1
|
Girodat D, Wieden HJ, Blanchard SC, Sanbonmatsu KY. Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding. Nat Commun 2023; 14:5582. [PMID: 37696823 PMCID: PMC10495418 DOI: 10.1038/s41467-023-40404-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
Accurate protein synthesis is determined by the two-subunit ribosome's capacity to selectively incorporate cognate aminoacyl-tRNA for each mRNA codon. The molecular basis of tRNA selection accuracy, and how fidelity can be affected by antibiotics, remains incompletely understood. Using molecular simulations, we find that cognate and near-cognate tRNAs delivered to the ribosome by Elongation Factor Tu (EF-Tu) can follow divergent pathways of motion into the ribosome during both initial selection and proofreading. Consequently, cognate aa-tRNAs follow pathways aligned with the catalytic GTPase and peptidyltransferase centers of the large subunit, while near-cognate aa-tRNAs follow pathways that are misaligned. These findings suggest that differences in mRNA codon-tRNA anticodon interactions within the small subunit decoding center, where codon-anticodon interactions occur, are geometrically amplified over distance, as a result of this site's physical separation from the large ribosomal subunit catalytic centers. These insights posit that the physical size of both tRNA and ribosome are key determinants of the tRNA selection fidelity mechanism.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hans-Joachim Wieden
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- New Mexico Consortium, Los Alamos, NM, 87545, USA.
| |
Collapse
|
2
|
Vila-Sanjurjo A, Mallo N, Atkins JF, Elson JL, Smith PM. Our current understanding of the toxicity of altered mito-ribosomal fidelity during mitochondrial protein synthesis: What can it tell us about human disease? Front Physiol 2023; 14:1082953. [PMID: 37457031 PMCID: PMC10349377 DOI: 10.3389/fphys.2023.1082953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/28/2023] [Indexed: 07/18/2023] Open
Abstract
Altered mito-ribosomal fidelity is an important and insufficiently understood causative agent of mitochondrial dysfunction. Its pathogenic effects are particularly well-known in the case of mitochondrially induced deafness, due to the existence of the, so called, ototoxic variants at positions 847C (m.1494C) and 908A (m.1555A) of 12S mitochondrial (mt-) rRNA. It was shown long ago that the deleterious effects of these variants could remain dormant until an external stimulus triggered their pathogenicity. Yet, the link from the fidelity defect at the mito-ribosomal level to its phenotypic manifestation remained obscure. Recent work with fidelity-impaired mito-ribosomes, carrying error-prone and hyper-accurate mutations in mito-ribosomal proteins, have started to reveal the complexities of the phenotypic manifestation of mito-ribosomal fidelity defects, leading to a new understanding of mtDNA disease. While much needs to be done to arrive to a clear picture of how defects at the level of mito-ribosomal translation eventually result in the complex patterns of disease observed in patients, the current evidence indicates that altered mito-ribosome function, even at very low levels, may become highly pathogenic. The aims of this review are three-fold. First, we compare the molecular details associated with mito-ribosomal fidelity to those of general ribosomal fidelity. Second, we gather information on the cellular and organismal phenotypes associated with defective translational fidelity in order to provide the necessary grounds for an understanding of the phenotypic manifestation of defective mito-ribosomal fidelity. Finally, the results of recent experiments directly tackling mito-ribosomal fidelity are reviewed and future paths of investigation are discussed.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Natalia Mallo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - John F Atkins
- Schools of Biochemistry and Microbiology, University College Cork, Cork, Ireland
| | - Joanna L Elson
- The Bioscience Institute, Newcastle University, Newcastle uponTyne, United Kingdom
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Paul M Smith
- Department of Paediatrics, Raigmore Hospital, Inverness, Scotland, United Kingdom
| |
Collapse
|
3
|
Gaydukova SA, Moldovan MA, Vallesi A, Heaphy SM, Atkins JF, Gelfand MS, Baranov PV. Nontriplet feature of genetic code in Euplotes ciliates is a result of neutral evolution. Proc Natl Acad Sci U S A 2023; 120:e2221683120. [PMID: 37216548 PMCID: PMC10235951 DOI: 10.1073/pnas.2221683120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The triplet nature of the genetic code is considered a universal feature of known organisms. However, frequent stop codons at internal mRNA positions in Euplotes ciliates ultimately specify ribosomal frameshifting by one or two nucleotides depending on the context, thus posing a nontriplet feature of the genetic code of these organisms. Here, we sequenced transcriptomes of eight Euplotes species and assessed evolutionary patterns arising at frameshift sites. We show that frameshift sites are currently accumulating more rapidly by genetic drift than they are removed by weak selection. The time needed to reach the mutational equilibrium is several times longer than the age of Euplotes and is expected to occur after a several-fold increase in the frequency of frameshift sites. This suggests that Euplotes are at an early stage of the spread of frameshifting in expression of their genome. In addition, we find the net fitness burden of frameshift sites to be noncritical for the survival of Euplotes. Our results suggest that fundamental genome-wide changes such as a violation of the triplet character of genetic code can be introduced and maintained solely by neutral evolution.
Collapse
Affiliation(s)
- Sofya A. Gaydukova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow199911, Russia
| | - Mikhail A. Moldovan
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Adriana Vallesi
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino62032, Italy
| | - Stephen M. Heaphy
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
- Department of Human Genetics, University of Utah, Salt Lake City, UT84112
| | - Mikhail S. Gelfand
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| |
Collapse
|
4
|
Lee SO, Xie Q, Fried SD. Optimized Loopable Translation as a Platform for the Synthesis of Repetitive Proteins. ACS CENTRAL SCIENCE 2021; 7:1736-1750. [PMID: 34729417 PMCID: PMC8554844 DOI: 10.1021/acscentsci.1c00574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 06/13/2023]
Abstract
The expression of long proteins with repetitive amino acid sequences often presents a challenge in recombinant systems. To overcome this obstacle, we report a genetic construct that circularizes mRNA in vivo by rearranging the topology of a group I self-splicing intron from T4 bacteriophage, thereby enabling "loopable" translation. Using a fluorescence-based assay to probe the translational efficiency of circularized mRNAs, we identify several conditions that optimize protein expression from this system. Our data suggested that translation of circularized mRNAs could be limited primarily by the rate of ribosomal initiation; therefore, using a modified error-prone PCR method, we generated a library that concentrated mutations into the initiation region of circularized mRNA and discovered mutants that generated markedly higher expression levels. Combining our rational improvements with those discovered through directed evolution, we report a loopable translator that achieves protein expression levels within 1.5-fold of the levels of standard vectorial translation. In summary, our work demonstrates loopable translation as a promising platform for the creation of large peptide chains, with potential utility in the development of novel protein materials.
Collapse
|
5
|
Rana A, Gupta N, Thakur A. Post-transcriptional and translational control of the morphology and virulence in human fungal pathogens. Mol Aspects Med 2021; 81:101017. [PMID: 34497025 DOI: 10.1016/j.mam.2021.101017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Host-pathogen interactions at the molecular level are the key to fungal pathogenesis. Fungal pathogens utilize several mechanisms such as adhesion, invasion, phenotype switching and metabolic adaptations, to survive in the host environment and respond. Post-transcriptional and translational regulations have emerged as key regulatory mechanisms ensuring the virulence and survival of fungal pathogens. Through these regulations, fungal pathogens effectively alter their protein pool, respond to various stress, and undergo morphogenesis, leading to efficient and comprehensive changes in fungal physiology. The regulation of virulence through post-transcriptional and translational regulatory mechanisms is mediated through mRNA elements (cis factors) or effector molecules (trans factors). The untranslated regions upstream and downstream of the mRNA, as well as various RNA-binding proteins involved in translation initiation or circularization of the mRNA, play pivotal roles in the regulation of morphology and virulence by influencing protein synthesis, protein isoforms, and mRNA stability. Therefore, post-transcriptional and translational mechanisms regulating the morphology, virulence and drug-resistance processes in fungal pathogens can be the target for new therapeutics. With improved "omics" technologies, these regulatory mechanisms are increasingly coming to the forefront of basic biology and drug discovery. This review aims to discuss various modes of post-transcriptional and translation regulations, and how these mechanisms exert influence in the virulence and morphogenesis of fungal pathogens.
Collapse
Affiliation(s)
- Aishwarya Rana
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Nidhi Gupta
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Anil Thakur
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India.
| |
Collapse
|
6
|
Pagnotta PA, Melito VA, Lavandera JV, Parera VE, Rossetti MV, Zuccoli JR, Buzaleh AM. Role of ABCB1 and glutathione S-transferase gene variants in the association of porphyria cutanea tarda and human immunodeficiency virus infection. Biomed Rep 2020; 14:22. [PMID: 33335728 PMCID: PMC7739863 DOI: 10.3892/br.2020.1398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
In Argentina, porphyria cutanea tarda (PCT) is strongly associated with infection with human immunodeficiency virus (HIV); however, whether the onset of this disease is associated with HIV infection and/or the antiretroviral therapy has not been determined. The ABCB1 gene variants c.1236C>T, c.2677G>T/A and c.3435C>T affect drug efflux. The GSTT1 null, GSTM1 null and GSTP1 (c.313A>G) gene variants alter Glutathione S-transferase (GST) activity, modifying the levels of xenobiotics. The aim of the present study was to evaluate the role of genetic variants in initiation of PCT and to analyze the genetic basis of the PCT-HIV association. Control individuals, and HIV, PCT and PCT-HIV patients were recruited, PCR-restriction fragment length polymorphism was used to genotype the ABCB1 and GSTP1 variants, and multiplex PCR was used to study the GSTM1 and GSTT1 variants. The high frequency of c.3435C>T (PCT and PCT-HIV) and c.1236C>T (PCT) suggested that the onset of PCT were not specifically related to HIV infection or antiretroviral therapy for these variants. c.2677G>T/A frequencies in the PCT-HIV patients were higher compared with the other groups, suggesting that a mechanism involving antiretroviral therapy served a role in this association. PCT-HIV patients also had a high frequency of GSTT1 null and low frequency for GSTM1 null variants; thus, the genetic basis for PCT onset may involve a combination between the absence of GSTT1 and the presence of GSTM1. In conclusion, genes encoding for proteins involved in the flow and metabolism of xenobiotics may influence the PCT-HIV association. The present study is the first to investigate the possible role of GST and ABCB1 gene variants in the triggering of PCT in HIV-infected individuals, to the best of our knowledge, and may provide novel insights into the molecular basis of the association between PCT and HIV.
