1
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2025; 437:168770. [PMID: 39214283 PMCID: PMC11781076 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
2
|
Grzechnik P, Mischo HE. Fateful Decisions of Where to Cut the Line: Pathology Associated with Aberrant 3' End Processing and Transcription Termination. J Mol Biol 2025; 437:168802. [PMID: 39321865 PMCID: PMC11870849 DOI: 10.1016/j.jmb.2024.168802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Aberrant gene expression lies at the heart of many pathologies. This review will point out how 3' end processing, the final mRNA-maturation step in the transcription cycle, is surprisingly prone to regulated as well as stochastic variations with a wide range of consequences. Whereas smaller variations contribute to the plasticity of gene expression, larger alternations to 3' end processing and coupled transcription termination can lead to pathological consequences. These can be caused by the local mutation of one gene or affect larger numbers of genes systematically, if aspects of the mechanisms of 3' end processing and transcription termination are altered.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, United Kingdom
| | - Hannah E Mischo
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
3
|
Hughes AL, Steinmetz LM. Golden Gate Assembly of Transcriptional Unit Libraries into a Rearrangeable Gene Cluster. Methods Mol Biol 2025; 2850:387-416. [PMID: 39363084 DOI: 10.1007/978-1-0716-4220-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Both regulatory sequences and genome organization contribute to the production of diverse transcript isoforms, which can influence how genes, or sets of genes, are expressed. An efficient, modular approach is needed to generate the combinatorial complexity required to empirically test many combinations of different regulatory sequences and different gene orders. Golden Gate assembly provides such a tool for seamless one-pot cleavage and ligation, by using type IIS restriction enzymes, which cleave outside of their recognition site. In addition to reducing the number of steps, this one-pot reaction can improve correct assemblies by the continued cleavage of self-ligation products that retain the recognition site. Switching the specific restriction enzyme used between steps allows for modular assembly of several units. A protocol to perform modular assemblies with two type IIS restriction enzymes, namely BsaI-v2-HF and BsmBI-v2, is described here. This protocol includes a description for generating destination vectors that add loxPsym sites between transcriptional units, allowing for diversification of gene order, orientation, and spacing.
Collapse
Affiliation(s)
- Amanda L Hughes
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Hao JD, Liu QL, Liu MX, Yang X, Wang LM, Su SY, Xiao W, Zhang MQ, Zhang YC, Zhang L, Chen YS, Yang YG, Ren J. DDX21 mediates co-transcriptional RNA m 6A modification to promote transcription termination and genome stability. Mol Cell 2024; 84:1711-1726.e11. [PMID: 38569554 DOI: 10.1016/j.molcel.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.
Collapse
Affiliation(s)
- Jin-Dong Hao
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Lan Liu
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Meng-Xia Liu
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xing Yang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu-Ming Wang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Yi Su
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Xiao
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Qi Zhang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Chang Zhang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan Zhang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yu-Sheng Chen
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun-Gui Yang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Ren
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Montez M, Majchrowska M, Krzyszton M, Bokota G, Sacharowski S, Wrona M, Yatusevich R, Massana F, Plewczynski D, Swiezewski S. Promoter-pervasive transcription causes RNA polymerase II pausing to boost DOG1 expression in response to salt. EMBO J 2023; 42:e112443. [PMID: 36705062 PMCID: PMC9975946 DOI: 10.15252/embj.2022112443] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Eukaryotic genomes are pervasively transcribed by RNA polymerase II. Yet, the molecular and biological implications of such a phenomenon are still largely puzzling. Here, we describe noncoding RNA transcription upstream of the Arabidopsis thaliana DOG1 gene, which governs salt stress responses and is a key regulator of seed dormancy. We find that expression of the DOG1 gene is induced by salt stress, thereby causing a delay in seed germination. We uncover extensive transcriptional activity on the promoter of the DOG1 gene, which produces a variety of lncRNAs. These lncRNAs, named PUPPIES, are co-directionally transcribed and extend into the DOG1 coding region. We show that PUPPIES RNAs respond to salt stress and boost DOG1 expression, resulting in delayed germination. This positive role of pervasive PUPPIES transcription on DOG1 gene expression is associated with augmented pausing of RNA polymerase II, slower transcription and higher transcriptional burst size. These findings highlight the positive role of upstream co-directional transcription in controlling transcriptional dynamics of downstream genes.
Collapse
Affiliation(s)
- Miguel Montez
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Maria Majchrowska
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Grzegorz Bokota
- Laboratory of Functional and Structural Genomics, Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Sebastian Sacharowski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Magdalena Wrona
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Ruslan Yatusevich
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Ferran Massana
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Centre of New TechnologiesUniversity of WarsawWarsawPoland
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland
| | - Szymon Swiezewski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| |
Collapse
|
6
|
Morgan M, Shiekhattar R, Shilatifard A, Lauberth SM. It's a DoG-eat-DoG world-altered transcriptional mechanisms drive downstream-of-gene (DoG) transcript production. Mol Cell 2022; 82:1981-1991. [PMID: 35487209 PMCID: PMC9208299 DOI: 10.1016/j.molcel.2022.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
The past decade has revolutionized our understanding of regulatory noncoding RNAs (ncRNAs). Among the most recently identified ncRNAs are downstream-of-gene (DoG)-containing transcripts that are produced by widespread transcriptional readthrough. The discovery of DoGs has set the stage for future studies to address many unanswered questions regarding the mechanisms that promote readthrough transcription, RNA processing, and the cellular functions of the unique transcripts. In this review, we summarize current findings regarding the biogenesis, function, and mechanisms regulating this exciting new class of RNA molecules.
Collapse
Affiliation(s)
- Marc Morgan
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shannon M Lauberth
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
7
|
Nissani N, Ulitsky I. Unique features of transcription termination and initiation at closely spaced tandem human genes. Mol Syst Biol 2022; 18:e10682. [PMID: 35362230 PMCID: PMC8972054 DOI: 10.15252/msb.202110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
The synthesis of RNA polymerase II (Pol2) products, which include messenger RNAs or long noncoding RNAs, culminates in transcription termination. How the transcriptional termination of a gene impacts the activity of promoters found immediately downstream of it, and which can be subject to potential transcriptional interference, remains largely unknown. We examined in an unbiased manner the features of the intergenic regions between pairs of 'tandem genes'-closely spaced (< 2 kb) human genes found on the same strand. Intergenic regions separating tandem genes are enriched with guanines and are characterized by binding of several proteins, including AGO1 and AGO2 of the RNA interference pathway. Additionally, we found that Pol2 is particularly enriched in this region, and it is lost upon perturbations affecting splicing or transcriptional elongation. Perturbations of genes involved in Pol2 pausing and R loop biology preferentially affect expression of downstream genes in tandem gene pairs. Overall, we find that features associated with Pol2 pausing and accumulation rather than those associated with avoidance of transcriptional interference are the predominant driving force shaping short tandem intergenic regions.
Collapse
Affiliation(s)
- Noa Nissani
- Departments of Biological Regulation and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Igor Ulitsky
- Departments of Biological Regulation and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
8
|
Brooks AN, Hughes AL, Clauder-Münster S, Mitchell LA, Boeke JD, Steinmetz LM. Transcriptional neighborhoods regulate transcript isoform lengths and expression levels. Science 2022; 375:1000-1005. [PMID: 35239377 DOI: 10.1126/science.abg0162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sequence features of genes and their flanking regulatory regions are determinants of RNA transcript isoform expression and have been used as context-independent plug-and-play modules in synthetic biology. However, genetic context-including the adjacent transcriptional environment-also influences transcript isoform expression levels and boundaries. We used synthetic yeast strains with stochastically repositioned genes to systematically disentangle the effects of sequence and context. Profiling 120 million full-length transcript molecules across 612 genomic perturbations, we observed sequence-independent alterations to gene expression levels and transcript isoform boundaries that were influenced by neighboring transcription. We identified features of transcriptional context that could predict these alterations and used these features to engineer a synthetic circuit where transcript length was controlled by neighboring transcription. This demonstrates how positional context can be leveraged in synthetic genome engineering.
