1
|
Kruzel EK, Hull CM. Establishing an unusual cell type: how to make a dikaryon. Curr Opin Microbiol 2010; 13:706-11. [PMID: 21036099 PMCID: PMC2994965 DOI: 10.1016/j.mib.2010.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/25/2010] [Accepted: 09/28/2010] [Indexed: 12/19/2022]
Abstract
The dikaryons of basidiomycete fungi represent an unusual cell type required for complete sexual development. Dikaryon formation occurs via the activities of cell type-specific homeodomain transcription factors, which form regulatory complexes to establish the dikaryotic state. Decades of classical genetic and cell biological studies in mushrooms have provided a foundation for more recent molecular studies in the pathogenic species Ustilago maydis and Cryptococcus neoformans. Studies in these systems have revealed novel mechanisms of regulation that function downstream of classic homeodomain complexes to ensure that dikaryons are established and propagated. Comparisons of these dikaryon-specific networks promise to reveal the nature of regulatory network evolution and the adaptations responsible for driving complex eukaryotic development.
Collapse
Affiliation(s)
- Emilia K. Kruzel
- Department of Biomolecular Chemistry, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706
| | - Christina M. Hull
- Department of Biomolecular Chemistry, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706
- Department of Medical Microbiology & Immunology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706
| |
Collapse
|
2
|
Stanton BC, Giles SS, Kruzel EK, Warren CL, Ansari AZ, Hull CM. Cognate Site Identifier analysis reveals novel binding properties of the Sex Inducer homeodomain proteins of Cryptococcus neoformans. Mol Microbiol 2009; 72:1334-47. [PMID: 19486297 PMCID: PMC2776684 DOI: 10.1111/j.1365-2958.2009.06719.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Homeodomain proteins function in fungi to specify cell types and control sexual development. In the meningoencephalitis-causing fungal pathogen Cryptococcus neoformans, sexual development leads to the production of spores (suspected infectious particles). Sexual development is controlled by the homeodomain transcription factors Sxi1alpha and Sxi2a, but the mechanism by which they act is unknown. To understand how the Sxi proteins regulate development, we characterized their binding properties in vitro, showing that Sxi2a does not require a partner to bind DNA with high affinity. We then utilized a novel approach, Cognate Site Identifier (CSI) arrays, to define a comprehensive DNA-binding profile for Sxi2a, revealing a consensus sequence distinct from those of other fungal homeodomain proteins. Finally, we show that the homeodomains of both Sxi proteins are required for sexual development, a departure from related fungi. Our findings support a model in which Sxi1alpha and Sxi2a control sexual development in a homeodomain-dependent manner by binding to DNA sequences that differ from those defined in previously established fungal paradigms.
Collapse
Affiliation(s)
- Brynne C. Stanton
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Steven S. Giles
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Emilia K. Kruzel
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Christopher L. Warren
- Department of Biochemistry, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin, Madison, Madison, WI 53706, USA
- Genome Center, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Christina M. Hull
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Madison, WI 53706, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Hull CM, Boily MJ, Heitman J. Sex-specific homeodomain proteins Sxi1alpha and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans. EUKARYOTIC CELL 2005; 4:526-35. [PMID: 15755915 PMCID: PMC1087792 DOI: 10.1128/ec.4.3.526-535.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeodomain proteins are central regulators of development in eukaryotes. In fungi, homeodomain proteins have been shown to control cell identity and sexual development. Cryptococcus neoformans is a human fungal pathogen with a defined sexual cycle that produces spores, the suspected infectious particles. Previously, only a single homeodomain regulatory protein involved in sexual development, Sxi1alpha, had been identified. Here we present the discovery of Sxi2a, a predicted but heretofore elusive cell-type-specific homeodomain protein essential for the regulation of sexual development. Our studies reveal that Sxi2a is necessary for proper sexual development and sufficient to drive this development in otherwise haploid alpha cells. We further show that Sxi1alpha and Sxi2a interact with one another and impart similar expression patterns for two key mating genes. The discovery of Sxi2a and its relationship with Sxi1alpha leads to a new model for how the sexual cycle is controlled in C. neoformans, with implications for virulence.