Collapse
Affiliation(s)
- Priscila Ayelén Pagnotta
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Viviana Alicia Melito
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Jimena Verónica Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Victoria Estela Parera
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina
| | - María Victoria Rossetti
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina
| | - Johanna Romina Zuccoli
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina
| | - Ana Maria Buzaleh
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|
7
|
Zhang X, Kuang X, Cao F, Chen R, Fang Z, Liu W, Shi P, Wang H, Shen Y, Huang Z. Effect of cadmium on mRNA mistranslation in Saccharomyces cerevisiae. J Basic Microbiol 2020; 60:372-379. [PMID: 31912517 DOI: 10.1002/jobm.201900495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022]
Abstract
Although highly accurate molecular processes and various messenger RNA (mRNA) quality control and ribosome proofreading mechanisms are used by organisms to transcribe their genes and maintain the fidelity of genetic information, errors are inherent in all biological systems. Low-level translation errors caused by an imbalance of homologous and nonhomologous amino acids caused by stress conditions are particularly common. Paradoxically, advantageous phenotypic diversity can be generated by such errors in eukaryotes through unknown molecular processes. Here, we found that the significant cadmium-resistant phenotype was correlated with an increased mistranslation rate of the mRNA in Saccharomyces cerevisiae. This phenotypic change was also related to endogenous sulfur amino acid starvation. Compared with the control, the mistranslation rate caused by cadmium was significantly increased (p < .01). With the increase of cysteine contents in medium, the mistranslation rate of WT(BY4742a) decreased significantly (p < .01). This demonstrates that cadmium treatment and sulfur amino acid starvation both can induce translation errors. Although cadmium uptake is independent of the Sul1 transporter, cadmium-induced mRNA mistranslation is dependent on the sulfate uptake of the Sul1p transporter. Furthermore, cadmium-induced translation errors depend on methionine biosynthesis. Taken together, cadmium causes endogenous sulfur starvation, leading to an increase in the mRNA mistranslation, which contributes to the resistance of yeast cells to cadmium. We provide a new pathway mediating the toxicity of cadmium, and we propose that altering mRNA mistranslation may portray a different form of environmental adaptation.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Lab of Eco-textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xin Kuang
- Key Lab of Eco-textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Fangqi Cao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ranran Chen
- Key Lab of Eco-textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Zhijia Fang
- Key Lab of Eco-textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Handong Wang
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, The Innovative Academy of Seed Design, Northwest Institute of Plateau Biology, CAS, Xining, Qinghai Province, China
| | - Yuhu Shen
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, The Innovative Academy of Seed Design, Northwest Institute of Plateau Biology, CAS, Xining, Qinghai Province, China
| | - Zhiwei Huang
- Key Lab of Eco-textile (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China.,Qinghai Provincial Key Laboratory of Crop Molecular Breeding, The Innovative Academy of Seed Design, Northwest Institute of Plateau Biology, CAS, Xining, Qinghai Province, China
| |
Collapse
|
8
|
Jin X, Lv Z, Gao J, Zhang R, Zheng T, Yin P, Li D, Peng L, Cao X, Qin Y, Persson S, Zheng B, Chen P. AtTrm5a catalyses 1-methylguanosine and 1-methylinosine formation on tRNAs and is important for vegetative and reproductive growth in Arabidopsis thaliana. Nucleic Acids Res 2019; 47:883-898. [PMID: 30508117 PMCID: PMC6344853 DOI: 10.1093/nar/gky1205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Modified nucleosides on tRNA are critical for decoding processes and protein translation. tRNAs can be modified through 1-methylguanosine (m1G) on position 37; a function mediated by Trm5 homologs. We show that AtTRM5a (At3g56120) is a Trm5 ortholog in Arabidopsis thaliana. AtTrm5a is localized to the nucleus and its function for m1G and m1I methylation was confirmed by mutant analysis, yeast complementation, m1G nucleoside level on single tRNA, and tRNA in vitro methylation. Arabidopsis attrm5a mutants were dwarfed and had short filaments, which led to reduced seed setting. Proteomics data indicated differences in the abundance of proteins involved in photosynthesis, ribosome biogenesis, oxidative phosphorylation and calcium signalling. Levels of phytohormone auxin and jasmonate were reduced in attrm5a mutant, as well as expression levels of genes involved in flowering, shoot apex cell fate determination, and hormone synthesis and signalling. Taken together, loss-of-function of AtTrm5a impaired m1G and m1I methylation and led to aberrant protein translation, disturbed hormone homeostasis and developmental defects in Arabidopsis plants.
Collapse
Affiliation(s)
- Xiaohuan Jin
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.,Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Zhengyi Lv
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.,Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Junbao Gao
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.,Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Rui Zhang
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.,Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Ting Zheng
- College of Life Science, HuaZhong Agricultural University, Wuhan 430070, China.,National Key Laboratory of Crop Genetic Improvement, HuaZhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- College of Life Science, HuaZhong Agricultural University, Wuhan 430070, China.,National Key Laboratory of Crop Genetic Improvement, HuaZhong Agricultural University, Wuhan 430070, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement, HuaZhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.,Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| | - Xintao Cao
- Institute of Biophysics, Chinese Academy of Sciences, China
| | - Yan Qin
- Institute of Biophysics, Chinese Academy of Sciences, China
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville 3010, VIC, Australia.,Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zheng
- College of Horticulture and Forestry Sciences, HuaZhong Agricultural University, Wuhan 430070, China
| | - Peng Chen
- College of Plant Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.,Biomass and Bioenergy Research Centre, HuaZhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Hori H. Regulatory Factors for tRNA Modifications in Extreme- Thermophilic Bacterium Thermus thermophilus. Front Genet 2019; 10:204. [PMID: 30906314 PMCID: PMC6418473 DOI: 10.3389/fgene.2019.00204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/26/2019] [Indexed: 01/02/2023] Open
Abstract
Thermus thermophilus is an extreme-thermophilic bacterium that can grow at a wide range of temperatures (50-83°C). To enable T. thermophilus to grow at high temperatures, several biomolecules including tRNA and tRNA modification enzymes show extreme heat-resistance. Therefore, the modified nucleosides in tRNA from T. thermophilus have been studied mainly from the view point of tRNA stabilization at high temperatures. Such studies have shown that several modifications stabilize the structure of tRNA and are essential for survival of the organism at high temperatures. Together with tRNA modification enzymes, the modified nucleosides form a network that regulates the extent of different tRNA modifications at various temperatures. In this review, I describe this network, as well as the tRNA recognition mechanism of individual tRNA modification enzymes. Furthermore, I summarize the roles of other tRNA stabilization factors such as polyamines and metal ions.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Sciences and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
10
|
Schwartz MH, Wang H, Pan JN, Clark WC, Cui S, Eckwahl MJ, Pan DW, Parisien M, Owens SM, Cheng BL, Martinez K, Xu J, Chang EB, Pan T, Eren AM. Microbiome characterization by high-throughput transfer RNA sequencing and modification analysis. Nat Commun 2018; 9:5353. [PMID: 30559359 PMCID: PMC6297222 DOI: 10.1038/s41467-018-07675-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Advances in high-throughput sequencing have facilitated remarkable insights into the diversity and functioning of naturally occurring microbes; however, current sequencing strategies are insufficient to reveal physiological states of microbial communities associated with protein translation dynamics. Transfer RNAs (tRNAs) are core components of protein synthesis machinery, present in all living cells, and are phylogenetically tractable, which make them ideal targets to gain physiological insights into environmental microbes. Here we report a direct sequencing approach, tRNA-seq, and a software suite, tRNA-seq-tools, to recover sequences, abundance profiles, and post-transcriptional modifications of microbial tRNA transcripts. Our analysis of cecal samples using tRNA-seq distinguishes high-fat- and low-fat-fed mice in a comparable fashion to 16S ribosomal RNA gene amplicons, and reveals taxon- and diet-dependent variations in tRNA modifications. Our results provide taxon-specific in situ insights into the dynamics of tRNA gene expression and post-transcriptional modifications within complex environmental microbiomes.