Collapse
Affiliation(s)
- Aaron N Brooks
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Amanda L Hughes
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Sandra Clauder-Münster
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA.,Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Repression of the Hox gene abd-A by ELAV-mediated Transcriptional Interference. PLoS Genet 2021; 17:e1009843. [PMID: 34780465 PMCID: PMC8629391 DOI: 10.1371/journal.pgen.1009843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Intergenic transcription is a common feature of eukaryotic genomes and performs important and diverse cellular functions. Here, we investigate the iab-8 ncRNA from the Drosophila Bithorax Complex and show that this RNA is able to repress the transcription of genes located at its 3’ end by a sequence-independent, transcriptional interference mechanism. Although this RNA is expressed in the early epidermis and CNS, we find that its repressive activity is limited to the CNS, where, in wild-type embryos, it acts on the Hox gene, abd-A, located immediately downstream of it. The CNS specificity is achieved through a 3’ extension of the transcript, mediated by the neuronal-specific, RNA-binding protein, ELAV. Loss of ELAV activity eliminates the 3’ extension and results in the ectopic activation of abd-A. Thus, a tissue-specific change in the length of a ncRNA is used to generate a precise pattern of gene expression in a higher eukaryote. Although all of the cells making up complex organisms contain the same genetic material, they are nevertheless able to create the diverse tissues of the body. They do this by changing the genes they express. Thus, understanding how genes are controlled in a tissue-specific fashion is one of the primary interests of molecular genetics. Within the bithorax homeotic complex of the fruit fly Drosophila melanogaster, we, and others, previously showed that a >92 kb-long non-coding RNA, called the iab-8 ncRNA, downregulates many important developmental genes, including its genomic downstream neighbor, the homeotic gene abd-A. This downregulation is important as its loss is linked to female sterility. Interestingly, we find that the iab-8 ncRNA regulates abd-A through a mechanism called transcriptional interference, where one gene downregulates a target gene by transcribing over it. In the case of iab-8, this process is limited to the posterior central nervous system, where the iab-8 ncRNA is specifically extended into the abd-A gene by the action of the neuronal-specific RNA binding protein, ELAV. Overall, our work highlights a largely unexplored mechanism by which tissue-specific gene regulation is achieved.
Collapse
|
10
|
Zhao T, Vvedenskaya IO, Lai WKM, Basu S, Pugh BF, Nickels BE, Kaplan CD. Ssl2/TFIIH function in transcription start site scanning by RNA polymerase II in Saccharomyces cerevisiae. eLife 2021; 10:e71013. [PMID: 34652274 PMCID: PMC8589449 DOI: 10.7554/elife.71013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, RNA polymerase II (Pol II) selects transcription start sites (TSSs) by a unidirectional scanning process. During scanning, a preinitiation complex (PIC) assembled at an upstream core promoter initiates at select positions within a window ~40-120 bp downstream. Several lines of evidence indicate that Ssl2, the yeast homolog of XPB and an essential and conserved subunit of the general transcription factor (GTF) TFIIH, drives scanning through its DNA-dependent ATPase activity, therefore potentially controlling both scanning rate and scanning extent (processivity). To address questions of how Ssl2 functions in promoter scanning and interacts with other initiation activities, we leveraged distinct initiation-sensitive reporters to identify novel ssl2 alleles. These ssl2 alleles, many of which alter residues conserved from yeast to human, confer either upstream or downstream TSS shifts at the model promoter ADH1 and genome-wide. Specifically, tested ssl2 alleles alter TSS selection by increasing or narrowing the distribution of TSSs used at individual promoters. Genetic interactions of ssl2 alleles with other initiation factors are consistent with ssl2 allele classes functioning through increasing or decreasing scanning processivity but not necessarily scanning rate. These alleles underpin a residue interaction network that likely modulates Ssl2 activity and TFIIH function in promoter scanning. We propose that the outcome of promoter scanning is determined by two functional networks, the first being Pol II activity and factors that modulate it to determine initiation efficiency within a scanning window, and the second being Ssl2/TFIIH and factors that modulate scanning processivity to determine the width of the scanning widow.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Irina O Vvedenskaya
- Department of Genetics and Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - William KM Lai
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Shrabani Basu
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - B Franklin Pugh
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - Craig D Kaplan
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| |
Collapse
|
11
|
Castro Alvarez JJ, Revel M, Cléard F, Pauli D, Karch F, Maeda RK. Repression of the Hox gene abd-A by ELAV-mediated Transcriptional Interference.. [DOI: 10.1101/2021.09.29.462302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ABSTRACTIntergenic transcription is a common feature of eukaryotic genomes and performs important and diverse cellular functions. Here, we investigate the iab-8 ncRNA from the Drosophila Bithorax Complex and show that this RNA is able to repress the transcription of genes located at its 3’ end by a sequence-independent, transcriptional interference mechanism. Although this RNA is expressed in the early epidermis and CNS, we find that its repressive activity is limited to the CNS, where in wild-type embryos, it acts on the Hox gene, abd-A located immediately downstream of it. The CNS specificity is achieved through a 3’ extension of the transcript, mediated by the neuronal-specific, RNA-binding protein, ELAV. Loss of ELAV activity eliminates the 3’ extension and results in the ectopic activation of abd-A. Thus, a tissue-specific change in the length of a ncRNA is used to generate a precise pattern of gene expression in a higher eukaryote.
Collapse
|
12
|
Abstract
Microorganisms live in dense and diverse communities, with interactions between cells guiding community development and phenotype. The ability to perturb specific intercellular interactions in space and time provides a powerful route to determining the critical interactions and design rules for microbial communities. Approaches using optogenetic tools to modulate these interactions offer promise, as light can be exquisitely controlled in space and time. We report new plasmids for rapid integration of an optogenetic system into Saccharomyces cerevisiae to engineer light control of expression of a gene of interest. In a proof-of-principle study, we demonstrate the ability to control a model cooperative interaction, namely, the expression of the enzyme invertase (SUC2) which allows S. cerevisiae to hydrolyze sucrose and utilize it as a carbon source. We demonstrate that the strength of this cooperative interaction can be tuned in space and time by modulating light intensity and through spatial control of illumination. Spatial control of light allows cooperators and cheaters to be spatially segregated, and we show that the interplay between cooperative and inhibitory interactions in space can lead to pattern formation. Our strategy can be applied to achieve spatiotemporal control of expression of a gene of interest in S. cerevisiae to perturb both intercellular and interspecies interactions. IMPORTANCE Recent advances in microbial ecology have highlighted the importance of intercellular interactions in controlling the development, composition, and resilience of microbial communities. In order to better understand the role of these interactions in governing community development, it is critical to be able to alter them in a controlled manner. Optogenetically controlled interactions offer advantages over static perturbations or chemically controlled interactions, as light can be manipulated in space and time and does not require the addition of nutrients or antibiotics. Here, we report a system for rapidly achieving light control of a gene of interest in the important model organism Saccharomyces cerevisiae and demonstrate that by controlling expression of the enzyme invertase, we can control cooperative interactions. This approach will be useful for understanding intercellular and interspecies interactions in natural and synthetic microbial consortia containing S. cerevisiae and serves as a proof of principle for implementing this approach in other consortia.
Collapse
|
13
|
Shuman S. Transcriptional interference at tandem lncRNA and protein-coding genes: an emerging theme in regulation of cellular nutrient homeostasis. Nucleic Acids Res 2020; 48:8243-8254. [PMID: 32720681 PMCID: PMC7470944 DOI: 10.1093/nar/gkaa630] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 12/29/2022] Open
Abstract
Tandem transcription interference occurs when the act of transcription from an upstream promoter suppresses utilization of a co-oriented downstream promoter. Because eukaryal genomes are liberally interspersed with transcription units specifying long non-coding (lnc) RNAs, there are many opportunities for lncRNA synthesis to negatively affect a neighboring protein-coding gene. Here, I review two eukaryal systems in which lncRNA interference with mRNA expression underlies a regulated biological response to nutrient availability. Budding yeast SER3 is repressed under serine-replete conditions by transcription of an upstream SRG1 lncRNA that traverses the SER3 promoter and elicits occlusive nucleosome rearrangements. SER3 is de-repressed by serine withdrawal, which leads to shut-off of SRG1 synthesis. The fission yeast phosphate homeostasis (PHO) regulon comprises three phosphate acquisition genes – pho1, pho84, and tgp1 – that are repressed under phosphate-replete conditions by 5′ flanking lncRNAs prt, prt2, and nc-tgp1, respectively. lncRNA transcription across the PHO mRNA promoters displaces activating transcription factor Pho7. PHO mRNAs are transcribed during phosphate starvation when lncRNA synthesis abates. The PHO regulon is de-repressed in phosphate-replete cells by genetic manipulations that favor ‘precocious’ lncRNA 3′-processing/termination upstream of the mRNA promoters. PHO lncRNA termination is governed by the Pol2 CTD code and is subject to metabolite control by inositol pyrophosphates.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
14
|
Hildreth AE, Ellison MA, Francette AM, Seraly JM, Lotka LM, Arndt KM. The nucleosome DNA entry-exit site is important for transcription termination and prevention of pervasive transcription. eLife 2020; 9:e57757. [PMID: 32845241 PMCID: PMC7449698 DOI: 10.7554/elife.57757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022] Open
Abstract
Compared to other stages in the RNA polymerase II transcription cycle, the role of chromatin in transcription termination is poorly understood. We performed a genetic screen in Saccharomyces cerevisiae to identify histone mutants that exhibit transcriptional readthrough of terminators. Amino acid substitutions identified by the screen map to the nucleosome DNA entry-exit site. The strongest H3 mutants revealed widespread genomic changes, including increased sense-strand transcription upstream and downstream of genes, increased antisense transcription overlapping gene bodies, and reduced nucleosome occupancy particularly at the 3' ends of genes. Replacement of the native sequence downstream of a gene with a sequence that increases nucleosome occupancy in vivo reduced readthrough transcription and suppressed the effect of a DNA entry-exit site substitution. Our results suggest that nucleosomes can facilitate termination by serving as a barrier to transcription and highlight the importance of the DNA entry-exit site in broadly maintaining the integrity of the transcriptome.