Collapse
Affiliation(s)
- Christina M Hull
- Department of Molecular Genetics and Microbiology, 100 Research Dr., Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
4
|
Abstract
Peptidyl arms extending from one protein domain to another protein domain mediate many important interactions in biology. A well-studied example of this type of protein-protein interaction occurs between the yeast homeodomain proteins, MAT alpha2 and MAT a1, which form a high-affinity heterodimer on DNA. The carboxyl-terminal arm extending from MAT alpha2 to MAT a1 has been proposed to produce an allosteric conformational change in the a1 protein that generates a very large increase in the DNA binding affinity of a1. Although early studies lent some support to this model, a more recent crystal structure determination of the free a1 protein argues against any allosteric change. This note presents a thermodynamic argument that accounts for the proteins' binding behavior, so that allosteric conformational changes are not required to explain the large affinity increase. The analysis presented here should be useful in analyzing binding behavior in other systems involving arm interactions.
Collapse
Affiliation(s)
- Robert Schleif
- Biology Department, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | | |
Collapse
|
5
|
Ke A, Wolberger C. Insights into binding cooperativity of MATa1/MATalpha2 from the crystal structure of a MATa1 homeodomain-maltose binding protein chimera. Protein Sci 2003; 12:306-12. [PMID: 12538894 PMCID: PMC2312416 DOI: 10.1110/ps.0219103] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Yeast MATa1 and MATalpha2 are homeodomain proteins that bind DNA cooperatively to repress transcription of cell type specific genes. The DNA affinity and specificity of MATa1 in the absence of MATalpha2, however, is very low. MATa1 is converted to a higher affinity DNA-binding protein by its interaction with the C-terminal tail of MATalpha2. To understand why MATa1 binds DNA weakly by itself, and how the MATalpha2 tail affects the affinity of MATa1 for DNA, we determined the crystal structure of a maltose-binding protein (MBP)-a1 chimera whose DNA binding behavior is similar to MATa1. The overall MATa1 conformation in the MBP-a1 structure, which was determined in the absence of alpha2 and DNA, is similar to that in the a1/alpha2/DNA structure. The sole difference is in the C-terminal portion of the DNA recognition helix of MATa1, which is flexible in the present structure. However, these residues are not in a location likely to be affected by binding of the MATalpha2 tail. The results argue against conformational changes in a1 induced by the tail of MATalpha2, suggesting instead that the MATalpha2 tail energetically couples the DNA binding of MATalpha2 and MATa1.
Collapse
Affiliation(s)
- Ailong Ke
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
6
|
Hart B, Mathias JR, Ott D, McNaughton L, Anderson JS, Vershon AK, Baxter SM. Engineered improvements in DNA-binding function of the MATa1 homeodomain reveal structural changes involved in combinatorial control. J Mol Biol 2002; 316:247-56. [PMID: 11851335 DOI: 10.1006/jmbi.2001.5333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have engineered enhanced DNA-binding function into the a1 homeodomain by making changes in a loop distant from the DNA-binding surface. Comparison of the free and bound a1 structures suggested a mechanism linking van der Waals stacking changes in this loop to the ordering of a final turn in the DNA-binding helix of a1. Inspection of the protein sequence revealed striking differences in amino acid identity at positions 24 and 25 compared to related homeodomain proteins. These positions lie in the loop connecting helix-1 and helix-2, which is involved in heterodimerization with the alpha 2 protein. A series of single and double amino acid substitutions (a1-Q24R, a1-S25Y, a1-S25F and a1-Q24R/S25Y) were engineered, expressed and purified for biochemical and biophysical study. Calorimetric measurements and HSQC NMR spectra confirm that the engineered variants are folded and are equally or more stable than the wild-type a1 homeodomain. NMR analysis of a1-Q24R/S25Y demonstrates that the DNA recognition helix (helix-3) is extended by at least one turn as a result of the changes in the loop connecting helix-1 and helix-2. As shown by EMSA, the engineered variants bind DNA with enhanced affinity (16-fold) in the absence of the alpha 2 cofactor and the variant alpha 2/a1 heterodimers bind cognate DNA with specificity and affinity reflective of the enhanced a1 binding affinity. Importantly, in vivo assays demonstrate that the a1-Q24R/S25Y protein binds with fivefold greater affinity than wild-type a1 and is able to partially suppress defects in repression by alpha 2 mutants. As a result of these studies, we show how subtle differences in residues at a surface distant from the functional site code for a conformational switch that allows the a1 homeodomain to become active in DNA binding in association with its cofactor alpha 2.
