. While the enzymes involved in H2B ubiquitination were identified first in budding yeast and subsequently in higher organisms based on gene homology, the identification of the enzymatic machineries involved in H2A ubiquitination largely depended on a biochemical purification approach. The unbiased search for ubiquitin ligases targeting histones also led to the identification of a H3 and H4 ubiquitin ligase. Here we detail a protocol for the biochemical approach to identify histone ubiquitin ligase(s) from HeLa cells. Similar approaches have been successfully used to identify histone methyltransferases, histone demethylases, chromatin remodeling factors, and general transcription factors. So long as an in vitro enzymatic assay can be established, the approach we describe can be easily adapted to identify other histone and non-histone modifying enzymes.
Collapse
Affiliation(s)
- Amanda Jones
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Kaul Human Genetics Building 402A, 720 South 20th Street, Birmingham, AL 35294, United States
| | | | | | | |
Collapse
|
41
|
Garcia-Tuñon I, Guallar D, Alonso-Martin S, Benito AA, Benítez-Lázaro A, Pérez-Palacios R, Muniesa P, Climent M, Sánchez M, Vidal M, Schoorlemmer J. Association of Rex-1 to target genes supports its interaction with Polycomb function. Stem Cell Res 2011; 7:1-16. [PMID: 21530438 DOI: 10.1016/j.scr.2011.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 12/31/2022] Open
Abstract
Rex-1/Zfp42 displays a remarkably restricted pattern of expression in preimplantation embryos, primary spermatocytes, and undifferentiated mouse embryonic stem (ES) cells and is frequently used as a marker gene for pluripotent stem cells. To understand the role of Rex-1 in selfrenewal and pluripotency, we used Rex-1 association as a measure to identify potential target genes, and carried out chromatin-immunoprecipitation assays in combination with gene specific primers to identify genomic targets Rex-1 associates with. We find association of Rex-1 to several genes described previously as bivalently marked regulators of differentiation and development, whose repression in mouse embryonic stem (ES) cells is Polycomb Group-mediated, and controlled directly by Ring1A/B. To substantiate the hypothesis that Rex-1 contributes to gene regulation by PcG, we demonstrate interactions of Rex-1 and YY2 (a close relative of YY1) with Ring1 proteins and the PcG-associated proteins RYBP and YAF2, in line with interactions reported previously for YY1. We also demonstrate the presence of Rex-1 protein in both trophectoderm and Inner Cell Mass of the mouse blastocyst and in both ES and in trophectoderm stem (TS) cells. In TS cells, we were unable to demonstrate association of Rex-1 to the genes it associates with in ES cells, suggesting that association may be cell-type specific. Rex-1 might fine-tune pluripotency in ES cells by modulating Polycomb-mediated gene regulation.
Collapse
Affiliation(s)
- I Garcia-Tuñon
- Regenerative Medicine Programme, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Avda. Gómez Laguna, 25, Pl. 11, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vandamme J, Völkel P, Rosnoblet C, Le Faou P, Angrand PO. Interaction proteomics analysis of polycomb proteins defines distinct PRC1 complexes in mammalian cells. Mol Cell Proteomics 2011; 10:M110.002642. [PMID: 21282530 DOI: 10.1074/mcp.m110.002642] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycomb group (PcG) proteins maintain transcriptional repression of hundreds of genes involved in development, signaling or cancer using chromatin-based epigenetic mechanisms. Biochemical studies in Drosophila have revealed that PcG proteins associate in at least two classes of protein complexes known as Polycomb repressive complexes 1 and 2 (PRC1 and PRC2). Drosophila core PRC1 is composed of four subunits, Polycomb (Pc), Sex combs extra (Sce), Polyhomeotic (Ph), and Posterior sex combs (Psc). Each of these proteins has multiple orthologs in vertebrates classified respectively as the CBX, RING1/RNF2, PHC, and BMI1/PCGF families. Mammalian genomes encode five CBX family members (CBX2, CBX4, CBX6, CBX7, and CBX8) that are believed to have distinct biological functions. Here, we applied a tandem affinity purification (TAP) approach coupled with tandem mass spectrometry (MS/MS) methodologies in order to identify interacting partners of CBX family proteins under the same experimental conditions. Our analysis identified with high confidence about 20 proteins co-eluted with CBX2 and CBX7 tagged proteins, about 40 with CBX4, and around 60 with CBX6 and CBX8. We provide evidences that the CBX family proteins are mutually exclusive and define distinct PRC1-like protein complexes. CBX proteins also interact with different efficiencies with the other PRC1 components. Among the novel CBX interacting partners, protein kinase 2 associates with all CBX-PRC1 protein complexes, whereas 14-3-3 proteins specifically bind to CBX4. 14-3-3 protein binding to CBX4 appears to modulate the interaction between CBX4 and the BMI1/PCGF components of PRC1, but has no effect on CBX4-RING1/RNF2 interaction. Finally, we suggest that differences in CBX protein interactions would account, at least in part, for distinct subnuclear localization of the CBX family members.