Collapse
Affiliation(s)
- A Elizabeth Hildreth
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Mitchell A Ellison
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Alex M Francette
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Julia M Seraly
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Lauren M Lotka
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| | - Karen M Arndt
- Department of Biological Sciences, University of PittsburghPittsburghUnited States
| |
Collapse
|
15
|
Roth SJ, Heinz S, Benner C. ARTDeco: automatic readthrough transcription detection. BMC Bioinformatics 2020; 21:214. [PMID: 32456667 PMCID: PMC7249449 DOI: 10.1186/s12859-020-03551-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mounting evidence suggests several diseases and biological processes target transcription termination to misregulate gene expression. Disruption of transcription termination leads to readthrough transcription past the 3' end of genes, which can result in novel transcripts, changes in epigenetic states and altered 3D genome structure. RESULTS We developed Automatic Readthrough Transcription Detection (ARTDeco), a tool to detect and analyze multiple features of readthrough transcription from RNA-seq and other next-generation sequencing (NGS) assays that profile transcriptional activity. ARTDeco robustly quantifies the global severity of readthrough phenotypes, and reliably identifies individual genes that fail to terminate (readthrough genes), are aberrantly transcribed due to upstream termination failure (read-in genes), and novel transcripts created as a result of readthrough (downstream of gene or DoG transcripts). We used ARTDeco to characterize readthrough transcription observed during influenza A virus (IAV) infection, validating its specificity and sensitivity by comparing its performance in samples infected with a mutant virus that fails to block transcription termination. We verify ARTDeco's ability to detect readthrough as well as identify read-in genes from different experimental assays across multiple experimental systems with known defects in transcriptional termination, and show how these results can be leveraged to improve the interpretation of gene expression and downstream analysis. Applying ARTDeco to a gene expression data set from IAV-infected monocytes from different donors, we find strong evidence that read-in gene-associated expression quantitative trait loci (eQTLs) likely regulate genes upstream of read-in genes. This indicates that taking readthrough transcription into account is important for the interpretation of eQTLs in systems where transcription termination is blocked. CONCLUSIONS ARTDeco aids researchers investigating readthrough transcription in a variety of systems and contexts.
Collapse
Affiliation(s)
- Samuel J Roth
- Bioinformatics and Systems Biology Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0640, USA
| | - Sven Heinz
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0640, USA
| | - Christopher Benner
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0640, USA.
| |
Collapse
|
16
|
Xu H, Liu JJ, Liu Z, Li Y, Jin YS, Zhang J. Synchronization of stochastic expressions drives the clustering of functionally related genes. SCIENCE ADVANCES 2019; 5:eaax6525. [PMID: 31633028 PMCID: PMC6785257 DOI: 10.1126/sciadv.aax6525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/10/2019] [Indexed: 05/18/2023]
Abstract
Functionally related genes tend to be chromosomally clustered in eukaryotic genomes even after the exclusion of tandem duplicates, but the biological significance of this widespread phenomenon is unclear. We propose that stochastic expression fluctuations of neighboring genes resulting from chromatin dynamics are more or less synchronized such that their expression ratio is more stable than that for unlinked genes. Consequently, chromosomal clustering could be advantageous when the expression ratio of the clustered genes needs to stay constant, for example, because of the accumulation of toxic compounds when this ratio is altered. Evidence from manipulative experiments on the yeast GAL cluster, comprising three chromosomally adjacent genes encoding enzymes catalyzing consecutive reactions in galactose catabolism, unequivocally supports this hypothesis and elucidates how disorder in one biological phenomenon-gene expression noise-could prompt the emergence of order in another-genome organization.
Collapse
Affiliation(s)
- Haiqing Xu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhen Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ying Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Yu X, Martin PGP, Michaels SD. BORDER proteins protect expression of neighboring genes by promoting 3' Pol II pausing in plants. Nat Commun 2019; 10:4359. [PMID: 31554790 PMCID: PMC6761125 DOI: 10.1038/s41467-019-12328-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Ensuring that one gene's transcription does not inappropriately affect the expression of its neighbors is a fundamental challenge to gene regulation in a genomic context. In plants, which lack homologs of animal insulator proteins, the mechanisms that prevent transcriptional interference are not well understood. Here we show that BORDER proteins are enriched in intergenic regions and prevent interference between closely spaced genes on the same strand by promoting the 3' pausing of RNA polymerase II at the upstream gene. In the absence of BORDER proteins, 3' pausing associated with the upstream gene is reduced and shifts into the promoter region of the downstream gene. This is consistent with a model in which BORDER proteins inhibit transcriptional interference by preventing RNA polymerase from intruding into the promoters of downstream genes.
Collapse
Affiliation(s)
- Xuhong Yu
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN, 47405, USA
| | - Pascal G P Martin
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN, 47405, USA.,Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Scott D Michaels
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN, 47405, USA.
| |
Collapse
|
18
|
Ji D, Manavski N, Meurer J, Zhang L, Chi W. Regulated chloroplast transcription termination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:69-77. [PMID: 30414934 DOI: 10.1016/j.bbabio.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
Abstract
Transcription termination by the RNA polymerase (RNAP) is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of the RNAP from the DNA template. However, the functional importance of termination extends beyond the mere definition of the gene borders. Chloroplasts originate from cyanobacteria and possess their own gene expression system. Plastids have a unique hybrid transcription system consisting of two different types of RNAPs of dissimilar phylogenetic origin together with several additional nuclear encoded components. Although the basic components involved in chloroplast transcription have been identified, little attention has been paid to the chloroplast transcription termination. Recent identification and functional characterization of novel factors in regulating transcription termination in Arabidopsis chloroplasts via genetic and biochemical approaches have provided insights into the mechanisms and significance of transcription termination in chloroplast gene expression. This review provides an overview of the current knowledge of the transcription termination in chloroplasts.
Collapse
Affiliation(s)
- Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Nikolay Manavski
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moleculaire des Plantes, 12 rue du General Zimmer, 67084 Strasbourg, France
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
19
|
Miki TS, Carl SH, Großhans H. Two distinct transcription termination modes dictated by promoters. Genes Dev 2017; 31:1870-1879. [PMID: 29021241 PMCID: PMC5695088 DOI: 10.1101/gad.301093.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/15/2017] [Indexed: 02/06/2023]
Abstract
In this study, Miki et al. performed a genome-wide investigation of RNA polymerase II transcription termination in XRN2-deficient Caenorhabditis elegans and observed two distinct modes of termination. Their findings indicate that different termination mechanisms may work with different configurations of Pol II complexes dictated by promoters. Transcription termination determines the ends of transcriptional units and thereby ensures the integrity of the transcriptome and faithful gene regulation. Studies in yeast and human cells have identified the exoribonuclease XRN2 as a key termination factor for protein-coding genes. Here we performed a genome-wide investigation of RNA polymerase II (Pol II) transcription termination in XRN2-deficient Caenorhabditis elegans and observed two distinct modes of termination. Although a subset of genes requires XRN2, termination of other genes appears both independent of, and refractory to, XRN2. XRN2 independence is not merely a consequence of failure to recruit XRN2, since XRN2 is present on—and promotes Pol II accumulation near the polyadenylation sites of—both gene classes. Unexpectedly, promoters instruct the choice of termination mode, but XRN2-independent termination additionally requires a compatible region downstream from the 3′ end cleavage site. Hence, different termination mechanisms may work with different configurations of Pol II complexes dictated by promoters.
Collapse
Affiliation(s)
- Takashi S Miki
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | - Sarah H Carl
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4002 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
20
|
Wittmann S, Renner M, Watts BR, Adams O, Huseyin M, Baejen C, El Omari K, Kilchert C, Heo DH, Kecman T, Cramer P, Grimes JM, Vasiljeva L. The conserved protein Seb1 drives transcription termination by binding RNA polymerase II and nascent RNA. Nat Commun 2017; 8:14861. [PMID: 28367989 PMCID: PMC5382271 DOI: 10.1038/ncomms14861] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/05/2017] [Indexed: 11/09/2022] Open
Abstract
Termination of RNA polymerase II (Pol II) transcription is an important step in the transcription cycle, which involves the dislodgement of polymerase from DNA, leading to release of a functional transcript. Recent studies have identified the key players required for this process and showed that a common feature of these proteins is a conserved domain that interacts with the phosphorylated C-terminus of Pol II (CTD-interacting domain, CID). However, the mechanism by which transcription termination is achieved is not understood. Using genome-wide methods, here we show that the fission yeast CID-protein Seb1 is essential for termination of protein-coding and non-coding genes through interaction with S2-phosphorylated Pol II and nascent RNA. Furthermore, we present the crystal structures of the Seb1 CTD- and RNA-binding modules. Unexpectedly, the latter reveals an intertwined two-domain arrangement of a canonical RRM and second domain. These results provide important insights into the mechanism underlying eukaryotic transcription termination.