Collapse
Affiliation(s)
- Beverly Hart
- Wadsworth Center, NY State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Millevoi S, Thion L, Joseph G, Vossen C, Ghisolfi-Nieto L, Erard M. Atypical binding of the neuronal POU protein N-Oct3 to noncanonical DNA targets. Implications for heterodimerization with HNF-3 beta. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:781-91. [PMID: 11168419 DOI: 10.1046/j.1432-1327.2001.01934.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The capacity of POU proteins to recognize different DNA sequences and to bind target DNA in the form of monomers, cooperative dimers or heterodimers is important in relation to their transcriptional regulatory properties. The N-Oct3 neuron-specific protein binds to an octamer-like sequence (AAATAATGC) within the (-102/-72) neuronal promoter region of the human aromatic L-amino acid decarboxylase (AADC) gene. In this atypical case the POUh and POUs tetrameric subsites are spaced one nucleotide apart and in switched order as compared with the consensus octamer. Moreover this POU binding motif overlaps the hepatocyte nuclear factor HNF-3 beta binding site (TGCTCAGTAAA) which itself contains a heptamer-like sequence (CTCAGTA). Using the isolated DNA binding domains (DBD) of the two proteins, it is shown that, when binding to this unusual recognition sequence, N-Oct3 either exhibits noncooperative homodimerization or allows the simultaneous binding of the second transcription activator HNF-3 beta. CD studies indicate that the binding of N-Oct3 monomers/dimers and N-Oct3-HNF-3 beta heterodimers to the DNA induces conformational changes of both protein and DNA. Partial proteolysis/MALDI-MS was used in conjunction with molecular modelling to show that the protein conformational change resulting from binary N-Oct3/DNA complex formation occurs within the linker peptide joining the POUs and POUh subdomains. Furthermore, modelling the N-Oct3/HNF-3 beta/DNA ternary complex predicts a nucleotide rearrangement in the overlap region and an interaction between both transcription factors. In the light of our findings, which illustrate both site-dependent and site-independent protein and DNA conformational changes, general implications for the allosteric function of DNA response elements in transcriptional regulation are discussed.
Collapse
Affiliation(s)
- S Millevoi
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Toulouse, France
| | | | | | | | | | | |
Collapse
|
8
|
Harmer T, Wu M, Schleif R. The role of rigidity in DNA looping-unlooping by AraC. Proc Natl Acad Sci U S A 2001; 98:427-31. [PMID: 11209047 PMCID: PMC14602 DOI: 10.1073/pnas.98.2.427] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We applied two experiments useful in the study of ligand-regulated DNA binding proteins to AraC, the dimeric regulator of the Escherichia coli l-arabinose operon. In the absence of arabinose, AraC prefers to loop DNA by binding to two half-sites that are separated by 210 base pairs, and in the presence of arabinose it prefers to bind to adjacently located half-sites. The basis for this ligand-regulated shift in binding appears to result from a shift in the rigidity of the system, where rigidity both in AraC protein in the absence of arabinose, and in the DNA are required to generate the free energy differences that produce the binding preferences. Eliminating the dimerization domains and connecting the two DNA binding domains of AraC by a flexible peptide linker should provide a protein whose behavior mimics that of AraC when there is no interaction between its dimerization and DNA binding domains. The resulting protein bound to adjacent half-sites on the DNA, like AraC protein in the presence of arabinose. When the two double-stranded DNA half-sites were connected by 24 bases of single-stranded, flexible DNA, wild-type AraC protein bound to the DNA in the presence and absence of arabinose with equal affinity, showing that AraC modulates its DNA binding affinity in response to arabinose by shifting the relative positions of its DNA binding domains. These results are consistent with the light switch mechanism for the action of AraC, refine the model, and extend the range of experimental tests to which it has been subjected.