Collapse
Affiliation(s)
- Michael H Schwartz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.,Committee on Microbiology, University of Chicago, Chicago, IL, 60637, USA
| | - Haipeng Wang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.,School of Computer Science and Technology, Shandong University of Technology, Zibo, Shandong, China.,Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
| | - Jessica N Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Wesley C Clark
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Steven Cui
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Matthew J Eckwahl
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - David W Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Marc Parisien
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Sarah M Owens
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.,Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Brian L Cheng
- Committee on Microbiology, University of Chicago, Chicago, IL, 60637, USA
| | - Kristina Martinez
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA. .,Committee on Microbiology, University of Chicago, Chicago, IL, 60637, USA.
| | - A Murat Eren
- Committee on Microbiology, University of Chicago, Chicago, IL, 60637, USA. .,Department of Medicine, University of Chicago, Chicago, IL, 60637, USA. .,Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| |
Collapse
|
11
|
Dissecting the Contribution of Release Factor Interactions to Amber Stop Codon Reassignment Efficiencies of the Methanocaldococcus jannaschii Orthogonal Pair. Genes (Basel) 2018; 9:genes9110546. [PMID: 30424562 PMCID: PMC6266110 DOI: 10.3390/genes9110546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022] Open
Abstract
Non-canonical amino acids (ncAAs) are finding increasing use in basic biochemical studies and biomedical applications. The efficiency of ncAA incorporation is highly variable, as a result of competing system composition and codon context effects. The relative quantitative contribution of the multiple factors affecting incorporation efficiency are largely unknown. This manuscript describes the use of green fluorescent protein (GFP) reporters to quantify the efficiency of amber codon reassignment using the Methanocaldococcus jannaschii orthogonal pair system, commonly employed for ncAA incorporation, and quantify the contribution of release factor 1 (RF1) to the overall efficiency of amino acid incorporation. The efficiencies of amber codon reassignments were quantified at eight positions in GFP and evaluated in multiple combinations. The quantitative contribution of RF1 competition to reassignment efficiency was evaluated through comparisons of amber codon suppression efficiencies in normal and genomically recoded Escherichia coli strains. Measured amber stop codon reassignment efficiencies for eight single stop codon GFP variants ranged from 51 to 117% in E. coli DH10B and 76 to 104% in the RF1 deleted E. coli C321.ΔA.exp. Evaluation of efficiency changes in specific sequence contexts in the presence and absence of RF1 suggested that RF1 specifically interacts with +4 Cs and that the RF1 interactions contributed approximately half of the observed sequence context-dependent variation in measured reassignment efficiency. Evaluation of multisite suppression efficiencies suggests that increasing demand for translation system components limits multisite incorporation in cells with competing RF1.
Collapse
|
12
|
Paris Z, Alfonzo JD. How the intracellular partitioning of tRNA and tRNA modification enzymes affects mitochondrial function. IUBMB Life 2018; 70:1207-1213. [PMID: 30358065 DOI: 10.1002/iub.1957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/21/2018] [Indexed: 11/06/2022]
Abstract
Organisms have evolved different strategies to seclude certain molecules to specific locations of the cell. This is most pronounced in eukaryotes with their extensive intracellular membrane systems. Intracellular compartmentalization is particularly critical in genome containing organelles, which because of their bacterial evolutionary ancestry still maintain protein-synthesis machinery that resembles more their evolutionary origin than the extant eukaryotic cell they once joined as an endosymbiont. Despite this, it is clear that genome-containing organelles such as the mitochondria are not in isolation and many molecules make it across the mitochondrial membranes from the cytoplasm. In this realm the import of tRNAs and the enzymes that modify them prove most consequential. In this review, we discuss two recent examples of how modifications typically found in cytoplasmic tRNAs affect mitochondrial translation in organisms that forcibly import all their tRNAs from the cytoplasm. In our view, the combination of tRNA import and the compartmentalization of modification enzymes must have played a critical role in the evolution of the organelle. © 2018 IUBMB Life, 70(12):1207-1213, 2018.
Collapse
Affiliation(s)
- Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Juan D Alfonzo
- Department of Microbiology, Ohio State Biochemistry Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
Hori H, Kawamura T, Awai T, Ochi A, Yamagami R, Tomikawa C, Hirata A. Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA. Microorganisms 2018; 6:E110. [PMID: 30347855 PMCID: PMC6313347 DOI: 10.3390/microorganisms6040110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
To date, numerous modified nucleosides in tRNA as well as tRNA modification enzymes have been identified not only in thermophiles but also in mesophiles. Because most modified nucleosides in tRNA from thermophiles are common to those in tRNA from mesophiles, they are considered to work essentially in steps of protein synthesis at high temperatures. At high temperatures, the structure of unmodified tRNA will be disrupted. Therefore, thermophiles must possess strategies to stabilize tRNA structures. To this end, several thermophile-specific modified nucleosides in tRNA have been identified. Other factors such as RNA-binding proteins and polyamines contribute to the stability of tRNA at high temperatures. Thermus thermophilus, which is an extreme-thermophilic eubacterium, can adapt its protein synthesis system in response to temperature changes via the network of modified nucleosides in tRNA and tRNA modification enzymes. Notably, tRNA modification enzymes from thermophiles are very stable. Therefore, they have been utilized for biochemical and structural studies. In the future, thermostable tRNA modification enzymes may be useful as biotechnology tools and may be utilized for medical science.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takako Awai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
14
|
Vallières C, Raulo R, Dickinson M, Avery SV. Novel Combinations of Agents Targeting Translation That Synergistically Inhibit Fungal Pathogens. Front Microbiol 2018; 9:2355. [PMID: 30349511 PMCID: PMC6186996 DOI: 10.3389/fmicb.2018.02355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
A range of fungicides or antifungals are currently deployed to control fungi in agriculture or medicine, but resistance to current agents is growing so new approaches and molecular targets are urgently needed. Recently, different aminoglycoside antibiotics combined with particular transport inhibitors were found to produce strong, synergistic growth-inhibition of fungi, by synergistically increasing the error rate of mRNA translation. Here, focusing on translation fidelity as a novel target for combinatorial antifungal treatment, we tested the hypothesis that alternative combinations of agents known to affect the availability of functional amino acids would synergistically inhibit growth of major fungal pathogens. We screened 172 novel combinations against three phytopathogens (Rhizoctonia solani, Zymoseptoria tritici, and Botrytis cinerea) and three human pathogens (Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus), showing that 48 combinations inhibited strongly the growth of the pathogens; the growth inhibition effect was significantly greater with the agents combined than by a simple product of their individual effects at the same doses. Of these, 23 combinations were effective against more than one pathogen, including combinations comprising food-and-drug approved compounds, e.g., quinine with bicarbonate, and quinine with hygromycin. These combinations [fractional inhibitory combination (FIC) index ≤0.5] gave up to 100% reduction of fungal growth yield at concentrations of agents which, individually, had negligible effect. No synergy was evident against bacterial, plant or mammalian cells, indicating specificity for fungi. Mode-of-action analyses for quinine + hygromycin indicated that synergistic mistranslation was the antifungal mechanism. That mechanism was not universal as bicarbonate exacerbated quinine action by increasing drug uptake. The study unveils chemical combinations and a target process with potential for control of diverse fungal pathogens, and suggests repurposing possibilities for several current therapeutics.
Collapse
Affiliation(s)
- Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Roxane Raulo
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Matthew Dickinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| |
Collapse
|
15
|
Bijective codon transformations show genetic code symmetries centered on cytosine's coding properties. Theory Biosci 2017; 137:17-31. [PMID: 29147851 DOI: 10.1007/s12064-017-0258-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Homology of some RNAs with template DNA requires systematic exchanges between nucleotides. Such exchanges produce 'swinger' RNA along 23 bijective transformations (nine symmetric, X ↔ Y; and 14 asymmetric, X → Y → Z → X, for example A ↔ C and A → C → G → A, respectively). Here, analyses compare amino acids coded by swinger-transformed codons to those coded by untransformed codons, defining coding invariance after transformations. Swinger transformations cluster according to coding invariance in four groups characterized by transformations into cytosine (C = C, T → C, A → C, and G → C). C's central mutational coding role shows that swinger transformations constrained genetic code genesis. Coding invariance post-transformations correlate positively/negatively with mitochondrial swinger transcription/lepidosaurian body temperature. Presumably, low/high temperatures stabilize/revert rare swinger polymerization modes, producing long swinger sequences/point mutations, respectively. Coding invariance after swinger transformations might compensate effects of swinger polymerizations in species with low body temperatures. Hypothetically, swinger transcription increased coding potential of RNA self-replicating protolife systems under heating/cooling cycles.
Collapse
|
16
|
Programmed Ribosomal Frameshifting Generates a Copper Transporter and a Copper Chaperone from the Same Gene. Mol Cell 2017; 65:207-219. [PMID: 28107647 DOI: 10.1016/j.molcel.2016.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/23/2016] [Accepted: 12/13/2016] [Indexed: 12/18/2022]
Abstract
Metal efflux pumps maintain ion homeostasis in the cell. The functions of the transporters are often supported by chaperone proteins, which scavenge the metal ions from the cytoplasm. Although the copper ion transporter CopA has been known in Escherichia coli, no gene for its chaperone had been identified. We show that the CopA chaperone is expressed in E. coli from the same gene that encodes the transporter. Some ribosomes translating copA undergo programmed frameshifting, terminate translation in the -1 frame, and generate the 70 aa-long polypeptide CopA(Z), which helps cells survive toxic copper concentrations. The high efficiency of frameshifting is achieved by the combined stimulatory action of a "slippery" sequence, an mRNA pseudoknot, and the CopA nascent chain. Similar mRNA elements are not only found in the copA genes of other bacteria but are also present in ATP7B, the human homolog of copA, and direct ribosomal frameshifting in vivo.