Collapse
Affiliation(s)
- Sina Wittmann
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Max Renner
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Beth R. Watts
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Oliver Adams
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Miles Huseyin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Carlo Baejen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Kamel El Omari
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Cornelia Kilchert
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Dong-Hyuk Heo
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Tea Kecman
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Jonathan M. Grimes
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
21
|
Schlackow M, Nojima T, Gomes T, Dhir A, Carmo-Fonseca M, Proudfoot NJ. Distinctive Patterns of Transcription and RNA Processing for Human lincRNAs. Mol Cell 2016; 65:25-38. [PMID: 28017589 PMCID: PMC5222723 DOI: 10.1016/j.molcel.2016.11.029] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/19/2016] [Accepted: 11/17/2016] [Indexed: 12/27/2022]
Abstract
Numerous long intervening noncoding RNAs (lincRNAs) are generated from the mammalian genome by RNA polymerase II (Pol II) transcription. Although multiple functions have been ascribed to lincRNAs, their synthesis and turnover remain poorly characterized. Here, we define systematic differences in transcription and RNA processing between protein-coding and lincRNA genes in human HeLa cells. This is based on a range of nascent transcriptomic approaches applied to different nuclear fractions, including mammalian native elongating transcript sequencing (mNET-seq). Notably, mNET-seq patterns specific for different Pol II CTD phosphorylation states reveal weak co-transcriptional splicing and poly(A) signal-independent Pol II termination of lincRNAs as compared to pre-mRNAs. In addition, lincRNAs are mostly restricted to chromatin, since they are rapidly degraded by the RNA exosome. We also show that a lincRNA-specific co-transcriptional RNA cleavage mechanism acts to induce premature termination. In effect, functional lincRNAs must escape from this targeted nuclear surveillance process.
Collapse
Affiliation(s)
- Margarita Schlackow
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Tomas Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ashish Dhir
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
22
|
High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop. PLoS Genet 2016; 12:e1006321. [PMID: 27898685 PMCID: PMC5127505 DOI: 10.1371/journal.pgen.1006321] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/24/2016] [Indexed: 11/30/2022] Open
Abstract
The active sites of multisubunit RNA polymerases have a “trigger loop” (TL) that multitasks in substrate selection, catalysis, and translocation. To dissect the Saccharomyces cerevisiae RNA polymerase II TL at individual-residue resolution, we quantitatively phenotyped nearly all TL single variants en masse. Three mutant classes, revealed by phenotypes linked to transcription defects or various stresses, have distinct distributions among TL residues. We find that mutations disrupting an intra-TL hydrophobic pocket, proposed to provide a mechanism for substrate-triggered TL folding through destabilization of a catalytically inactive TL state, confer phenotypes consistent with pocket disruption and increased catalysis. Furthermore, allele-specific genetic interactions among TL and TL-proximal domain residues support the contribution of the funnel and bridge helices (BH) to TL dynamics. Our structural genetics approach incorporates structural and phenotypic data for high-resolution dissection of transcription mechanisms and their evolution, and is readily applicable to other essential yeast proteins. Proper regulation of Pol II transcription, the first step of gene expression, is essential for life. Extensive evidence has revealed a widely conserved and dynamic polymerase active site component, termed the Trigger Loop (TL), in balancing transcription rate and fidelity while possibly allowing control of transcription elongation. Coupling high-throughput sequencing with our previously established genetic system, we are able to assess the in vivo phenotypes for almost all possible single substitution Pol II TL mutants in the budding yeast Saccharomyces cerevisiae. We show that mutants in the TL nucleotide interacting and linker regions widely confer dominant and severe growth defects. Clustering of TL mutants’ transcription-related and general stress phenotypes reveals three main classes of TL mutants, including previously identified fast and slow elongating mutants. Comprehensive analyses of the distribution of fast and slow elongation mutants in light of existing Pol II crystal structures reveal critical regions contributing to proper TL dynamics and function. Evidence is presented linking a previously observed hydrophobic pocket to NTP substrate-induced TL closing, the mechanism critical for correct substrates selection and transcription fidelity. Finally, we assess the functional interplay between TL and its proximal domains, and their presumptive roles in the function and evolution of the TL. Utilizing the Pol II TL as a case study, we present a structural genetics approach that reveals insights into a complex, multi-functional, and essential domain in yeast.
Collapse
|
23
|
Abstract
Terminating transcription is a highly intricate process for mammalian protein-coding genes. First, the chromatin template slows down transcription at the gene end. Then, the transcript is cleaved at the poly(A) signal to release the messenger RNA. The remaining transcript is selectively unraveled and degraded. This induces critical conformational changes in the heart of the enzyme that trigger termination. Termination can also occur at variable positions along the gene and so prevent aberrant transcript formation or intentionally make different transcripts. These may form multiple messenger RNAs with altered regulatory properties or encode different proteins. Finally, termination can be perturbed to achieve particular cellular needs or blocked in cancer or virally infected cells. In such cases, failure to terminate transcription can spell disaster for the cell.
Collapse
Affiliation(s)
- Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
24
|
Kaster BC, Knippa KC, Kaplan CD, Peterson DO. RNA Polymerase II Trigger Loop Mobility: INDIRECT EFFECTS OF Rpb9. J Biol Chem 2016; 291:14883-95. [PMID: 27226557 DOI: 10.1074/jbc.m116.714394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 01/08/2023] Open
Abstract
Rpb9 is a conserved RNA polymerase II (pol II) subunit, the absence of which confers alterations to pol II enzymatic properties and transcription fidelity. It has been suggested previously that Rpb9 affects mobility of the trigger loop (TL), a structural element of Rpb1 that moves in and out of the active site with each elongation cycle. However, a biochemical mechanism for this effect has not been defined. We find that the mushroom toxin α-amanitin, which inhibits TL mobility, suppresses the effect of Rpb9 on NTP misincorporation, consistent with a role for Rpb9 in this process. Furthermore, we have identified missense alleles of RPB9 in yeast that suppress the severe growth defect caused by rpb1-G730D, a substitution within Rpb1 α-helix 21 (α21). These alleles suggest a model in which Rpb9 indirectly affects TL mobility by anchoring the position of α21, with which the TL directly interacts during opening and closing. Amino acid substitutions in Rpb9 or Rpb1 that disrupt proposed anchoring interactions resulted in phenotypes shared by rpb9Δ strains, including increased elongation rate in vitro Combinations of rpb9Δ with the fast rpb1 alleles that we identified did not result in significantly faster in vitro misincorporation rates than those resulting from rpb9Δ alone, and this epistasis is consistent with the idea that defects caused by the rpb1 alleles are related mechanistically to the defects caused by rpb9Δ. We conclude that Rpb9 supports intra-pol II interactions that modulate TL function and thus pol II enzymatic properties.
Collapse
Affiliation(s)
- Benjamin C Kaster
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Kevin C Knippa
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Craig D Kaplan
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - David O Peterson
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
25
|
DNA Topoisomerases Are Required for Preinitiation Complex Assembly during GAL Gene Activation. PLoS One 2015; 10:e0132739. [PMID: 26173127 PMCID: PMC4501763 DOI: 10.1371/journal.pone.0132739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022] Open
Abstract
To investigate the importance of topoisomerases for transcription of the galactose induced genes, we have studied the expression of GAL1, GAL2, GAL7 and GAL10 in Saccharomyces cerevisiae cells deficient for topoisomerases I and II. We find that topoisomerases are required for transcriptional activation of the GAL genes, but are dispensable for ongoing transcription, eliminating a role of the enzymes in transcriptional elongation. Furthermore, we demonstrate that promoter chromatin remodeling of the GAL genes is unaffected in the topoisomerase deficient strain. However, the cells fail to successfully recruit RNA polymerase II due to an inability of the TATA-binding protein (TBP) to bind to the TATA box in these promoters. We therefore argue that topoisomerases are required for accurate assembly of the preinitiation complex at the promoters of the GAL genes.