Collapse
Affiliation(s)
- Julien Vandamme
- Chromatinomics, Interdisciplinary Research Institute, Univ. Lille Nord de France, Université de Lille 1 Sciences et Technologies/CNRS USR 3078, 50 Avenue Halley, Parc Scientifique de la Haute Borne, F-59658 Villeneuve d'Ascq Cedex, France
| | | | | | | | | |
Collapse
|
43
|
Wang R, Taylor AB, Leal BZ, Chadwell LV, Ilangovan U, Robinson AK, Schirf V, Hart PJ, Lafer EM, Demeler B, Hinck AP, McEwen DG, Kim CA. Polycomb group targeting through different binding partners of RING1B C-terminal domain. Structure 2010; 18:966-75. [PMID: 20696397 DOI: 10.1016/j.str.2010.04.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/21/2010] [Accepted: 04/25/2010] [Indexed: 12/31/2022]
Abstract
RING1B, a Polycomb Group (PcG) protein, binds methylated chromatin through its association with another PcG protein called Polycomb (Pc). However, RING1B can associate with nonmethylated chromatin suggesting an alternate mechanism for RING1B interaction with chromatin. Here, we demonstrate that two proteins with little sequence identity between them, the Pc cbox domain and RYBP, bind the same surface on the C-terminal domain of RING1B (C-RING1B). Pc cbox and RYBP each fold into a nearly identical, intermolecular beta sheet with C-RING1B and a loop structure which are completely different in the two proteins. Both the beta sheet and loop are required for stable binding and transcription repression. Further, a mutation engineered to disrupt binding on the Drosophila dRING1 protein prevents chromatin association and PcG function in vivo. These results suggest that PcG targeting to different chromatin locations relies, in part, on binding partners of C-RING1B that are diverse in sequence and structure.
Collapse
Affiliation(s)
- Renjing Wang
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, MSC 7760, 7703 Floyd Curl Drive, San Antonio, TX 78229-3990, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wilkinson F, Pratt H, Atchison ML. PcG recruitment by the YY1 REPO domain can be mediated by Yaf2. J Cell Biochem 2010; 109:478-86. [PMID: 19960508 DOI: 10.1002/jcb.22424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Polycomb Group (PcG) complex of transcriptional repressors is critical for the maintenance of stage-specific developmental gene expression, stem cell maintenance and for large-scale chromosomal dynamics. Functional deficiency of a single PcG gene can severely compromise PcG function, leading to developmental defects, embryonic lethality, or a number of malignancies. Despite the critical nature of PcG proteins, the mechanisms by which these complexes mediate their effects are relatively uncharacterized. Nearly all vertebrate PcG proteins lack inherent DNA binding capacity, making it unclear how they are targeted to Polycomb response element (PRE) sequences. Transcription factor YY1 is a functional ortholog of a Drosophila PcG protein, Pleiohomeotic (PHO), one of the few PcG proteins with specific DNA binding capability, and YY1 can recruit PcG proteins to specific DNA sequences. A small 25 amino acid YY1 domain (the REPO domain) is necessary and sufficient for recruitment of PcG proteins to DNA and for transcriptional repression. We show here that the YY1 REPO domain interacts with PcG protein Yaf2 and recruits Yaf2 to DNA. Interaction is lost when the YY1 REPO domain is deleted. In addition we show that Yaf2, when linked to a heterologous DNA binding domain, can recruit PcG proteins to DNA leading to transcriptional repression. When the Drosophila homolog of Yaf2 (dRYBP) is mutated, PcG recruitment to DNA is reduced. Taken together, our results suggest that Yaf2 serves as a molecular bridge between YY1 and other PcG complex proteins.