Collapse
Affiliation(s)
- T Harmer
- Biology Department, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
9
|
Anderson JS, Forman MD, Modleski S, Dahlquist FW, Baxter SM. Cooperative ordering in homeodomain-DNA recognition: solution structure and dynamics of the MATa1 homeodomain. Biochemistry 2000; 39:10045-54. [PMID: 10955992 DOI: 10.1021/bi000677z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mating type homeodomain proteins, MATa1 and MATalpha2, combine to form a heterodimer to bind DNA in diploid yeast cells. The a1-alpha2 heterodimer tightly and specifically binds haploid-specific gene operators to repress transcription. On its own, however, the a1 homeodomain does not bind DNA in a sequence-specific manner. To help understand this interaction, we describe the solution structure and backbone dynamics of the free a1 homeodomain. Free a1 in solution is an ensemble of structures having flexible hinges at the two turns in the small protein fold. Conformational changes in the a1 homeodomain upon ternary complex formation are located in the loop between helix 1 and helix 2, where the C-terminal tail of alpha2 binds to form the heterodimer, and at the C-terminus of helix 3, the DNA recognition helix. The observed differences, comparing the free and bound a1 structures, suggest a mechanism linking van der Waals stacking changes to the ordering of a final turn in the DNA-binding helix of a1. The tail of alpha2 induces changes in loop 1 of a1 that push it toward a properly folded DNA binding conformation.
Collapse
Affiliation(s)
- J S Anderson
- Department of Chemistry, Union College, Schenectady, New York 12308, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Coprinus cinereus has two main types of mycelia, the asexual monokaryon and the sexual dikaryon, formed by fusion of compatible monokaryons. Syngamy (plasmogamy) and karyogamy are spatially and temporally separated, which is typical for basidiomycetous fungi. This property of the dikaryon enables an easy exchange of nuclear partners in further dikaryotic-monokaryotic and dikaryotic-dikaryotic mycelial fusions. Fruiting bodies normally develop on the dikaryon, and the cytological process of fruiting-body development has been described in its principles. Within the specialized basidia, present within the gills of the fruiting bodies, karyogamy occurs in a synchronized manner. It is directly followed by meiosis and by the production of the meiotic basidiospores. The synchrony of karyogamy and meiosis has made the fungus a classical object to study meiotic cytology and recombination. Several genes involved in these processes have been identified. Both monokaryons and dikaryons can form multicellular resting bodies (sclerotia) and different types of mitotic spores, the small uninucleate aerial oidia, and, within submerged mycelium, the large thick-walled chlamydospores. The decision about whether a structure will be formed is made on the basis of environmental signals (light, temperature, humidity, and nutrients). Of the intrinsic factors that control development, the products of the two mating type loci are most important. Mutant complementation and PCR approaches identified further genes which possibly link the two mating-type pathways with each other and with nutritional regulation, for example with the cAMP signaling pathway. Among genes specifically expressed within the fruiting body are those for two galectins, beta-galactoside binding lectins that probably act in hyphal aggregation. These genes serve as molecular markers to study development in wild-type and mutant strains. The isolation of genes for potential non-DNA methyltransferases, needed for tissue formation within the fruiting body, promises the discovery of new signaling pathways, possibly involving secondary fungal metabolites.