Collapse
|
26
|
Chi W, He B, Manavski N, Mao J, Ji D, Lu C, Rochaix JD, Meurer J, Zhang L. RHON1 mediates a Rho-like activity for transcription termination in plastids of Arabidopsis thaliana. THE PLANT CELL 2014; 26:4918-32. [PMID: 25480370 PMCID: PMC4311204 DOI: 10.1105/tpc.114.132118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/02/2014] [Accepted: 11/15/2014] [Indexed: 05/20/2023]
Abstract
Although transcription termination is essential to generate functional RNAs, its underlying molecular mechanisms are still poorly understood in plastids of vascular plants. Here, we show that the RNA binding protein RHON1 participates in transcriptional termination of rbcL (encoding large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase) in Arabidopsis thaliana. Inactivation of RHON1 leads to enhanced rbcL read-through transcription and to aberrant accD (encoding β-subunit of the acetyl-CoA carboxylase) transcriptional initiation, which may result from inefficient transcription termination of rbcL. RHON1 can bind to the mRNA as well as to single-stranded DNA of rbcL, displays an RNA-dependent ATPase activity, and terminates transcription of rbcL in vitro. These results suggest that RHON1 terminates rbcL transcription using an ATP-driven mechanism similar to that of Rho of Escherichia coli. This RHON1-dependent transcription termination occurs in Arabidopsis but not in rice (Oryza sativa) and appears to reflect a fundamental difference between plastomes of dicotyledonous and monocotyledonous plants. Our results point to the importance and significance of plastid transcription termination and provide insights into its machinery in an evolutionary context.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Baoye He
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nikolay Manavski
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, 82152 Planegg-Martinsried, Germany
| | - Juan Mao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jean David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Jörg Meurer
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, 82152 Planegg-Martinsried, Germany
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
27
|
Redden H, Morse N, Alper HS. The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Res 2014; 15:1-10. [DOI: 10.1111/1567-1364.12188] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/28/2014] [Accepted: 07/15/2014] [Indexed: 02/04/2023] Open
Affiliation(s)
- Heidi Redden
- Department for Molecular Biosciences; The University of Texas at Austin; Austin TX USA
| | - Nicholas Morse
- McKetta Department of Chemical Engineering; The University of Texas at Austin; Austin TX USA
| | - Hal S. Alper
- Department for Molecular Biosciences; The University of Texas at Austin; Austin TX USA
- McKetta Department of Chemical Engineering; The University of Texas at Austin; Austin TX USA
| |
Collapse
|
28
|
Gummalla M, Galetti S, Maeda RK, Karch F. Hox gene regulation in the central nervous system of Drosophila. Front Cell Neurosci 2014; 8:96. [PMID: 24795565 PMCID: PMC4005941 DOI: 10.3389/fncel.2014.00096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022] Open
Abstract
Hox genes specify the structures that form along the anteroposterior (AP) axis of bilateria. Within the genome, they often form clusters where, remarkably enough, their position within the clusters reflects the relative positions of the structures they specify along the AP axis. This correspondence between genomic organization and gene expression pattern has been conserved through evolution and provides a unique opportunity to study how chromosomal context affects gene regulation. In Drosophila, a general rule, often called “posterior dominance,” states that Hox genes specifying more posterior structures repress the expression of more anterior Hox genes. This rule explains the apparent spatial complementarity of Hox gene expression patterns in Drosophila. Here we review a noticeable exception to this rule where the more-posteriorly expressed Abd-B Hox gene fails to repress the more-anterior abd-A gene in cells of the central nervous system (CNS). While Abd-B is required to repress ectopic expression of abd-A in the posterior epidermis, abd-A repression in the posterior CNS is accomplished by a different mechanism that involves a large 92 kb long non-coding RNA (lncRNA) encoded by the intergenic region separating abd-A and Abd-B (the iab8ncRNA). Dissection of this lncRNA revealed that abd-A is repressed by the lncRNA using two redundant mechanisms. The first mechanism is mediated by a microRNA (mir-iab-8) encoded by intronic sequence within the large iab8-ncRNA. Meanwhile, the second mechanism seems to involve transcriptional interference by the long iab-8 ncRNA on the abd-A promoter. Recent work demonstrating CNS-specific regulation of genes by ncRNAs in Drosophila, seem to highlight a potential role for the iab-8-ncRNA in the evolution of the Drosophila Hox complexes.
Collapse
Affiliation(s)
- Maheshwar Gummalla
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland ; Institute of Biochemistry, University of Medicine - University of Göttingen Göttingen, Germany
| | - Sandrine Galetti
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| | - Robert K Maeda
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| | - François Karch
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| |
Collapse
|
29
|
Cloutier SC, Wang S, Ma WK, Petell CJ, Tran EJ. Long noncoding RNAs promote transcriptional poising of inducible genes. PLoS Biol 2013; 11:e1001715. [PMID: 24260025 PMCID: PMC3833879 DOI: 10.1371/journal.pbio.1001715] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
The GAL cluster-associated long non-coding RNAs (lncRNAs) promote rapid induction of GAL genes in budding yeast, thereby promoting a faster switch in transcriptional programs when needed. Long noncoding RNAs (lncRNAs) are a class of molecules that impinge on the expression of protein-coding genes. Previous studies have suggested that the GAL cluster-associated lncRNAs of Saccharomyces cerevisiae repress expression of the protein-coding GAL genes. Herein, we demonstrate a previously unrecognized role for the GAL lncRNAs in activating gene expression. In yeast strains lacking the RNA helicase, DBP2, or the RNA decay enzyme, XRN1, we find that the GAL lncRNAs specifically accelerate gene expression from a prior repressive state. Furthermore, we provide evidence that the previously suggested repressive role is a result of specific mutant phenotypes, rather than a reflection of the normal, wild-type function of these noncoding RNAs. To shed light on the mechanism for lncRNA-dependent gene activation, we show that rapid induction of the protein-coding GAL genes is associated with faster recruitment of RNA polymerase II and reduced association of transcriptional repressors with GAL gene promoters. This suggests that the GAL lncRNAs enhance expression by derepressing the GAL genes. Consistently, the GAL lncRNAs enhance the kinetics of transcriptional induction, promoting faster expression of the protein-coding GAL genes upon the switch in carbon source. We suggest that the GAL lncRNAs poise inducible genes for rapid activation, enabling cells to more effectively trigger new transcriptional programs in response to cellular cues. Long noncoding RNAs (lncRNAs) are a recently identified class of molecules that regulate the expression of protein-coding genes through a number of mechanisms, some of them poorly characterized. The GAL gene cluster of the yeast Saccharomyces cerevisiae encodes a series of three inducible genes that are turned on or off by the presence or absence of specific carbon sources in the environment. Previous studies have documented the presence of two lncRNAs—GAL10 and GAL10s—encoded by genes that overlap the GAL cluster. We have now uncovered a role for both these lncRNAs in promoting the activation of the GAL genes when they are released from repressive conditions. This activation occurs at the kinetic level, through more rapid recruitment of RNA polymerase II and decreased association of the co-repressor, Cyc8. Under normal conditions, but also especially when they are stabilized and their levels are up-regulated, these GAL lncRNAs promote faster GAL gene activation. We suggest that these lncRNA molecules poise inducible genes for quick response to extracellular cues, triggering a faster switch in transcriptional programs.
Collapse
Affiliation(s)
- Sara C. Cloutier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Siwen Wang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Wai Kit Ma
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Christopher J. Petell
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Elizabeth J. Tran
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
30
|
From structure to systems: high-resolution, quantitative genetic analysis of RNA polymerase II. Cell 2013; 154:775-88. [PMID: 23932120 DOI: 10.1016/j.cell.2013.07.033] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 05/16/2013] [Accepted: 07/22/2013] [Indexed: 01/22/2023]
Abstract
RNA polymerase II (RNAPII) lies at the core of dynamic control of gene expression. Using 53 RNAPII point mutants, we generated a point mutant epistatic miniarray profile (pE-MAP) comprising ∼60,000 quantitative genetic interactions in Saccharomyces cerevisiae. This analysis enabled functional assignment of RNAPII subdomains and uncovered connections between individual regions and other protein complexes. Using splicing microarrays and mutants that alter elongation rates in vitro, we found an inverse relationship between RNAPII speed and in vivo splicing efficiency. Furthermore, the pE-MAP classified fast and slow mutants that favor upstream and downstream start site selection, respectively. The striking coordination of polymerization rate with transcription initiation and splicing suggests that transcription rate is tuned to regulate multiple gene expression steps. The pE-MAP approach provides a powerful strategy to understand other multifunctional machines at amino acid resolution.
Collapse
|
31
|
Pearson EL, Moore CL. Dismantling promoter-driven RNA polymerase II transcription complexes in vitro by the termination factor Rat1. J Biol Chem 2013; 288:19750-9. [PMID: 23689372 DOI: 10.1074/jbc.m112.434985] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proper RNA polymerase II (Pol II) transcription termination is essential to generate stable transcripts, to prevent interference at downstream loci, and to recycle Pol II back to the promoter (1-3). As such, termination is an intricately controlled process that is tightly regulated by a variety of different cis- and trans-acting factors (4, 5). Although many eukaryotic termination factors have been identified to date, the details of the precise molecular mechanisms governing termination remain to be elucidated. We devised an in vitro transcription system to study specific Pol II termination. We show for the first time that the exonucleolytic Rat1·Rai1 complex can elicit the release of stalled Pol II in vitro and can do so in the absence of other factors. We also find that Rtt103, which interacts with the Pol II C-terminal domain (CTD) and with Rat1, can rescue termination activity of an exonucleolytically deficient Rat1 mutant. In light of our findings, we posit a model whereby functional nucleolytic activity is not the feature of Rat1 that ultimately promotes termination. Degradation of the nascent transcript allows Rat1 to pursue Pol II in a guided fashion and arrive at the site of RNA exit from Pol II. Upon this arrival, however, it is perhaps the specific and direct contact between Rat1 and Pol II that transmits the signal to terminate transcription.