Collapse
|
17
|
The Candidate Antimalarial Drug MMV665909 Causes Oxygen-Dependent mRNA Mistranslation and Synergizes with Quinoline-Derived Antimalarials. Antimicrob Agents Chemother 2017; 61:AAC.00459-17. [PMID: 28652237 PMCID: PMC5571370 DOI: 10.1128/aac.00459-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/17/2017] [Indexed: 12/18/2022] Open
Abstract
To cope with growing resistance to current antimalarials, new drugs with novel modes of action are urgently needed. Molecules targeting protein synthesis appear to be promising candidates. We identified a compound (MMV665909) from the Medicines for Malaria Venture (MMV) Malaria Box of candidate antimalarials that could produce synergistic growth inhibition with the aminoglycoside antibiotic paromomycin, suggesting a possible action of the compound in mRNA mistranslation. This mechanism of action was substantiated with a Saccharomyces cerevisiae model using available reporters of mistranslation and other genetic tools. Mistranslation induced by MMV665909 was oxygen dependent, suggesting a role for reactive oxygen species (ROS). Overexpression of Rli1 (a ROS-sensitive, conserved FeS protein essential in mRNA translation) rescued inhibition by MMV665909, consistent with the drug's action on translation fidelity being mediated through Rli1. The MMV drug also synergized with major quinoline-derived antimalarials which can perturb amino acid availability or promote ROS stress: chloroquine, amodiaquine, and primaquine. The data collectively suggest translation fidelity as a novel target of antimalarial action and support MMV665909 as a promising drug candidate.
Collapse
|
18
|
Abstract
A wide range of fungicides (or antifungals) are used in agriculture and medicine, with activities against a spectrum of fungal pathogens. Unfortunately, the evolution of fungicide resistance has become a major issue. Therefore, there is an urgent need for new antifungal treatments. Certain metals have been used for decades as efficient fungicides in agriculture. However, concerns over metal toxicity have escalated over this time. Recent studies have revealed that metals like copper and chromate can impair functions required for the fidelity of protein synthesis in fungi. This occurs through different mechanisms, based on targeting of iron-sulphur cluster integrity or competition for uptake with amino acid precursors. Moreover, chromate at least acts synergistically with other agents known to target translation fidelity, like aminoglycoside antibiotics, causing dramatic and selective growth inhibition of several fungal pathogens of humans and plants. As such synergy allows the application of decreased amounts of metals for effective inhibition, it lessens concerns about nonspecific toxicity and opens new possibilities for metal applications in combinatorial fungicides targeting protein synthesis.
Collapse
Affiliation(s)
- Cindy Vallières
- School of Life Sciences, University of Nottingham University Park, Nottingham, United Kingdom
| | - Simon V Avery
- School of Life Sciences, University of Nottingham University Park, Nottingham, United Kingdom.
| |
Collapse
|
19
|
Wang N, Shang X, Cerny R, Niu W, Guo J. Systematic Evolution and Study of UAGN Decoding tRNAs in a Genomically Recoded Bacteria. Sci Rep 2016; 6:21898. [PMID: 26906548 PMCID: PMC4764823 DOI: 10.1038/srep21898] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/01/2016] [Indexed: 01/22/2023] Open
Abstract
We report the first systematic evolution and study of tRNA variants that are able to read a set of UAGN (N = A, G, U, C) codons in a genomically recoded E. coli strain that lacks any endogenous in-frame UAGN sequences and release factor 1. Through randomizing bases in anticodon stem-loop followed by a functional selection, we identified tRNA mutants with significantly improved UAGN decoding efficiency, which will augment the current efforts on genetic code expansion through quadruplet decoding. We found that an extended anticodon loop with an extra nucleotide was required for a detectable efficiency in UAGN decoding. We also observed that this crucial extra nucleotide was converged to a U (position 33.5) in all of the top tRNA hits no matter which UAGN codon they suppress. The insertion of U33.5 in the anticodon loop likely causes tRNA distortion and affects anticodon-codon interaction, which induces +1 frameshift in the P site of ribosome. A new model was proposed to explain the observed features of UAGN decoding. Overall, our findings elevate our understanding of the +1 frameshift mechanism and provide a useful guidance for further efforts on the genetic code expansion using a non-canonical quadruplet reading frame.
Collapse
Affiliation(s)
- Nanxi Wang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Xin Shang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Ronald Cerny
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Wei Niu
- Department of Chemical &Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| |
Collapse
|
20
|
Thiaville PC, Legendre R, Rojas-Benítez D, Baudin-Baillieu A, Hatin I, Chalancon G, Glavic A, Namy O, de Crécy-Lagard V. Global translational impacts of the loss of the tRNA modification t 6A in yeast. MICROBIAL CELL 2016; 3:29-45. [PMID: 26798630 PMCID: PMC4717488 DOI: 10.15698/mic2016.01.473] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The universal tRNA modification t6A is found at position 37 of nearly
all tRNAs decoding ANN codons. The absence of t6A37 leads
to severe growth defects in baker’s yeast, phenotypes similar to those caused by
defects in mcm5s2U34 synthesis. Mutants in
mcm5s2U34 can be suppressed by
overexpression of tRNALysUUU, but we show t6A
phenotypes could not be suppressed by expressing any individual ANN decoding
tRNA, and t6A and mcm5s2U are not determinants
for each other’s formation. Our results suggest that t6A deficiency,
like mcm5s2U deficiency, leads to protein folding defects,
and show that the absence of t6A led to stress sensitivities (heat,
ethanol, salt) and sensitivity to TOR pathway inhibitors. Additionally,
L-homoserine suppressed the slow growth phenotype seen in
t6A-deficient strains, and proteins aggregates and Advanced Glycation
End-products (AGEs) were increased in the mutants. The global consequences on
translation caused by t6A absence were examined by ribosome
profiling. Interestingly, the absence of t6A did not lead to global
translation defects, but did increase translation initiation at upstream non-AUG
codons and increased frame-shifting in specific genes. Analysis of codon
occupancy rates suggests that one of the major roles of t6A is to
homogenize the process of elongation by slowing the elongation rate at codons
decoded by high abundance tRNAs and I34:C3 pairs while
increasing the elongation rate of rare tRNAs and G34:U3
pairs. This work reveals that the consequences of t6A absence are
complex and multilayered and has set the stage to elucidate the molecular basis
of the observed phenotypes.
Collapse
Affiliation(s)
- Patrick C Thiaville
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL 32610, USA; University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Rachel Legendre
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Diego Rojas-Benítez
- Centro de Regulación del Genoma. Facultad de Ciencias - Universidad de Chile, Santiago, Chile
| | - Agnès Baudin-Baillieu
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Isabelle Hatin
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Guilhem Chalancon
- Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Alvaro Glavic
- Centro de Regulación del Genoma. Facultad de Ciencias - Universidad de Chile, Santiago, Chile
| | - Olivier Namy
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Bâtiment 400, 91400 Orsay, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA; University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
21
|
Nomura Y, Ohno S, Nishikawa K, Yokogawa T. Correlation between the stability of tRNA tertiary structure and the catalytic efficiency of a tRNA-modifying enzyme, archaeal tRNA-guanine transglycosylase. Genes Cells 2015; 21:41-52. [PMID: 26663416 DOI: 10.1111/gtc.12317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/22/2015] [Indexed: 11/29/2022]
Abstract
In many archaeal tRNAs, archaeosine is found at position 15. During archaeosine biosynthesis, archaeal tRNA-guanine transglycosylase (ArcTGT) first replaces the guanine base at position 15 with 7-cyano-7-deazaguanine (preQ0). In this study, we investigated whether modified nucleosides in tRNA substrates would affect ArcTGT incorporation of preQ0. We prepared a series of hypomodified tRNAs(Ser)(GGA) from Escherichia coli strains lacking each tRNA-modifying enzyme. Measurement of ArcTGT kinetic parameters with the various tRNAs(Ser)(GGA) as substrates showed that the Km decreased due to the lack of modified nucleosides. The tRNAs(Ser)(GGA) melting profiles resulted in experimental evidence showing that each modified nucleoside in tRNA(Ser)(GGA) enhanced tRNA stability. Furthermore, the ArcTGT K(m) strongly correlated with the melting temperature (T(m)), suggesting that the unstable tRNA containing fewer modified nucleosides served as a better ArcTGT substrate. These results show that preQ0 incorporation into tRNA by ArcTGT takes place early in the archaeal tRNA modification process.