Collapse
Affiliation(s)
- U Kües
- ETH Zürich, Institut für Mikrobiologie, CH-8092 Zürich, Switzerland
| |
Collapse
|
11
|
Cowley DO, Graves BJ. Phosphorylation represses Ets-1 DNA binding by reinforcing autoinhibition. Genes Dev 2000; 14:366-76. [PMID: 10673508 PMCID: PMC316366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Phosphorylation of transcription factors is a key link between cell signaling and the control of gene expression. Here we report that phosphorylation regulates DNA binding of the Ets-1 transcription factor by reinforcing an autoinhibitory mechanism. Quantitative DNA-binding assays show that calcium-dependent phosphorylation inhibits Ets-1 DNA binding 50-fold. The four serines that mediate this inhibitory effect are distant from the DNA-binding domain but near structural elements required for autoinhibition. Mutational analyses demonstrate that an intact inhibitory module is required for phosphorylation-dependent regulation. Partial proteolysis studies indicate that phosphorylation stabilizes an inhibitory conformation. These findings provide a structural mechanism for phosphorylation-dependent inhibition of Ets-1 DNA binding and demonstrate a new function for inhibitory modules as structural mediators of negative signaling events.
Collapse
Affiliation(s)
- D O Cowley
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550, USA
| | | |
Collapse
|
12
|
Cowley DO, Graves BJ. Phosphorylation represses Ets-1 DNA binding by reinforcing autoinhibition. Genes Dev 2000. [DOI: 10.1101/gad.14.3.366] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phosphorylation of transcription factors is a key link between cell signaling and the control of gene expression. Here we report that phosphorylation regulates DNA binding of the Ets-1 transcription factor by reinforcing an autoinhibitory mechanism. Quantitative DNA-binding assays show that calcium-dependent phosphorylation inhibits Ets-1 DNA binding 50-fold. The four serines that mediate this inhibitory effect are distant from the DNA-binding domain but near structural elements required for autoinhibition. Mutational analyses demonstrate that an intact inhibitory module is required for phosphorylation-dependent regulation. Partial proteolysis studies indicate that phosphorylation stabilizes an inhibitory conformation. These findings provide a structural mechanism for phosphorylation-dependent inhibition of Ets-1 DNA binding and demonstrate a new function for inhibitory modules as structural mediators of negative signaling events.
Collapse
|
13
|
Goetz TL, Gu TL, Speck NA, Graves BJ. Auto-inhibition of Ets-1 is counteracted by DNA binding cooperativity with core-binding factor alpha2. Mol Cell Biol 2000; 20:81-90. [PMID: 10594011 PMCID: PMC85055 DOI: 10.1128/mcb.20.1.81-90.2000] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Auto-inhibition is a common transcriptional control mechanism that is well characterized in the regulatory transcription factor Ets-1. Autoinhibition of Ets-1 DNA binding works through an inhibitory module that exists in two conformations. DNA binding requires a change in the inhibitory module from the packed to disrupted conformation. This structural switch provides a mechanism to tightly regulate Ets-1 DNA binding. We report that the Ets-1 partner protein core-binding factor alpha2 (CBFalpha2; also known as AML1 or PEBP2) stimulates Ets-1 DNA binding and counteracts auto-inhibition. Support for this conclusion came from three observations. First, the level of cooperative DNA binding (10-fold) was similar to the level of repression by auto-inhibition (10- to 20-fold). Next, a region necessary for cooperative DNA binding mapped to the inhibitory module. Third, an Ets-1 mutant with a constitutively disrupted inhibitory module did not bind DNA cooperatively with CBFalpha2. Furthermore, two additional lines of evidence indicated that CBFalpha2 affects the structural switch by direct interactions with Ets-1. First, the retention of cooperative DNA binding on nicked duplexes eliminated a potential role of through-DNA effects. Second, cooperative DNA binding was observed on composite sites with altered spacing or reversed orientation. We suggest that only protein interactions can accommodate this observed flexibility. These findings provide a mechanism by which CBF relieves the auto-inhibition of Ets-1 and illustrates one strategy for the synergistic activity of regulatory transcription factors.
Collapse
Affiliation(s)
- T L Goetz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550, USA
| | | | | | | |
Collapse
|