Collapse
Affiliation(s)
- Erika L Pearson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
32
|
Henriques T, Ji Z, Tan-Wong SM, Carmo AM, Tian B, Proudfoot NJ, Moreira A. Transcription termination between polo and snap, two closely spaced tandem genes of D. melanogaster. Transcription 2013; 3:198-212. [PMID: 22992452 PMCID: PMC3654770 DOI: 10.4161/trns.21967] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Transcription termination of RNA polymerase II between closely spaced genes is an important, though poorly understood, mechanism. This is true, in particular, in the Drosophila genome, where approximately 52% of tandem genes are separated by less than 1 kb. We show that a set of Drosophila tandem genes has a negative correlation of gene expression and display several molecular marks indicative of promoter pausing. We find that an intergenic spacing of 168 bp is sufficient for efficient transcription termination between the polo-snap tandem gene pair, by a mechanism that is independent of Pcf11 and Xrn2. In contrast, analysis of a tandem gene pair containing a longer intergenic region reveals that termination occurs farther downstream of the poly(A) signal and is, in this case, dependent on Pcf11 and Xrn2. For polo-snap, displacement of poised polymerase from the snap promoter by depletion of the initiation factor TFIIB results in an increase of polo transcriptional read-through. This suggests that poised polymerase is necessary for transcription termination. Interestingly, we observe that polo forms a TFIIB dependent gene loop between its promoter and terminator regions. Furthermore, in a plasmid containing the polo-snap locus, deletion of the polo promoter causes an increase in snap expression, as does deletion of polo poly(A) signals. Taken together, our results indicate that polo forms a gene loop and polo transcription termination occurs by an Xrn2 and Pcf11 independent mechanism that requires TFIIB.
Collapse
Affiliation(s)
- Telmo Henriques
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
33
|
Association of large noncoding RNA HOTAIR expression and its downstream intergenic CpG island methylation with survival in breast cancer. Breast Cancer Res Treat 2012; 136:875-83. [PMID: 23124417 DOI: 10.1007/s10549-012-2314-z] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
Abstract
Large noncoding RNA HOTAIR, transcribed from the antisense strand of HOXC12, interacts with Polycomb Repressive Complex 2 (PRC2) in the regulation of gene activities. Recent work suggests that it may have effects on breast cancer progression and survival. We evaluated HOTAIR expression and the methylation status of its downstream intergenic CpG island in primary breast cancers, and examined associations of these factors with clinical and pathologic features and patient survival. HOTAIR expression and DNA methylation were analyzed in tissue from 348 primary breast cancers with quantitative RT-PCR and methylation-specific PCR, respectively. HOTAIR expression and methylation varied widely in the tissues. A positive correlation was found between DNA methylation and HOTAIR expression. Methylation was associated with unfavorable disease characteristics, whereas no significant associations were found between HOTAIR expression and clinical or pathologic features. In multivariate, but not in univariate, Cox proportional hazard regression models, patients with high HOTAIR expression had lower risks of relapse and mortality than those with low HOTAIR expression. These findings suggest that the intergenic DNA methylation may have important biologic relevance in regulating HOTAIR expression, and that HOTAIR expression may not be an independent prognostic marker in breast cancer, but needs further validation in independent studies.
Collapse
|
34
|
Sherstnev A, Duc C, Cole C, Zacharaki V, Hornyik C, Ozsolak F, Milos PM, Barton GJ, Simpson GG. Direct sequencing of Arabidopsis thaliana RNA reveals patterns of cleavage and polyadenylation. Nat Struct Mol Biol 2012; 19:845-52. [PMID: 22820990 PMCID: PMC3533403 DOI: 10.1038/nsmb.2345] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/19/2012] [Indexed: 11/22/2022]
Abstract
It has recently been shown that RNA 3′ end formation plays a more widespread role in controlling gene expression than previously thought. In order to examine the impact of regulated 3′ end formation genome-wide we applied direct RNA sequencing to A. thaliana. Here we show the authentic transcriptome in unprecedented detail and how 3′ end formation impacts genome organization. We reveal extreme heterogeneity in RNA 3′ ends, discover previously unrecognized non-coding RNAs and propose widespread re-annotation of the genome. We explain the origin of most poly(A)+ antisense RNAs and identify cis-elements that control 3′ end formation in different registers. These findings are essential to understand what the genome actually encodes, how it is organized and the impact of regulated 3′ end formation on these processes.
Collapse
|
35
|
Cloutier SC, Ma WK, Nguyen LT, Tran EJ. The DEAD-box RNA helicase Dbp2 connects RNA quality control with repression of aberrant transcription. J Biol Chem 2012; 287:26155-66. [PMID: 22679025 DOI: 10.1074/jbc.m112.383075] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DEAD-box proteins are a class of RNA-dependent ATP hydrolysis enzymes that rearrange RNA and RNA-protein (ribonucleoprotein) complexes. In an effort to characterize the cellular function of individual DEAD-box proteins, our laboratory has uncovered a previously unrecognized link between the DEAD-box protein Dbp2 and the regulation of transcription in Saccharomyces cerevisiae. Here, we report that Dbp2 is a double-stranded RNA-specific ATPase that associates directly with chromatin and is required for transcriptional fidelity. In fact, loss of DBP2 results in multiple gene expression defects, including accumulation of noncoding transcripts, inefficient 3' end formation, and appearance of aberrant transcriptional initiation products. We also show that loss of DBP2 is synthetic lethal with deletion of the nuclear RNA decay factor, RRP6, pointing to a global role for Dbp2 in prevention of aberrant transcriptional products. Taken together, we present a model whereby Dbp2 functions to cotranscriptionally modulate RNA structure, a process that facilitates ribonucleoprotein assembly and clearance of transcripts from genomic loci. These studies suggest that Dbp2 is a missing link in RNA quality control that functions to maintain the fidelity of transcriptional processes.
Collapse
Affiliation(s)
- Sara C Cloutier
- Department of Biochemistry and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907-2063, USA
| | | | | | | |
Collapse
|
36
|
Gummalla M, Maeda RK, Castro Alvarez JJ, Gyurkovics H, Singari S, Edwards KA, Karch F, Bender W. abd-A regulation by the iab-8 noncoding RNA. PLoS Genet 2012; 8:e1002720. [PMID: 22654672 PMCID: PMC3359974 DOI: 10.1371/journal.pgen.1002720] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/03/2012] [Indexed: 12/29/2022] Open
Abstract
The homeotic genes in Drosophila melanogaster are aligned on the chromosome in the order of the body segments that they affect. The genes affecting the more posterior segments repress the more anterior genes. This posterior dominance rule must be qualified in the case of abdominal-A (abd-A) repression by Abdominal-B (Abd-B). Animals lacking Abd-B show ectopic expression of abd-A in the epidermis of the eighth abdominal segment, but not in the central nervous system. Repression in these neuronal cells is accomplished by a 92 kb noncoding RNA. This “iab-8 RNA” produces a micro RNA to repress abd-A, but also has a second, redundant repression mechanism that acts only “in cis.” Transcriptional interference with the abd-A promoter is the most likely mechanism. Although long, noncoding RNAs have been found in many organisms, it has been difficult to assign to them any molecular function. The homeotic gene clusters in the fruit fly, Drosophila melanogaster, contain many such noncoding RNAs. We have characterized one such noncoding RNA, a 92 kb transcription unit from within the bithorax complex. This transcript, called the iab-8 ncRNA, is made in the cells of the central nervous system in the eighth abdominal segment, along with the homeotic transcription factor Abdominal-B. Another homeotic transcription factor, abdominal-A, is repressed in these cells. It has generally been assumed that abdominal-A repression in these cells is mediated by the Abdominal-B protein. However, here we show that it is not Abdominal-B that represses abdominal-A, but the iab-8 ncRNA. This repression is accomplished by two redundant mechanisms; the iab-8 precursor produces a micro RNA, which targets the abdominal-A mRNA, and iab-8 transcription interferes with the abdominal-A promoter, which lies just downstream of the iab-8 ncRNA poly(A) site.