Collapse
Affiliation(s)
- Yuichiro Nomura
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Satoshi Ohno
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazuya Nishikawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Takashi Yokogawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
22
|
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica contains 31 different modified nucleosides, which are all, except for one (Queuosine[Q]), synthesized on an oligonucleotide precursor, which through specific enzymes later matures into tRNA. The corresponding structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The syntheses of some of them (e.g.,several methylated derivatives) are catalyzed by one enzyme, which is position and base specific, but synthesis of some have a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N6-threonyladenosine [t6A],and Q). Several of the modified nucleosides are essential for viability (e.g.,lysidin, t6A, 1-methylguanosine), whereas deficiency in others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those, which are present in the body of the tRNA, have a primarily stabilizing effect on the tRNA. Thus, the ubiquitouspresence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
|
23
|
Daniel E, Onwukwe GU, Wierenga RK, Quaggin SE, Vainio SJ, Krause M. ATGme: Open-source web application for rare codon identification and custom DNA sequence optimization. BMC Bioinformatics 2015; 16:303. [PMID: 26391121 PMCID: PMC4578782 DOI: 10.1186/s12859-015-0743-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
Background Codon usage plays a crucial role when recombinant proteins are expressed in different organisms. This is especially the case if the codon usage frequency of the organism of origin and the target host organism differ significantly, for example when a human gene is expressed in E. coli. Therefore, to enable or enhance efficient gene expression it is of great importance to identify rare codons in any given DNA sequence and subsequently mutate these to codons which are more frequently used in the expression host. Results We describe an open-source web-based application, ATGme, which can in a first step identify rare and highly rare codons from most organisms, and secondly gives the user the possibility to optimize the sequence. Conclusions This application provides a simple user-friendly interface utilizing three optimization strategies: 1. one-click optimization, 2. bulk optimization (by codon-type), 3. individualized custom (codon-by-codon) optimization. ATGme is an open-source application which is freely available at: http://atgme.org
Collapse
Affiliation(s)
- Edward Daniel
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Structural Biochemistry, University of Oulu, Oulu, Finland.
| | - Goodluck U Onwukwe
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Structural Biochemistry, University of Oulu, Oulu, Finland.
| | - Rik K Wierenga
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Structural Biochemistry, University of Oulu, Oulu, Finland.
| | - Susan E Quaggin
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Seppo J Vainio
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, FIN-90220, Oulu, Finland.
| | - Mirja Krause
- Biocenter Oulu, Laboratory of Developmental Biology, InfoTech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5A, FIN-90220, Oulu, Finland.
| |
Collapse
|
24
|
Tükenmez H, Xu H, Esberg A, Byström AS. The role of wobble uridine modifications in +1 translational frameshifting in eukaryotes. Nucleic Acids Res 2015; 43:9489-99. [PMID: 26283182 PMCID: PMC4627075 DOI: 10.1093/nar/gkv832] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, 11 out of 42 tRNA species contain 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U), 5-methoxycarbonylmethyluridine (mcm(5)U), 5-carbamoylmethyluridine (ncm(5)U) or 5-carbamoylmethyl-2'-O-methyluridine (ncm(5)Um) nucleosides in the anticodon at the wobble position (U34). Earlier we showed that mutants unable to form the side chain at position 5 (ncm(5) or mcm(5)) or lacking sulphur at position 2 (s(2)) of U34 result in pleiotropic phenotypes, which are all suppressed by overexpression of hypomodified tRNAs. This observation suggests that the observed phenotypes are due to inefficient reading of cognate codons or an increased frameshifting. The latter may be caused by a ternary complex (aminoacyl-tRNA*eEF1A*GTP) with a modification deficient tRNA inefficiently being accepted to the ribosomal A-site and thereby allowing an increased peptidyl-tRNA slippage and thus a frameshift error. In this study, we have investigated the role of wobble uridine modifications in reading frame maintenance, using either the Renilla/Firefly luciferase bicistronic reporter system or a modified Ty1 frameshifting site in a HIS4A::lacZ reporter system. We here show that the presence of mcm(5) and s(2) side groups at wobble uridines are important for reading frame maintenance and thus the aforementioned mutant phenotypes might partly be due to frameshift errors.
Collapse
Affiliation(s)
- Hasan Tükenmez
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Hao Xu
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Anders Esberg
- Department of Odontology/Cariology, Umeå University, Umeå, 901 87, Sweden
| | - Anders S Byström
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
25
|
Koutmou KS, Schuller AP, Brunelle JL, Radhakrishnan A, Djuranovic S, Green R. Ribosomes slide on lysine-encoding homopolymeric A stretches. eLife 2015; 4:e05534. [PMID: 25695637 PMCID: PMC4363877 DOI: 10.7554/elife.05534] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/18/2015] [Indexed: 01/29/2023] Open
Abstract
Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome 'sliding' represents an unexpected type of ribosome movement possible during translation.
Collapse
Affiliation(s)
- Kristin S Koutmou
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Anthony P Schuller
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Julie L Brunelle
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, United States
| | - Aditya Radhakrishnan
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, United States
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, United States
| |
Collapse
|
26
|
Wang J, Caban K, Gonzalez RL. Ribosomal initiation complex-driven changes in the stability and dynamics of initiation factor 2 regulate the fidelity of translation initiation. J Mol Biol 2015; 427:1819-34. [PMID: 25596426 DOI: 10.1016/j.jmb.2014.12.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 12/23/2022]
Abstract
Joining of the large, 50S, ribosomal subunit to the small, 30S, ribosomal subunit initiation complex (IC) during bacterial translation initiation is catalyzed by the initiation factor (IF) IF2. Because the rate of subunit joining is coupled to the IF, transfer RNA (tRNA), and mRNA codon compositions of the 30S IC, the subunit joining reaction functions as a kinetic checkpoint that regulates the fidelity of translation initiation. Recent structural studies suggest that the conformational dynamics of the IF2·tRNA sub-complex forming on the intersubunit surface of the 30S IC may play a significant role in the mechanisms that couple the rate of subunit joining to the IF, tRNA, and codon compositions of the 30S IC. To test this hypothesis, we have developed a single-molecule fluorescence resonance energy transfer signal between IF2 and tRNA that has enabled us to monitor the conformational dynamics of the IF2·tRNA sub-complex across a series of 30S ICs. Our results demonstrate that 30S ICs undergoing rapid subunit joining display a high affinity for IF2 and an IF2·tRNA sub-complex that primarily samples a single conformation. In contrast, 30S ICs that undergo slower subunit joining exhibit a decreased affinity for IF2 and/or a change in the conformational dynamics of the IF2·tRNA sub-complex. These results strongly suggest that 30S IC-driven changes in the stability of IF2 and the conformational dynamics of the IF2·tRNA sub-complex regulate the efficiency and fidelity of subunit joining during translation initiation.
Collapse
Affiliation(s)
- Jiangning Wang
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA
| | - Kelvin Caban
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA.
| |
Collapse
|
27
|
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144. [PMID: 24904644 PMCID: PMC4033218 DOI: 10.3389/fgene.2014.00144] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2014] [Indexed: 12/26/2022] Open
Abstract
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, Japan
| |
Collapse
|
28
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
29
|
Xie P. Dynamics of +1 ribosomal frameshifting. Math Biosci 2014; 249:44-51. [PMID: 24508018 DOI: 10.1016/j.mbs.2014.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/19/2022]
Abstract
It has been well characterized that the amino acid starvation can induce +1 frameshifting. However, how the +1 frameshifting occurs has not been fully understood. Here, taking Escherichia coli RF2 programmed frameshifting as an example we present systematical analysis of the +1 frameshifting that could occur during every state-transition step in elongation phase of protein synthesis, showing that the +1 frameshifting can occur only during the period after deacylated tRNA dissociation from the posttranslocation state and before the recognition of the next "hungry" codon. The +1 frameshifting efficiency is theoretically studied, with the simple analytical solutions showing that the high efficiency is almost solely due to the occurrence of ribosome pausing which in turn results from the insufficient RF2. The analytical solutions also provide a consistent explanation of a lot of independent experimental data.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
30
|
Jäger G, Nilsson K, Björk GR. The phenotype of many independently isolated +1 frameshift suppressor mutants supports a pivotal role of the P-site in reading frame maintenance. PLoS One 2013; 8:e60246. [PMID: 23593181 PMCID: PMC3617221 DOI: 10.1371/journal.pone.0060246] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/24/2013] [Indexed: 11/19/2022] Open
Abstract
The main features of translation are similar in all organisms on this planet and one important feature of it is the way the ribosome maintain the reading frame. We have earlier characterized several bacterial mutants defective in tRNA maturation and found that some of them correct a +1 frameshift mutation; i.e. such mutants possess an error in reading frame maintenance. Based on the analysis of the frameshifting phenotype of such mutants we proposed a pivotal role of the ribosomal grip of the peptidyl-tRNA to maintain the correct reading frame. To test the model in an unbiased way we first isolated many (467) independent mutants able to correct a +1 frameshift mutation and thereafter tested whether or not their frameshifting phenotypes were consistent with the model. These 467+1 frameshift suppressor mutants had alterations in 16 different loci of which 15 induced a defective tRNA by hypo- or hypermodifications or altering its primary sequence. All these alterations of tRNAs induce a frameshift error in the P-site to correct a +1 frameshift mutation consistent with the proposed model. Modifications next to and 3' of the anticodon (position 37), like 1-methylguanosine, are important for proper reading frame maintenance due to their interactions with components of the ribosomal P-site. Interestingly, two mutants had a defect in a locus (rpsI), which encodes ribosomal protein S9. The C-terminal of this protein contacts position 32-34 of the peptidyl-tRNA and is thus part of the P-site environment. The two rpsI mutants had a C-terminal truncated ribosomal protein S9 that destroys its interaction with the peptidyl-tRNA resulting in +1 shift in the reading frame. The isolation and characterization of the S9 mutants gave strong support of our model that the ribosomal grip of the peptidyl-tRNA is pivotal for the reading frame maintenance.
Collapse
Affiliation(s)
- Gunilla Jäger
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Glenn R. Björk
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
31
|
Hall JB, Cobb VA, Cahoon AB. The complete mitochondrial DNA sequence of Crotalus horridus (timber rattlesnake). ACTA ACUST UNITED AC 2012; 24:94-6. [PMID: 22994371 DOI: 10.3109/19401736.2012.722999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete mitogenome of the timber rattlesnake (Crotalus horridus) was completed using Sanger sequencing. It is 17,260 bp with 13 protein-coding genes, 21 tRNAs, two rRNAs and two control regions. Gene synteny is consistent with other snakes with the exception of a missing redundant tRNA (Ser) . This mitogenome should prove to be a useful addition of a well-known member of the Viperidae snake family.