Collapse
Affiliation(s)
- Frank Wilkinson
- School of Science and Health, Philadelphia University, Schoolhouse Lane and Henry Avenue, Philadelphia, Pennsylvania 19144, USA.
| | | | | |
Collapse
|
45
|
Abstract
In higher eukaryotes, histone acetyltransferase MOF (male absent on the first) is the major enzyme that acetylates histone H4 lysine 16, a prevalent mark associated with chromatin decondensation. Recent studies show that MOF resides in two different but evolutionarily conserved complexes, MSL and MOF-MSL1v1. Although these two MOF complexes have indistinguishable activity on histone H4 K16, they differ dramatically in acetylating non-histone substrate p53. The regulation of MOF activity in these complexes remains elusive. Given the evolution conservation of MOF and the importance of H4 K16 acetylation in maintaining higher order chromatin structures, understanding the function and regulation of MOF bears great significance. Here, we discussed the key differences in two MOF complexes that may shed light on the regulation of their distinct acetyltransferase activities. We also discussed coordinated functions of two MOF complexes with different histone methyltransferase complexes in transcription regulation.
Collapse
|
46
|
Linkage of the potent leukemogenic activity of Meis1 to cell-cycle entry and transcriptional regulation of cyclin D3. Blood 2010; 115:4071-82. [PMID: 20237320 DOI: 10.1182/blood-2009-06-225573] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MEIS1 is a three-amino acid loop extension class homeodomain-containing homeobox (HOX) cofactor that plays key roles in normal hematopoiesis and leukemogenesis. Expression of Meis1 is rate-limiting in MLL-associated leukemias and potently interacts with Hox and NUP98-HOX genes in leukemic transformation to promote self-renewal and proliferation of hematopoietic progenitors. The oncogenicity of MEIS1 has been linked to its transcriptional activation properties. To further reveal the pathways triggered by Meis1, we assessed the function of a novel engineered fusion form of Meis1, M33-MEIS1, designed to confer transcriptional repression to Meis1 target genes that are otherwise up-regulated in normal and malignant hematopoiesis. Retroviral overexpression of M33-Meis1 resulted in the rapid and complete eradication of M33-Meis1-transduced normal and leukemic cells in vivo. Cell-cycle analysis showed that M33-Meis1 impeded the progression of cells from G(1)-to-S phase, which correlated with significant reduction of cyclin D3 levels and the inhibition of retinoblastoma (pRb) hyperphosphorylation. We identified cyclin D3 as a direct downstream target of MEIS1 and M33-MEIS1 and showed that the G(1)-phase accumulation and growth suppression induced by M33-Meis1 was partially relieved by overexpression of cyclin D3. This study provides strong evidence linking the growth-promoting activities of Meis1 to the cyclin D-pRb cell-cycle control pathway.