Collapse
Affiliation(s)
- Maheshwar Gummalla
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Robert K. Maeda
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | | | - Swetha Singari
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Kevin A. Edwards
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - François Karch
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- * E-mail: (FK); (WB)
| | - Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (FK); (WB)
| |
Collapse
|
37
|
Kaplan CD, Jin H, Zhang IL, Belyanin A. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. PLoS Genet 2012; 8:e1002627. [PMID: 22511879 PMCID: PMC3325174 DOI: 10.1371/journal.pgen.1002627] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/15/2012] [Indexed: 12/27/2022] Open
Abstract
Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II), the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II function and how Pol II activity defects correlate with gene expression alteration in vivo are unknown. Using Saccharomyces cerevisiae Pol II as a model, we uncover complex genetic relationships between mutated TL residues by combinatorial analysis of multiply substituted TL variants. We show that in vitro biochemical activity is highly predictive of in vivo transcription phenotypes, suggesting direct relationships between phenotypes and Pol II activity. Interestingly, while multiple TL residues function together to promote proper transcription, individual residues can be separated into distinct functional classes likely relevant to the TL mechanism. In vivo, Pol II activity defects disrupt regulation of the GTP-sensitive IMD2 gene, explaining sensitivities to GTP-production inhibitors, but contrasting with commonly cited models for this sensitivity in the literature. Our data provide support for an existing model whereby Pol II transcriptional activity provides a proxy for direct sensing of NTP levels in vivo leading to IMD2 activation. Finally, we connect Pol II activity to transcription start site selection in vivo, implicating the Pol II active site and transcription itself as a driver for start site scanning, contravening current models for this process. Transcription by multisubunit RNA polymerases (msRNAPs) is essential for all kingdoms of life. A conserved region within msRNAPs called the trigger loop (TL) is critical for selection of nucleotide substrates and activity. We present analysis of the RNA Polymerase II (Pol II) TL from the model eukaryote Saccharomyces cerevisiae. Our experiments reveal how TL residues differentially contribute to viability and transcriptional activity. We find that in vivo growth phenotypes correlate with severity of transcriptional defects and that changing Pol II activity to either faster or slower than wild type causes specific transcription defects. We identify transcription start site selection as sensitive to Pol II catalytic activity, proposing that RNA synthesis (an event downstream of many steps in the initiation process) contributes to where productive transcription occurs. Pol II transcription activity was excluded from previous models for selection of productive Pol II start sites. Finally, drug sensitivity data have been widely interpreted to indicate that Pol II mutants defective in elongation properties are sensitized to reduction in GTP levels (a Pol II substrate). Our data suggest an alternate explanation, that sensitivity to decreased GTP levels may be explained in light of Pol II mutant transcriptional start site defects.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | |
Collapse
|
38
|
Goel S, Krishnamurthy S, Hampsey M. Mechanism of start site selection by RNA polymerase II: interplay between TFIIB and Ssl2/XPB helicase subunit of TFIIH. J Biol Chem 2011; 287:557-567. [PMID: 22081613 DOI: 10.1074/jbc.m111.281576] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIB is essential for transcription initiation by RNA polymerase II. TFIIB also cross-links to terminator regions and is required for gene loops that juxtapose promoter-terminator elements in a transcription-dependent manner. The Saccharomyces cerevisiae sua7-1 mutation encodes an altered form of TFIIB (E62K) that is defective for both start site selection and gene looping. Here we report the isolation of an ssl2 mutant, encoding an altered form of TFIIH, as a suppressor of the cold-sensitive growth defect of the sua7-1 mutation. Ssl2 (Rad25) is orthologous to human XPB and is a member of the SF2 family of ATP-dependent DNA helicases. The ssl2 suppressor allele encodes an arginine replacement of the conserved histidine residue (H508R) located within the DEVH-containing helicase domain. In addition to suppressing the TFIIB E62K growth defect, Ssl2 H508R partially restores both normal start site selection and gene looping. Moreover, Ssl2, like TFIIB, associates with promoter and terminator regions, and the diminished association of TFIIB E62K with the PMA1 terminator is restored by the Ssl2 H508R suppressor. These results define a novel, functional interaction between TFIIB and Ssl2 that affects start site selection and gene looping.
Collapse
Affiliation(s)
- Shivani Goel
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | | | - Michael Hampsey
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854.
| |
Collapse
|
39
|
Haddad R, Maurice F, Viphakone N, Voisinet-Hakil F, Fribourg S, Minvielle-Sébastia L. An essential role for Clp1 in assembly of polyadenylation complex CF IA and Pol II transcription termination. Nucleic Acids Res 2011; 40:1226-39. [PMID: 21993300 PMCID: PMC3273802 DOI: 10.1093/nar/gkr800] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polyadenylation is a co-transcriptional process that modifies mRNA 3′-ends in eukaryotes. In yeast, CF IA and CPF constitute the core 3′-end maturation complex. CF IA comprises Rna14p, Rna15p, Pcf11p and Clp1p. CF IA interacts with the C-terminal domain of RNA Pol II largest subunit via Pcf11p which links pre-mRNA 3′-end processing to transcription termination. Here, we analysed the role of Clp1p in 3′ processing. Clp1p binds ATP and interacts in CF IA with Pcf11p only. Depletion of Clp1p abolishes transcription termination. Moreover, we found that association of mutations in the ATP-binding domain and in the distant Pcf11p-binding region impair 3′-end processing. Strikingly, these mutations prevent not only Clp1p-Pcf11p interaction but also association of Pcf11p with Rna14p-Rna15p. ChIP experiments showed that Rna15p cross-linking to the 3′-end of a protein-coding gene is perturbed by these mutations whereas Pcf11p is only partially affected. Our study reveals an essential role of Clp1p in CF IA organization. We postulate that Clp1p transmits conformational changes to RNA Pol II through Pcf11p to couple transcription termination and 3′-end processing. These rearrangements likely rely on the correct orientation of ATP within Clp1p.
Collapse
|
40
|
Lang GI, Botstein D. A test of the coordinated expression hypothesis for the origin and maintenance of the GAL cluster in yeast. PLoS One 2011; 6:e25290. [PMID: 21966486 PMCID: PMC3178652 DOI: 10.1371/journal.pone.0025290] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/31/2011] [Indexed: 11/24/2022] Open
Abstract
Metabolic gene clusters—functionally related and physically clustered genes—are a common feature of some eukaryotic genomes. Two hypotheses have been advanced to explain the origin and maintenance of metabolic gene clusters: coordinated gene expression and genetic linkage. Here we test the hypothesis that selection for coordinated gene expression underlies the clustering of GAL genes in the yeast genome. We find that, although clustering coordinates the expression of GAL1 and GAL10, disrupting the GAL cluster does not impair fitness, suggesting that other mechanisms, such as genetic linkage, drive the origin and maintenance metabolic gene clusters.
Collapse
Affiliation(s)
- Gregory I. Lang
- Department of Molecular and Cellular Biology and The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| | - David Botstein
- Department of Molecular and Cellular Biology and The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
41
|
Rondón AG, Mischo HE, Kawauchi J, Proudfoot NJ. Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae. Mol Cell 2009; 36:88-98. [PMID: 19818712 PMCID: PMC2779338 DOI: 10.1016/j.molcel.2009.07.028] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/05/2009] [Accepted: 07/22/2009] [Indexed: 12/15/2022]
Abstract
Transcription termination of RNA polymerase II (Pol II) on protein-coding genes in S. cerevisiae relies on pA site recognition by 3′ end processing factors. Here we demonstrate the existence of two alternative termination mechanisms that rescue polymerases failing to disengage from the template at pA sites. One of these fail-safe mechanisms is mediated by the NRD complex, similar to termination of short noncoding genes. The other termination mechanism is mediated by Rnt1 cleavage of the nascent transcript. Both fail-safe termination mechanisms trigger degradation of readthrough transcripts by the exosome. However, Rnt1-mediated termination can also enhance the usage of weak pA signals and thereby generate functional mRNA. We propose that these alternative Pol II termination pathways serve the dual function of avoiding transcription interference and promoting rapid removal of aberrant transcripts.
Collapse
Affiliation(s)
- Ana G Rondón
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | |
Collapse
|
42
|
Nabavi S, Nazar RN. Fail‐safe termination elements: a common feature of the eukaryotic genome? FASEB J 2009; 24:684-8. [DOI: 10.1096/fj.09-142745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sadeq Nabavi
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | - Ross N. Nazar
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
43
|
Wooddell CI, Reppen T, Wolff JA, Herweijer H. Sustained liver-specific transgene expression from the albumin promoter in mice following hydrodynamic plasmid DNA delivery. J Gene Med 2008; 10:551-63. [PMID: 18330848 DOI: 10.1002/jgm.1179] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND To properly study gene expression in vivo, often long-term expression is desired. Previous studies using plasmid DNA (pDNA) vectors have typically resulted in short-term expression. Here, we evaluated combinations of the albumin promoter with different enhancers and untranslated regions for liver-specific expression in mice. METHODS A series of pDNA secreted alkaline phosphatase (SEAP) reporter gene expression vectors was constructed using the albumin promoter and various other expression cassette elements. Each was evaluated for level and duration of SEAP expression in mice following hydrodynamic tail vein delivery. RESULTS Sustained liver expression was obtained from vectors combining the albumin promoter with an albumin 3' untranslated region (3'UTR). The level of expression was increased by inclusion of enhancers and a 5' intron. The optimal expression vector consisted of the albumin promoter combined with an alpha-fetoprotein MERII enhancer, 5' intron from the factor IX gene, and the 3'UTR from the albumin gene including intron 14. With this vector, SEAP reporter gene expression levels remained high for 1 year, at levels comparable to those obtained from the cytomegalovirus (CMV) promoter on day 1. Expression of human apolipoprotein E3 (hApoE) in ApoE knockout mice provided a dose-dependent correction of their hypercholesterolemia. CONCLUSIONS Liver-specific sustained transgene expression can be obtained at very high levels from optimized pDNA vectors, without the use of integration systems. Such vectors will further facilitate biological studies of genes in vivo and may find application in gene therapy.
Collapse
|
44
|
Singh BN, Hampsey M. A transcription-independent role for TFIIB in gene looping. Mol Cell 2007; 27:806-16. [PMID: 17803944 DOI: 10.1016/j.molcel.2007.07.013] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 06/12/2007] [Accepted: 07/11/2007] [Indexed: 01/05/2023]
Abstract
Recent studies demonstrated the existence of gene loops that juxtapose the promoter and terminator regions of genes with exceptionally long ORFs in yeast. Here we report that looping is not idiosyncratic to long genes but occurs between the distal ends of genes with ORFs as short as 1 kb. Moreover, looping is dependent upon the general transcription factor TFIIB: the E62K (glutamic acid 62 --> lysine) form of TFIIB adversely affects looping at every gene tested, including BLM10, SAC3, GAL10, SEN1, and HEM3. TFIIB crosslinks to both the promoter and terminator regions of the PMA1 and BLM10 genes, and its association with the terminator, but not the promoter, is adversely affected by E62K and by depletion of the Ssu72 component of the CPF 3' end processing complex, and is independent of TBP. We propose a model suggesting that TFIIB binds RNAP II at the terminator, which in turn associates with the promoter scaffold.