Collapse
Affiliation(s)
- Jacob B Hall
- Department of Biology, Box 60, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | | | | |
Collapse
|
32
|
Paredes JA, Carreto L, Simões J, Bezerra AR, Gomes AC, Santamaria R, Kapushesky M, Moura GR, Santos MAS. Low level genome mistranslations deregulate the transcriptome and translatome and generate proteotoxic stress in yeast. BMC Biol 2012; 10:55. [PMID: 22715922 PMCID: PMC3391182 DOI: 10.1186/1741-7007-10-55] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/20/2012] [Indexed: 11/21/2022] Open
Abstract
Background Organisms use highly accurate molecular processes to transcribe their genes and a variety of mRNA quality control and ribosome proofreading mechanisms to maintain intact the fidelity of genetic information flow. Despite this, low level gene translational errors induced by mutations and environmental factors cause neurodegeneration and premature death in mice and mitochondrial disorders in humans. Paradoxically, such errors can generate advantageous phenotypic diversity in fungi and bacteria through poorly understood molecular processes. Results In order to clarify the biological relevance of gene translational errors we have engineered codon misreading in yeast and used profiling of total and polysome-associated mRNAs, molecular and biochemical tools to characterize the recombinant cells. We demonstrate here that gene translational errors, which have negligible impact on yeast growth rate down-regulate protein synthesis, activate the unfolded protein response and environmental stress response pathways, and down-regulate chaperones linked to ribosomes. Conclusions We provide the first global view of transcriptional and post-transcriptional responses to global gene translational errors and we postulate that they cause gradual cell degeneration through synergistic effects of overloading protein quality control systems and deregulation of protein synthesis, but generate adaptive phenotypes in unicellular organisms through activation of stress cross-protection. We conclude that these genome wide gene translational infidelities can be degenerative or adaptive depending on cellular context and physiological condition.
Collapse
Affiliation(s)
- João A Paredes
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Determinants of translation efficiency and accuracy. Mol Syst Biol 2011; 7:481. [PMID: 21487400 PMCID: PMC3101949 DOI: 10.1038/msb.2011.14] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/15/2011] [Indexed: 12/17/2022] Open
Abstract
A given protein sequence can be encoded by an astronomical number of alternative nucleotide sequences. Recent research has revealed that this flexibility provides evolution with multiple ways to tune the efficiency and fidelity of protein translation and folding. Proper functioning of biological cells requires that the process of protein expression be carried out with high efficiency and fidelity. Given an amino-acid sequence of a protein, multiple degrees of freedom still remain that may allow evolution to tune efficiency and fidelity for each gene under various conditions and cell types. Particularly, the redundancy of the genetic code allows the choice between alternative codons for the same amino acid, which, although ‘synonymous,' may exert dramatic effects on the process of translation. Here we review modern developments in genomics and systems biology that have revolutionized our understanding of the multiple means by which translation is regulated. We suggest new means to model the process of translation in a richer framework that will incorporate information about gene sequences, the tRNA pool of the organism and the thermodynamic stability of the mRNA transcripts. A practical demonstration of a better understanding of the process would be a more accurate prediction of the proteome, given the transcriptome at a diversity of biological conditions.
Collapse
|
34
|
Gonzalez D, Giannerini S, Rosa R. Circular codes revisited: A statistical approach. J Theor Biol 2011; 275:21-8. [DOI: 10.1016/j.jtbi.2011.01.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 11/29/2022]
|
35
|
Warnecke T, Huang Y, Przytycka TM, Hurst LD. Unique cost dynamics elucidate the role of frameshifting errors in promoting translational robustness. Genome Biol Evol 2010; 2:636-45. [PMID: 20688751 PMCID: PMC2941156 DOI: 10.1093/gbe/evq049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is now considerable evidence supporting the view that codon usage is frequently under selection for translational accuracy. There are, however, multiple forms of inaccuracy (missense, premature termination, and frameshifting errors) and pinpointing a particular error process behind apparently adaptive mRNA anatomy is rarely straightforward. Understanding differences in the fitness costs associated with different types of translational error can help us devise critical tests that can implicate one error process to the exclusion of others. To this end, we present a model that captures distinct features of frameshifting cost and apply this to 641 prokaryotic genomes. We demonstrate that, although it is commonly assumed that the ribosome encounters an off-frame stop codon soon after the frameshift and costs of mis-elongation are therefore limited, genomes with high GC content typically incur much larger per-error costs. We go on to derive the prediction, unique to frameshifting errors, that differences in translational robustness between the 5' and 3' ends of genes should be less pronounced in genomes with higher GC content. This prediction we show to be correct. Surprisingly, this does not mean that GC-rich organisms necessarily carry a greater fitness burden as a consequence of accidental frameshifting. Indeed, increased per-error costs are often more than counterbalanced by lower predicted error rates owing to more diverse anticodon repertoires in GC-rich genomes. We therefore propose that selection on tRNA repertoires may operate to reduce frameshifting errors.
Collapse
Affiliation(s)
- Tobias Warnecke
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | | | | |
Collapse
|
36
|
Holland SL, Ghosh E, Avery SV. Chromate-induced sulfur starvation and mRNA mistranslation in yeast are linked in a common mechanism of Cr toxicity. Toxicol In Vitro 2010; 24:1764-7. [PMID: 20637279 DOI: 10.1016/j.tiv.2010.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 07/05/2010] [Accepted: 07/09/2010] [Indexed: 12/21/2022]
Abstract
Toxicity of the environmental carcinogen chromate is known to involve sulfur starvation and also error-prone mRNA translation. Here we reconcile those facts using the yeast model. We demonstrate that: (i) cysteine and methionine starvation mimic Cr-induced translation errors, (ii) genetic suppression of S starvation suppresses Cr-induced mistranslation, and (iii) mistranslation requires cysteine and methionine biosynthesis. Therefore, Cr-induced S starvation is the cause of mRNA mistranslation. This establishes a single, novel pathway mediating the toxicity of chromate.
Collapse
Affiliation(s)
- Sara L Holland
- School of Biology, Institute of Genetics, University of Nottingham, University Park, Nottingham, UK
| | | | | |
Collapse
|
37
|
Tomikawa C, Yokogawa T, Kanai T, Hori H. N7-Methylguanine at position 46 (m7G46) in tRNA from Thermus thermophilus is required for cell viability at high temperatures through a tRNA modification network. Nucleic Acids Res 2010; 38:942-57. [PMID: 19934251 PMCID: PMC2817472 DOI: 10.1093/nar/gkp1059] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/24/2009] [Accepted: 10/26/2009] [Indexed: 02/06/2023] Open
Abstract
N(7)-methylguanine at position 46 (m(7)G46) in tRNA is produced by tRNA (m(7)G46) methyltransferase (TrmB). To clarify the role of this modification, we made a trmB gene disruptant (DeltatrmB) of Thermus thermophilus, an extreme thermophilic eubacterium. The absence of TrmB activity in cell extract from the DeltatrmB strain and the lack of the m(7)G46 modification in tRNA(Phe) were confirmed by enzyme assay, nucleoside analysis and RNA sequencing. When the DeltatrmB strain was cultured at high temperatures, several modified nucleotides in tRNA were hypo-modified in addition to the lack of the m(7)G46 modification. Assays with tRNA modification enzymes revealed hypo-modifications of Gm18 and m(1)G37, suggesting that the m(7)G46 positively affects their formations. Although the lack of the m(7)G46 modification and the hypo-modifications do not affect the Phe charging activity of tRNA(Phe), they cause a decrease in melting temperature of class I tRNA and degradation of tRNA(Phe) and tRNA(Ile). (35)S-Met incorporation into proteins revealed that protein synthesis in DeltatrmB cells is depressed above 70 degrees C. At 80 degrees C, the DeltatrmB strain exhibits a severe growth defect. Thus, the m(7)G46 modification is required for cell viability at high temperatures via a tRNA modification network, in which the m(7)G46 modification supports introduction of other modifications.
Collapse
Affiliation(s)
- Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Takashi Yokogawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Tamotsu Kanai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu, Gifu 501-1193, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| |
Collapse
|
38
|
Cahoon AB, Sharpe RM, Mysayphonh C, Thompson EJ, Ward AD, Lin A. The complete chloroplast genome of tall fescue (Lolium arundinaceum; Poaceae) and comparison of whole plastomes from the family Poaceae. AMERICAN JOURNAL OF BOTANY 2010; 97:49-58. [PMID: 21622366 DOI: 10.3732/ajb.0900008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this paper, we describe the complete chloroplast genome of Lolium arundinaceum. This sequence is the culmination of a long-term project completed by >400 undergraduates who took general genetics at Middle Tennessee State University from 2004-2007. It was undertaken in an attempt to introduce these students to an open-ended experiential/exploratory lesson to produce and analyze novel data. The data they produced should provide the necessary information for both phylogenetic comparisons and plastome engineering of tall fescue. The fescue plastome (GenBank FJ466687) is 136048 bp with a typical quadripartite structure and a gene order similar to other grasses; 56% of the plastome is coding region comprised of 75 protein-coding genes, 29 tRNAs, four rRNAs, and one hypothetical coding region (ycf). Comparisons of Poaceae plastomes reveal size differences between the PACC (subfamilies Panicoideae, Arundinoideae, Centothecoideae, and Chloridoideae) and BOP (subfamilies Bambusoideae, Oryzoideae, and Pooideae) clades. Alignment analysis suggests that several potentially conserved large deletions in previously identified intergenic length polymorphic regions are responsible for the majority of the size discrepancy. Phylogenetic analysis using whole plastome data suggests that fescue closely aligns with Lolium perenne. Some unique features as well as phylogenetic branch length calculations, however, suggest that a number of changes have occurred since these species diverged.