Collapse
|
47
|
Senthilkumar R, Mishra RK. Novel motifs distinguish multiple homologues of Polycomb in vertebrates: expansion and diversification of the epigenetic toolkit. BMC Genomics 2009; 10:549. [PMID: 19930571 PMCID: PMC2784810 DOI: 10.1186/1471-2164-10-549] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/20/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polycomb group (PcG) proteins maintain expression pattern of genes set early during development. Although originally isolated as regulators of homeotic genes, PcG members play a key role in epigenetic mechanism that maintains the expression state of a large number of genes. Polycomb (PC) is conserved during evolution and while invertebrates have one PC gene, vertebrates have five or more homologues. It remains unclear if different vertebrate PC homologues have distinct or overlapping functions. We have identified and compared the sequence of PC homologues in various organisms to analyze similarities and differences that shaped the evolutionary history of this key regulatory protein. RESULTS All PC homologues have an N-terminal chromodomain and a C-terminal Polycomb Repressor box. We searched the protein and genome sequence database of various organisms for these signatures and identified approximately 100 PC homologues. Comparative analysis of these sequences led to the identification of a novel insect specific motif and several novel and signature motifs in the vertebrate homologue: two in CBX2 (Cx2.1 and Cx2.2), four in CBX4 (Cx4.1, Cx4.2, Cx4.3 and Cx4.4), three in CBX6 (Cx6.1, Cx6.2 and Cx6.3) and one in CBX8 (Cx8.1). Additionally, adjacent to the chromodomain, all the vertebrate homologues have a DNA binding motif - AT-Hook in case of CBX2, which was known earlier, and 'AT-Hook Like' motif, from this study, in other PC homologues. CONCLUSION Our analysis shows that PC is an ancient gene dating back to pre bilaterian origin that has not only been conserved but has also expanded during the evolution of complexity. Unique motifs acquired by each homologue have been maintained for more than 500 millions years indicating their functional relevance in boosting the epigenetic 'tool kit'. We report the presence of a DNA interaction motif adjacent to chromodomain in all vertebrate PC homologues and suggest a three-way 'PC-histoneH3-DNA' interaction that can restrict nucleosome dynamics. The signature motifs of PC homologues and insect specific motif identified in this study pave the way to understand the molecular basis of epigenetic mechanisms.
Collapse
|
48
|
Bezsonova I, Walker JR, Bacik JP, Duan S, Dhe-Paganon S, Arrowsmith CH. Ring1B contains a ubiquitin-like docking module for interaction with Cbx proteins. Biochemistry 2009; 48:10542-8. [PMID: 19791798 DOI: 10.1021/bi901131u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polycomb group (PcG) proteins are a special set of repressive transcription factors involved in epigenetic modifications of chromatin. They form two functionally distinct groups of catalytically active complexes: Polycomb repressive complex 1 (PRC1) and 2 (PRC2). The PRC1 complex is an important yet poorly characterized multiprotein histone ubiquitylation machine responsible for maintaining transcriptionally silent states of genes through histone H2A K119 modification. The Ring domain containing subunits of PRC1 also have substrate-targeting domains that interact with Cbx proteins, which have been implicated in chromatin and RNA binding. In this work, we present a high resolution structure of the C-terminal domain of Ring1B, revealing a variant ubiquitin-like fold with a distinct conserved surface region. On the basis of crystal structure and mutational analysis of this domain we show that the conserved surface is responsible for interaction with Cbx members of the PRC1 and homodimer formation. These data suggest a mechanism by which Ring1B serves as an adaptor that mediates binding between the members of the PRC1 complex and the nucleosome.
Collapse
Affiliation(s)
- Irina Bezsonova
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario, M5G 1L5, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Karakuzu O, Wang DP, Cameron S. MIG-32 and SPAT-3A are PRC1 homologs that control neuronal migration in Caenorhabditis elegans. Development 2009; 136:943-53. [PMID: 19211678 PMCID: PMC2727560 DOI: 10.1242/dev.029363] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2009] [Indexed: 11/20/2022]
Abstract
The Polycomb repression complex 2 (PRC2) methylates histone H3 lysine 27 at target genes to modify gene expression, and this mark is recognized by PRC1, which ubiquitylates histone H2A. In Caenorhabditis elegans, a complex of the MES-2, MES-3 and MES-6 proteins is functionally analogous to the PRC2 complex, but the functional analog of PRC1, and indeed whether C. elegans has such a complex, has been unclear. We describe here that MIG-32 and SPAT-3A are functional analogs of PRC1 in C. elegans, where they are required for neuronal migrations and during vulval development. mig-32 and spat-3 mutants are defective in H2A ubiquitylation, and have nervous system defects that partially overlap with those of mes mutants. However, unlike the mes mutants, mig-32 and spat-3 mutants are fertile, suggesting that PRC1 function is not absolutely required in the germline for essential functions of PRC2.
Collapse
Affiliation(s)
- Ozgur Karakuzu
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | |
Collapse
|
50
|
Lee SJ, Choi D, Rhim H, Choo HJ, Ko YG, Kim CG, Kang S. PHB2 interacts with RNF2 and represses CP2c-stimulated transcription. Mol Cell Biochem 2008; 319:69-77. [DOI: 10.1007/s11010-008-9878-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/03/2008] [Indexed: 01/13/2023]
|