Collapse
Affiliation(s)
- Badri Nath Singh
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, 683 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
45
|
Bucheli ME, He X, Kaplan CD, Moore CL, Buratowski S. Polyadenylation site choice in yeast is affected by competition between Npl3 and polyadenylation factor CFI. RNA (NEW YORK, N.Y.) 2007; 13:1756-64. [PMID: 17684230 PMCID: PMC1986811 DOI: 10.1261/rna.607207] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 06/25/2007] [Indexed: 05/16/2023]
Abstract
Multiple steps in mRNA processing and transcription are coupled. Notably, the processing of mRNA 3' ends is linked to transcription termination by RNA polymerase II. Previously, we found that the yeast hnRNP protein Npl3 can negatively regulate 3' end mRNA formation and termination at the GAL1 gene. Here we show that overexpression of the Hrp1 or Rna14 subunits of the CF IA polyadenylation factor increases recognition of a weakened polyadenylation site. Genetic interactions of mutant alleles of NPL3 or HRP1 with RNA15 also indicate antagonism between these factors. Npl3 competes with Rna15 for binding to a polyadenylation precursor and inhibits cleavage and polyadenylation in vitro. These results suggest that an important function of hnRNP proteins is to ensure the fidelity of mRNA processing. Our results support a model in which balanced competition of Npl3 with mRNA processing factors may promote recognition of proper polyadenylation sites while suppressing cryptic sites.
Collapse
Affiliation(s)
- Miriam E Bucheli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
46
|
Yahata K, Maeshima K, Sone T, Ando T, Okabe M, Imamoto N, Imamoto F. cHS4 insulator-mediated alleviation of promoter interference during cell-based expression of tandemly associated transgenes. J Mol Biol 2007; 374:580-90. [PMID: 17945255 DOI: 10.1016/j.jmb.2007.09.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/06/2007] [Accepted: 09/18/2007] [Indexed: 11/18/2022]
Abstract
Expression of multiple transgenes in cells or whole organisms is a powerful tool for basic research of various biological functions and potentially for clinical applications such as gene therapy. As a model system for this purpose, multi-cDNA expression clones were constructed harboring two tandemly situated fluorescent protein cDNAs as reporter genes on a single plasmid. When 293 cells were transfected transiently, the downstream gene displayed significantly lower expression when compared with the upstream cDNA. Such transcriptional interference was markedly alleviated by inserting an insulator cassette of cHS4 elements derived from the chicken beta-globin locus at a site between two neighboring cDNAs. The introduction of cHS4 resulted in a drastic increase of the expression level of the downstream cDNA, ensuring comparable expression levels of the tandem transgenes. Using a chromatin immunoprecipitation assay, we demonstrated that CTCF and USF1 that recruit histone-modifying complexes are bound to the cHS4 region. Depletion of CTCF or USF1 by siRNA resulted in relief of the diminished effect. Our data thus indicate that CTCF and histone modifiers recruited by USF1 cooperatively mediate the suppression of transcriptional interference between apposed genes, presumably by facilitating active chromatin conformation over the transgenes.
Collapse
Affiliation(s)
- Kazuhide Yahata
- Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Wong CM, Qiu H, Hu C, Dong J, Hinnebusch AG. Yeast cap binding complex impedes recruitment of cleavage factor IA to weak termination sites. Mol Cell Biol 2007; 27:6520-31. [PMID: 17636014 PMCID: PMC2099607 DOI: 10.1128/mcb.00733-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear cap binding complex (CBC) is recruited cotranscriptionally and stimulates spliceosome assembly on nascent mRNAs; however, its possible functions in regulating transcription elongation or termination were not well understood. We show that, while CBC appears to be dispensable for normal rates and processivity of elongation by RNA polymerase II (Pol II), it plays a direct role in preventing polyadenylation at weak termination sites. Similarly to Npl3p, with which it interacts, CBC suppresses the weak terminator of the gal10-Delta56 mutant allele by impeding recruitment of termination factors Pcf11p and Rna15p (subunits of cleavage factor IA [CF IA]) and does so without influencing Npl3p occupancy at the termination site. Importantly, deletion of CBC subunits or NPL3 also increases termination at a naturally occurring weak poly(A) site in the RNA14 coding sequences. We also show that CBC is most likely recruited directly to the cap of nascent transcripts rather than interacting first with transcriptional activators or the phosphorylated C-terminal domain of Pol II. Thus, our findings illuminate the mechanism of CBC recruitment and extend its function in Saccharomyces cerevisiae beyond mRNA splicing and degradation of aberrant nuclear mRNAs to include regulation of CF IA recruitment at poly(A) selection sites.
Collapse
Affiliation(s)
- Chi-Ming Wong
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
48
|
Arigo JT, Eyler DE, Carroll KL, Corden JL. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell 2006; 23:841-51. [PMID: 16973436 DOI: 10.1016/j.molcel.2006.07.024] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 06/24/2006] [Accepted: 07/26/2006] [Indexed: 11/20/2022]
Abstract
Studies of yeast transcription have revealed the widespread distribution of intergenic RNA polymerase II transcripts. These cryptic unstable transcripts (CUTs) are rapidly degraded by the nuclear exosome. Yeast RNA binding proteins Nrd1 and Nab3 direct termination of sn/snoRNAs and recently have also been implicated in premature transcription termination of the NRD1 gene. In this paper, we show that Nrd1 and Nab3 are required for transcription termination of CUTs. In nrd1 and nab3 mutants, we observe 3'-extended transcripts originating from CUT promoters but failing to terminate through the Nrd1- and Nab3-directed pathway. Nrd1 and Nab3 colocalize to regions of the genome expressing antisense CUTs, and these transcripts require yeast nuclear exosome and TRAMP components for degradation. Dissection of a CUT terminator reveals a minimal element sufficient for Nrd1- and Nab3-directed termination. These results suggest that transcription termination of CUTs directed by Nrd1 and Nab3 is a prerequisite for rapid degradation by the nuclear exosome.
Collapse
Affiliation(s)
- John T Arigo
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
49
|
Pelechano V, García-Martínez J, Pérez-Ortín JE. A genomic study of the inter-ORF distances in Saccharomyces cerevisiae. Yeast 2006; 23:689-99. [PMID: 16845687 DOI: 10.1002/yea.1390] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genome of eukaryotic microbes is usually quite compacted. The yeast Saccharomyces cerevisiae is one of the best-known examples. Open reading frames (ORFs) occupy about 75% of the total DNA sequence. The existence of other, non-protein coding genes and other genetic elements leaves very little space for gene promoters and terminators. We have performed an in silico study of inter-ORF distances that shows that there is a minimum distance between two adjacent ORFs that depends on the relative orientation between them. Our analyses suggest that different kinds of promoters and terminators exist with regard to their length and ability to overlap each other. The experimental testing of some putative exceptions to the minimum length model in tandemly orientated ORF pairs suggests that, in those cases, defects in promoter or terminator functionality exist that provoke transcription of polycistronic mRNAs.
Collapse
Affiliation(s)
- Vicent Pelechano
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | | | | |
Collapse
|
50
|
Setiadi ER, Doedt T, Cottier F, Noffz C, Ernst JF. Transcriptional Response of Candida albicans to Hypoxia: Linkage of Oxygen Sensing and Efg1p-regulatory Networks. J Mol Biol 2006; 361:399-411. [PMID: 16854431 DOI: 10.1016/j.jmb.2006.06.040] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 06/14/2006] [Accepted: 06/15/2006] [Indexed: 11/28/2022]
Abstract
The major human fungal pathogen, Candida albicans, colonizes different body sites, differing greatly in oxygen levels. Using whole-genome DNA microarrays, we analysed the transcriptomal response of C. albicans to hypoxia. In this condition, transcripts of genes involved in fermentative metabolism, including glycolytic genes, as well as hypha-specific genes, were up-regulated; in contrast, genes regulating oxidative metabolism were down-regulated. Although the morphogenetic and metabolic regulator Efg1p regulates these genes during normoxia, we found that Efg1p is not involved in their hypoxic regulation. Instead, Efg1p was specifically required for hypoxic expression or repression of subsets of genes. One class of hypoxia-regulated genes, encoding proteins involved in fatty acid biosynthesis, was dependent on Efg1p for maximal hypoxic expression, requiring Efg1p for transcriptional activation. During hypoxia, efg1 mutants contained lower levels of unsaturated fatty acids, while hyphal morphogenesis on solid media was significantly increased at temperatures <37 degrees C. These results suggest that during oxygen-limitation, Efg1p acts as a repressor of filamentation and as a positive regulator of fatty acid desaturation. We discuss that C. albicans responds to hypoxia largely by different mechanisms compared to budding yeast and that hypoxic adaptation requiring Efg1p is crucial for successful infection of human cells and tissues.
Collapse
Affiliation(s)
- Eleonora R Setiadi
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|