Collapse
Affiliation(s)
- A Bruce Cahoon
- Department of Biology, Middle Tennessee State University, Box 60, Murfreesboro, Tennessee 37132 USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
tRNAs possess a high content of modified nucleosides, which display an incredible structural variety. These modified nucleosides are conserved in their sequence and have important roles in tRNA functions. Most often, hypermodified nucleosides are found in the wobble position of tRNAs, which play a direct role in maintaining translational efficiency and fidelity, codon recognition, etc. One of such hypermodified base is queuine, which is a base analogue of guanine, found in the first anticodon position of specific tRNAs (tyrosine, histidine, aspartate and asparagine tRNAs). These tRNAs of the ‘Q-family’ originally contain guanine in the first position of anticodon, which is post-transcriptionally modified with queuine by an irreversible insertion during maturation. Queuine is ubiquitously present throughout the living system from prokaryotes to eukaryotes, including plants. Prokaryotes can synthesize queuine de novo by a complex biosynthetic pathway, whereas eukaryotes are unable to synthesize either the precursor or queuine. They utilize salvage system and acquire queuine as a nutrient factor from their diet or from intestinal microflora. The tRNAs of the Q-family are completely modified in terminally differentiated somatic cells. However, hypomodification of Q-tRNA (queuosine-modified tRNA) is closely associated with cell proliferation and malignancy. The precise mechanisms of queuine- and Q-tRNA-mediated action are still a mystery. Direct or indirect evidence suggests that queuine or Q-tRNA participates in many cellular functions, such as inhibition of cell proliferation, control of aerobic and anaerobic metabolism, bacterial virulence, etc. The role of Q-tRNA modification in cellular machinery and the signalling pathways involved therein is the focus of this review.
Collapse
|
40
|
Dhar, Ganguli S, Datta A. Targeting pseudoknots in H5N1 hemagglutinin using designed aptamers. Bioinformation 2009; 4:193-6. [PMID: 20461158 PMCID: PMC2859575 DOI: 10.6026/97320630004193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 07/07/2009] [Accepted: 09/09/2009] [Indexed: 11/23/2022] Open
Abstract
Influenza A virus subtype H5N1 is highly contagious among birds, causing high mortality among domestic poultry. The viral genome is contained on eight single RNA strands of which HA encode the antigenic glycoprotein called hemagglutinin. Hemagglutinin found on the surface of the influenza viruses and is responsible for binding the virus to the cell that is being infected. Among the most prevalent RNA structures the pseudoknot motif represents an important piece of RNA architecture, as it provides a means for a single RNA strand to fold upon itself to produce a globular structure capable of performing important biological functions. In this analysis we have identified the pseudoknot motifs in the hemagglutinin gene of HPAI A (H5N1) Asian strains. Specific aptamers have been designed against these pseudoknots. These in-silico aptamers can be used to hinder the ability of pseudoknots to facilitate ribosomal frameshifting. This may ultimately lead to reduce the coding efficiency of the HA that encodes hemagglutinin and might be used as molecular medicine for H5N1.
Collapse
Affiliation(s)
- Dhar
- Defence Institute of High Altitude Research, DRDO, C/o 56 APO, Pin- 901205, India.
| | | | | |
Collapse
|
41
|
Huang Y, Koonin EV, Lipman DJ, Przytycka TM. Selection for minimization of translational frameshifting errors as a factor in the evolution of codon usage. Nucleic Acids Res 2009; 37:6799-810. [PMID: 19745054 PMCID: PMC2777431 DOI: 10.1093/nar/gkp712] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a wide range of genomes, it was observed that the usage of synonymous codons is biased toward specific codons and codon patterns. Factors that are implicated in the selection for codon usage include facilitation of fast and accurate translation. There are two types of translational errors: missense errors and processivity errors. There is considerable evidence in support of the hypothesis that codon usage is optimized to minimize missense errors. In contrast, little is known about the relationship between codon usage and frameshifting errors, an important form of processivity errors, which appear to occur at frequencies comparable to the frequencies of missense errors. Based on the recently proposed pause-and-slip model of frameshifting, we developed Frameshifting Robustness Score (FRS). We used this measure to test if the pattern of codon usage indicates optimization against frameshifting errors. We found that the FRS values of protein-coding sequences from four analyzed genomes (the bacteria Bacillus subtilis and Escherichia coli, and the yeasts Saccharomyces cerevisiae and Schizosaccharomyce pombe) were typically higher than expected by chance. Other properties of FRS patterns observed in B. subtilis, S. cerevisiae and S. pombe, such as the tendency of FRS to increase from the 5′- to 3′-end of protein-coding sequences, were also consistent with the hypothesis of optimization against frameshifting errors in translation. For E. coli, the results of different tests were less consistent, suggestive of a much weaker optimization, if any. Collectively, the results fit the concept of selection against mistranslation-induced protein misfolding being one of the factors shaping the evolution of both coding and non-coding sequences.
Collapse
Affiliation(s)
- Yang Huang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
42
|
Singh TR, Pardasani KR. Ambush hypothesis revisited: Evidences for phylogenetic trends. Comput Biol Chem 2009; 33:239-44. [PMID: 19473880 DOI: 10.1016/j.compbiolchem.2009.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 04/15/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
Recoding events occur in competition with standard readout of the transcript, and are site-specific. Recoding is the reprogramming of mRNA translation by localized alterations in the standard translational rules. Frame-shifting is one class of recoding and defined as protein translations that start not at the first, but either at the second (+1 frame-shift) or the third (-1 frame-shift) nucleotide of the codon. Coding sequences lack stop codons, but frame-shifted sequences contain many stop codons, termed off-frame stops or hidden stops. These hidden stops terminate frame-shifted translation, potentially decreasing energy, and resource waste on non-functional proteins. Our results support this putative ancient adaptive event for the selection of codons that can be part of hidden stop codons. All taxonomic groups represent positive correlation between codon usage frequencies and contribution of codons to hidden stops in off-frame context. Our analysis on nuclear and mitochondrial genomic data revealed phylogenomic selection of ambush mechanism. Strongest impact of this event was found in viruses and bacteria. It has been suggested that this mechanism has occurred and been utilized in the early stages of evolution.
Collapse
Affiliation(s)
- Tiratha Raj Singh
- Department of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|
43
|
Silva RM, Duarte ICN, Paredes JA, Lima-Costa T, Perrot M, Boucherie H, Goodfellow BJ, Gomes AC, Mateus DD, Moura GR, Santos MAS. The yeast PNC1 longevity gene is up-regulated by mRNA mistranslation. PLoS One 2009; 4:e5212. [PMID: 19381334 PMCID: PMC2667667 DOI: 10.1371/journal.pone.0005212] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 03/16/2009] [Indexed: 11/18/2022] Open
Abstract
Translation fidelity is critical for protein synthesis and to ensure correct cell functioning. Mutations in the protein synthesis machinery or environmental factors that increase synthesis of mistranslated proteins result in cell death and degeneration and are associated with neurodegenerative diseases, cancer and with an increasing number of mitochondrial disorders. Remarkably, mRNA mistranslation plays critical roles in the evolution of the genetic code, can be beneficial under stress conditions in yeast and in Escherichia coli and is an important source of peptides for MHC class I complex in dendritic cells. Despite this, its biology has been overlooked over the years due to technical difficulties in its detection and quantification. In order to shed new light on the biological relevance of mistranslation we have generated codon misreading in Saccharomyces cerevisiae using drugs and tRNA engineering methodologies. Surprisingly, such mistranslation up-regulated the longevity gene PNC1. Similar results were also obtained in cells grown in the presence of amino acid analogues that promote protein misfolding. The overall data showed that PNC1 is a biomarker of mRNA mistranslation and protein misfolding and that PNC1-GFP fusions can be used to monitor these two important biological phenomena in vivo in an easy manner, thus opening new avenues to understand their biological relevance.
Collapse
Affiliation(s)
- Raquel M Silva
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fung KL, Gottesman MM. A synonymous polymorphism in a common MDR1 (ABCB1) haplotype shapes protein function. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:860-71. [PMID: 19285158 DOI: 10.1016/j.bbapap.2009.02.014] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/23/2009] [Accepted: 02/26/2009] [Indexed: 12/30/2022]
Abstract
The MDR1 (ABCB1) gene encodes a membrane-bound transporter that actively effluxes a wide range of compounds from cells. The overexpression of MDR1 by multidrug-resistant cancer cells is a serious impediment to chemotherapy. MDR1 is expressed in various tissues to protect them from the adverse effect of toxins. The pharmacokinetics of drugs that are also MDR1 substrates also influence disease outcome and treatment efficacy. Although MDR1 is a well-conserved gene, there is increasing evidence that its polymorphisms affect substrate specificity. Three single nucleotide polymorphisms (SNPs) occur frequently and have strong linkage, creating a common haplotype at positions 1236C>T (G412G), 2677G>T (A893S) and 3435C>T (I1145I). The frequency of the synonymous 3435C>T polymorphism has been shown to vary significantly according to ethnicity. Existing literature suggests that the haplotype plays a role in response to drugs and disease susceptibility. This review summarizes recent findings on the 3435C>T polymorphism of MDR1 and the haplotype to which it belongs. A possible molecular mechanism of action by ribosome stalling that can change protein structure and function by altering protein folding is discussed.
Collapse
Affiliation(s)
- King Leung Fung
- Laboratory of Cell Biology, Center of Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 2108, Bethesda, MD 20892-4254, USA
| | | |
Collapse
|
45
|
Atkins JF, Björk GR. A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment. Microbiol Mol Biol Rev 2009; 73:178-210. [PMID: 19258537 PMCID: PMC2650885 DOI: 10.1128/mmbr.00010-08] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of translation components which compensate for both -1 and +1 frameshift mutations showed the first evidence for framing malleability. Those compensatory mutants isolated in bacteria and yeast with altered tRNA or protein factors are reviewed here and are considered to primarily cause altered P-site realignment and not altered translocation. Though the first sequenced tRNA mutant which suppressed a +1 frameshift mutation had an extra base in its anticodon loop and led to a textbook "yardstick" model in which the number of anticodon bases determines codon size, this model has long been discounted, although not by all. Accordingly, the reviewed data suggest that reading frame maintenance and translocation are two distinct features of the ribosome. None of the -1 tRNA suppressors have anticodon loops with fewer than the standard seven nucleotides. Many of the tRNA mutants potentially affect tRNA bending and/or stability and can be used for functional assays, and one has the conserved C74 of the 3' CCA substituted. The effect of tRNA modification deficiencies on framing has been particularly informative. The properties of some mutants suggest the use of alternative tRNA anticodon loop stack conformations by individual tRNAs in one translation cycle. The mutant proteins range from defective release factors with delayed decoding of A-site stop codons facilitating P-site frameshifting to altered EF-Tu/EF1alpha to mutant ribosomal large- and small-subunit proteins L9 and S9. Their study is revealing how mRNA slippage is restrained except where it is programmed to occur and be utilized.
Collapse
Affiliation(s)
- John F Atkins
- BioSciences Institute, University College, Cork, Ireland.
| | | |
Collapse
|
46
|
Näsvall SJ, Nilsson K, Björk GR. The ribosomal grip of the peptidyl-tRNA is critical for reading frame maintenance. J Mol Biol 2008; 385:350-67. [PMID: 19013179 DOI: 10.1016/j.jmb.2008.10.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 11/15/2022]
Abstract
If a ribosome shifts to an alternative reading frame during translation, the information in the message is usually lost. We have selected mutants of Salmonella typhimurium with alterations in tRNA(cmo5UGG)(Pro) that cause increased frameshifting when present in the ribosomal P-site. In 108 such mutants, two parts of the tRNA molecule are altered: the anticodon stem and the D-arm, including its tertiary interactions with the variable arm. Some of these alterations in tRNA(cmo5UGG)(Pro) are in close proximity to ribosomal components in the P-site. The crystal structure of the 30S subunit suggests that the C-terminal end of ribosomal protein S9 contacts nucleotides 32-34 of peptidyl-tRNA. We have isolated mutants with defects in the C-terminus of S9 that induce +1 frameshifting. Combinations of changes in tRNA(cmo5UGG)(Pro) and S9 suggest that an interaction occurs between position 32 of the peptidyl-tRNA and the C-terminal end of S9. Together, our results suggest that the cause of frameshifting is an aberrant interaction between the peptidyl-tRNA and the P-site environment. We suggest that the "ribosomal grip" of the peptidyl-tRNA is pivotal for maintaining the reading frame.
Collapse
MESH Headings
- Frameshifting, Ribosomal
- Models, Molecular
- Mutation, Missense
- Nucleic Acid Conformation
- Point Mutation
- Protein Biosynthesis
- RNA, Messenger/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Pro/genetics
- RNA, Transfer, Pro/metabolism
- Reading Frames
- Ribosomal Protein S9
- Ribosomal Proteins/genetics
- Ribosomes/metabolism
- Salmonella typhimurium/physiology
Collapse
Affiliation(s)
- S Joakim Näsvall
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
47
|
Auzat I, Dröge A, Weise F, Lurz R, Tavares P. Origin and function of the two major tail proteins of bacteriophage SPP1. Mol Microbiol 2008; 70:557-69. [PMID: 18786146 DOI: 10.1111/j.1365-2958.2008.06435.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The majority of bacteriophages have a long non-contractile tail (Siphoviridae) that serves as a conduit for viral DNA traffic from the phage capsid to the host cell at the beginning of infection. The 160-nm-long tail tube of Bacillus subtilis bacteriophage SPP1 is shown to be composed of two major tail proteins (MTPs), gp17.1 and gp17.1*, at a ratio of about 3:1. They share a common amino-terminus, but the latter species has approximately 10 kDa more than gp17.1. A CCC.UAA sequence with overlapping proline codons at the 3' end of gene 17.1 drives a programmed translational frameshift to another open reading frame. The recoding event generates gp17.1*. Phages carrying exclusively gp17.1 or gp17.1* are viable, but tails are structurally distinct. gp17.1 and the carboxyl-terminus of gp17.1* have a distinct evolutionary history correlating with different functions: the polypeptide sequence identical in the two proteins is responsible for assembly of the tail tube while the additional module of gp17.1* shields the structure exterior exposed to the environment. The carboxyl-terminal extension is an elaboration present in some tailed bacteriophages. Different extensions were found to combine in a mosaic fashion with the MTP essential module in a subset of Siphoviridae genomes.
Collapse
Affiliation(s)
- Isabelle Auzat
- Unité de Virologie Moléculaire et Structurale, CNRS UMR 2472, INRA UMR1157 and IFR 115, Bâtiment 14B, CNRS, 91198 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
48
|
Toyooka T, Awai T, Kanai T, Imanaka T, Hori H. Stabilization of tRNA (mG37) methyltransferase [TrmD] from Aquifex aeolicus by an intersubunit disulfide bond formation. Genes Cells 2008; 13:807-16. [PMID: 18651851 DOI: 10.1111/j.1365-2443.2008.01207.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recombinant Aquifex aeolicus TrmD protein has a Cys20-Cys20 disulfide bond between its two subunits. This was demonstrated by SDS-polyacrylamide gel analysis of wild-type enzyme and C20S mutant protein (in which the Cys20 residue is substituted by serine), in the absence or presence of various concentrations of dithiothreitol. Analytical gel-filtration chromatography revealed that the C20S mutant protein forms a dimer structure even though it is missing the disulfide bond. Western blotting analysis suggests that the Cys20-Cys20 disulfide bond is formed in native TrmD protein in living A. aeolicus cells. Incubation at 85 degrees C for 20 min caused the precipitation of more than half of the C20S protein, while more than 70% of the wild-type enzyme was soluble at that temperature. This assay clearly demonstrates that the disulfide bond enhances the protein stability at 85 degrees C. A kinetic assay showed that the methyl-transfer activity of the C20S mutant protein was slightly less than that of the wild-type enzyme at 70 degrees C. Comparison of the CD-spectra of wild-type and C20S proteins reveals that some of the alpha-helices in the C20S mutant protein are less tightly packed than those of the wild-type enzyme at 70 degrees C.
Collapse
Affiliation(s)
- Takashi Toyooka
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | | | | | | | | |
Collapse
|
49
|
Wolf M, Dimitrova M, Baumert TF, Schuster C. The major form of hepatitis C virus alternate reading frame protein is suppressed by core protein expression. Nucleic Acids Res 2008; 36:3054-64. [PMID: 18400784 PMCID: PMC2396417 DOI: 10.1093/nar/gkn111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) is a human RNA virus encoding 10 proteins in a single open reading frame. In the +1 frame, an ‘alternate reading frame’ (ARF) overlaps with the core protein-encoding sequence and encodes the ARF protein (ARFP). Here, we investigated the molecular regulatory mechanisms of ARFP expression in HCV target cells. Chimeric HCV-luciferase reporter constructs derived from the infectious HCV prototype isolate H77 were transfected into hepatocyte-derived cell lines. Translation initiation was most efficient at the internal AUG codon at position 86/88, resulting in the synthesis of a truncated ARFP named 86/88ARFP. Interestingly, 86/88ARFP synthesis was markedly enhanced in constructs containing an inactivated core protein reading frame. This enhancement was reversed by co-expression of core protein in trans, demonstrating suppression of ARFP synthesis by HCV core protein. In conclusion, our results indicate that translation of ARFP occurs mainly by alternative internal initiation at position 86/88 and is regulated by HCV core protein expression. The suppression of ARFP translation by HCV core protein suggests that ARFP expression is inversely linked to the level of viral replication. These findings define key mechanisms regulating ARFP expression and set the stage for further studies addressing the function of ARFP within the viral life cycle.
Collapse
Affiliation(s)
- Marie Wolf
- Inserm, U748, Université Louis Pasteur, Strasbourg and Service d'Hépatogastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000, France
| | | | | | | |
Collapse
|
50
|
tRNA's modifications bring order to gene expression. Curr Opin Microbiol 2008; 11:134-40. [PMID: 18378185 DOI: 10.1016/j.mib.2008.02.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/05/2008] [Accepted: 02/11/2008] [Indexed: 11/21/2022]
Abstract
The posttranscriptional modification of RNA is a significant investment in genes, enzymes, substrates, and energy. Advances in molecular genetics and structural biology indicate strongly that modifications of tRNA's anticodon domain control gene expression. Modifications at the anticodon's wobble position are required for recognition of rarely used codons and restrict or expand codon recognition depending on their chemistries. A shift of the translational reading frame occurs in the absence of modifications at either wobble position-34 or the conserved purine-37, 3'-adjacent to the anticodon, causing expression of alternate protein sequences. These modifications have in common their contribution of order to tRNA's anticodon.
Collapse
|